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Résumé. Automated tracking of objects through a sequence of images has remained one of the
difficult problems in computer vision. Numerous algorithms and techniques have been proposed
for this task. Some algorithms perform well in restricted environments, such as tracking using
stationary cameras, but a general solution is not currently available. A frequent problem is that
when an algorithm is refined for one application, it becomes unsuitable for other applications.
This paper proposes a general tracking system based on a different approach. Rather than refine
one algorithm for a specific tracking task, two tracking algorithms are employed, and used to
correct each other during the tracking task. By choosing the two algorithms such that they have
complementary failure modes, a robust algorithm is created without increased specialisation.
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1 Introduction

The task of tracking regions of interest is a fundamental problem of computer vision. There are
a number of problem domains where a solution to the tracking task is desirable, such as traffic and
security monitoring and image and video databases. In some applications there are simplifications
which make the task simpler and allow at least a partial solution. When considering fixed security
cameras such as might be used for the interior of a building, many of the complicating factors of
tracking are removed. In this case simple frame differencing can provide much of the tracking, with
further intelligence built in to perform detection of important situations. In the area of video indexing,
we wish to specify one or more image regions, which represent objects of interest, and track these
regions through the video. This allows the annotation of video by object position, and video retrieval
by qualitative spatial reasoning. This requires a more general solution to the tracking problem.

The goal of the work in this paper is to produce a user supervised tracking scheme which requires
minimum user intervention. This means tracking regions for as long as possible, without continuing
when tracking is incorrect. Complete automation of object tracking through video sequences is cur-
rently not possible. Even when the objects of interest are initially specified by the user, the task of
object tracking can only be fully automated in a small number of cases. The main problem is that
characteristics that determine object boundaries are difficult to specify in absolute terms. Boundaries
that seem quite clear to human perception often show little variation in the digital image data.

When using the system described in this paper the user is expected to define the objects of interest,
or key objects, in the initial frame of a video. The tracking system then tracks these key objects as far
through the video sequence as possible, before once again asking for user input to confirm or correct
the detected object position. Thus the tracking system should not only track as well as possible, but
it is also important that the algorithm can maintain an indication of confidence in its tracking, so
that user intervention can be requested at the correct time.

The format of this paper is as follows. Section 2 describes the approaches used to track the object
of interest through a video sequence. In section 3 the method of combining the results of the two
algorithms is presented. The results section then shows the improvement in performance gained by
the combined algorithm, and finally conclusions are presented.

2 Approaches to tracking

There are numerous methods which have been proposed for tracking objects in image sequences.
These vary from simple methods such as frame differencing, to complex methods such as layered
segmentation based on motion fields.()~(4) In general, tracking methods can be placed in one of two
broad categories. These two categories are region trackers and edge trackers.

A region tracker identifies a region of the image, for which it uses a similarity measure to decide
on the best matching region in the next image of a sequence. The region is taken to contain some
object of interest, with the boundary often being a bounding box, or simple polygon. This category
of algorithm suffers from problems from sources such as

1. illumination variation,

2. change in object size due to movement with respect to the image plane,

3. change in object size due to rotation of the object,

4. surface reflectance.

The difficulty with region tracking algorithms is that they need to adapt to gradual changes in condi-
tions in the image, but should not be permitted to slowly drift from the tracked region onto the
background.

Edge trackers attempt to follow edges, or locations of high luminance or colour change, through an
image. The edges tracked are usually boundaries of objects of interest within an image sequence. This
type of algorithm relies on the theory that the boundary of an object of interest will have a strong
edge variation in colour or general illumination. Edge tracking algorithms struggle in low illumination,
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as the changes in colour and luminance are small, and where the background displays strong texture.
Where there are strong edges in the background of an image it is difficult to provide a generally
applicable rule to decide which edge to track. The major problem with edge tracking algorithms is
how to decide when an edge is part of the object, and when to discard a strong edge as part of the
background.

Tracking remains a difficult problem partly because for each individual tracking algorithm a simple
example can be presented for which the algorithm will fail. This paper describes a novel approach
to the tracking problem in which two tracking algorithms, with complementary failure modes, are
combined to provide a more robust composite tracking algorithm. It is intended that the composite
tracker will allow better performance than either algorithm would achieve in isolation. The algorithms
chosen to examine the idea of composite tracking are: correlation as the region based algorithm, and
adaptive contours as the edge based algorithm.

The region based tracking system employs simple correlation of rectangular image regions to track
objects. In many cases this simple algorithm performs well, requiring intervention only four or five
times in a typical video shot of 20 to 25 seconds. There are, however, a number of quite simple
configurations which are almost impossible to track using correlation. The simplest case of this is a
long, thin object that is angled diagonally to the principal axis of the frame. In this case a bounding
region aligned with the principal axis will often contain more background scenery than object, and so
the tracked region will follow the background rather than the object as it moves through a sequence of
images. Difficulty is also encountered when objects change size, as again the background can dominate
tracking, and the bounding box will be less useful even if tracking continues. This type of problem is
very difficult, if at all possible, to remedy using correlation. Providing a more detailed region boundary,
such as an arbitrary polygon can reduce the background included in the tracking region, but is even
more sensitive to changes in object shape. Such an idea is only applicable to rigid bodies, and is
therefore too restrictive for use in our video indexing application.

The edge tracker is based on the adaptive contour by Blake, Curwen and Zisserman,®> () which
is a closed B—spline defined by a small number of control points. In our implementation, the initial
contour is determined by fitting a least squares B—spline to an arbitrary number of boundary points
specified by the user. The user also provides the number of spans or control points in the spline, and
the position of a reference point on the object in each of the first two frames, from which an estimate
of the initial velocity in calculated. The control points of the least squares spline become the state
variables for a Kalman filter, which predicts the most likely position of the object in successive frames.
For each frame of the video sequence, the tracker searches for the object boundary along normals to
the predicted contour at a fixed number of sample points per span. The Kalman filter provides an
estimate of the uncertainty in the position measurement, and this estimate can be used to adjust the
scale of the search in each frame. For each sample point, the search scale increases when uncertainty
is high, and decreases when uncertainty is low. Since only the edges of the object are tracked, the
contour is able to follow changes in object size and shape, and the problem of tracking background
regions does not occur. Instead, the tracker can become distorted when strong features appear in the
background.

The difficulty with edge trackers lies in identifying the correct boundary, which may not be the
strongest feature in the region of interest. A number of measures for selecting the correct edge were
compared. The simplest method locates the strongest colour gradient in the search region, however,
using this search scheme the contour is easily distracted by strong edges in the background, and
quickly distorts. Colour correlation along normals one pixel wide was evaluated but proved ineffective.
An alternative method combines local colour correlation, distance from the predicted location, and
colour gradient, to produce a score for each pixel in the search region. This produced improved results.
The most reliable method, however, was to select the pixel closest to the predicted location at which
a local maximum in colour gradient occurs. Each point on the contour is considered “locked” if this
local gradient maximum is above an empirically determined threshold.

The problems caused by strong background edges can be reduced by coupling the edge tracker to a
shape template. If we assume that the object of interest is a rigid body at a distance from the camera
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much greater that the object size, then an affine projection model known as weak perspective can be
used. Under this projection model, the boundary of the object of interest in any frame is assumed to
be an affine transformation of the original boundary. Using this assumption an affine subspace can be
constructed of all affine transformations of the original contour. The Mahalanobis distance measure
is then applied to measure how far from this affine subspace a measured shape is, and hence how far
the shape has deformed from the original shape of the object.

The assumption of weak perspective is used in the following manner. For each step of the filter,
the actual observation of the object’s location is followed by an additional virtual observation. The
virtual observation uses a point within the subspace of affine transformations of the original contour
to force some shape selectivity into the contour. The shape used for the virtual observation is the
projection into the affine subspace of the contour, or equivalently, the shape within the affine subspace
of transformations of the original contour that is closest (minimum Mahalanobis distance) to the
current contour. The relative confidence the filter has in the actual and virtual observations can be
adjusted, so that the contour will either tend to retain its original shape, or to respond more rapidly
to new features. The Mahalanobis distance of the current contour can also be used as a measure of
confidence in the trackers performance.

Note that a priori knowledge about the object of interest could be used to construct different
subspaces.

3 Combining Tracking Algorithms

The initial state of the tracking algorithms is provided by the user, who specifies a number of
points on the object boundary. These initial points have a B—spline contour fitted to them using least
squares regression. An estimate of the object’s initial velocity is then obtained by requiring the user to
indicate the position of a reference point on the object in the first and second frame. The correlation
algorithm then takes the bounding box of the initial B-spline contour as the region to track, and both
algorithms use the initial velocity to improve the initial tracking estimate. For the purposes of testing
this system, both tracking algorithms are run on each frame. Tracking is performed from one frame
to the next using both algorithms, and then the results are compared.

One important aspect required for this work is a reliable measure of tracking confidence for each
algorithm. In order to combine the two algorithms in a meaningful way it is necessary to know when
each algorithm is tracking well, and when each fails.

The measure used for success of tracking for the correlation algorithm is consistency of object
velocity. During tracking, once the position of the object in the next frame has been determined, the
displacement from the current frame to the next is compared against the average displacement for
the previous three frames. This has been found to be a very accurate measure for the application of
video indexing. Under the general assumption that the frame rate of the video is sufficient for object
tracks to be well behaved, this measure performs very well. For the video used in our experiments, a
threshold of eight pixel difference was sufficient to distinguish accurately between success and failure
for tracking. The videos used in testing were all of a similar size in pixels (384 by 288), so a single
threshold for the displacement was suitable.

The adaptive contour uses two indicators to decide on tracking success or failure. The adaptive
contour fails if the Mahalanobis distance remains above a preset threshold for a specified number of
frames, or if a significant proportion of the sample points along the contour are not locked onto a
feature. Both of these measures provide a measure of confidence in the accuracy of tracking, rather
than a simple tracking or not tracking assessment.

In some cases this scheme may allow the adaptive contours to deform from the correct boundary,
and snap onto an incorrect boundary that provides strong edges. The comparison of the location of
the contour boundary with the region tracked by the correlation should allow detection of this case,
as it is highly unlikely that the snake and correlation will choose to track the same incorrect location.
With the contour tracker attracted to strong edges and correlation tracking by region colour, it would
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TAB. 1 -

require an object of similar colour and shape to the object of interest to tempt both algorithms away
simultaneously. As velocity is also taken into account during tracking, the likelihood is reduced even
further.

There are five possible scenarios for success and failure of the two algorithms, which are given in
table 1.

Case 1 is simplest to deal with, as it indicates all is well. Case 2 and 5 both indicate that something
is amiss, and in both of these cases the user is asked for intervention. The intervention takes the form
of respecifying some subset of the points on the boundary of the object of interest, where the contour
is unlocked. In the worst case, the user can completely respecify the object boundary, as in the first
frame.

It is in cases 3 and 4 that we see the advantage of the composite approach. In each of these cases
we have one tracking algorithm that is confident of its success, and one which has lost the object. In
each of these cases we can correct the parameters of tracking for the algorithm that has failed from
the algorithm that is successful.

Passing of parameters from adaptive contours to the correlation algorithm is simple. The bounding
box of the current adaptive contour is passed to the correlation tracker, and the velocity is calculated
from the new position. When the adaptive contour fails and the correlation succeeds, the contour
determines its predicted location from the correlation bounding box rather than the Kalman filter.
This is done by projecting the original contour shape to fit the interior of the bounding box, then
searching for the object boundary, and applying a measurement as usual. The results of this simple
approach can be seen in figures 1 and 3 in the results section.

A much better approach to this problem is to prevent either tracking algorithm from reaching a
point at which it will fail. This can be accomplished in many cases by using the results of various
events in tracking to reduce errors in the tracking algorithms before the errors become too large. The
two algorithms cooperate to improve each other’s tracking performance.

The clearest example of this is when the bounding box for an object changes. If the adaptive
contour algorithm is tracking well, that is most control points are locked and the Mahalanobis distance
is consistently small, and the bounding box for the contour has changed significantly, then it is sensible
to alter the bounding box used for the correlation tracker. This is particularly true if the positions
predicted by the two trackers are mostly in agreement. In this case the bounding box for the correlation
can be updated to reflect the new shape detected by the adaptive contour algorithm, thus preventing
the loss of tracking likely to occur.

This improves the inherent problem with correlation, which is that there is no sensible way to
change the size of the correlation region. By introducing input from an edge based tracker, suitable
changes can be made.

One method of improving tracking for the adaptive contour is to incorporate the position predicted
by the correlation into the filter when tracking for the contour is uncertain. If the number of control
points that have lost lock increases too much or the Mahalanobis distance is increasing, then an
observation can be made at both the position predicted by the filter, and the position prediced by
the correlation tracker. Whichever of these positions yields the better lock can then be used as the
new position, leading to a reduction in tracking failure due to lost control points. This can aid the
adaptive contour algorithm in maintaining a reasonable, although not ideal, lock on the object, rather
than losing lock completely.

The final sequence in the results section shows the ability of the combined tracking approach.
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Fic. 1 -
Fig. 2 -

4 Results

The results are based upon two video sequences. The initial results use a sequence showing a boat
approaching the shore of a river. As the boat approaches the shore the sail turns in the wind, giving a
clear example of failure for the correlation algorithm. The remainder of the results show portions of a
video clip of a person, whom we shall call the guide, walking around the campus of Curtin University.
There are a number of difficulties in tracking the guide through this clip. Firstly the guide is not
a rigid object, this causes problems for both the adaptive contour algorithm and the correlation. In
addition to this the background of the clip is of a solid consistent colour, which causes difficulties
for correlation based algorithms. There are also strong edges which cause difficulties for the adaptive
contour algorithm.

Figures 1 and 3 show the results of tracking the sail of a yacht near a jetty, and are consecutive
frames from a tracking sequence. With the sail being strongly different from the background, this
would seem a simple sequence to track. However, the sail turns with the wind part way through the
sequence (frame 3(c)), changing its apparent shape. At this point the correlation tracker loses track
of the object, usually becoming stranded on a building face in the background. In figure 1(c) the
correlations bounding box has been corrected from the adaptive contour, giving a smaller bounding
box in the correct position. The correlation fails partly because the region to be tracked no longer
appears as it did originally, causing a reduction in strength of correlation.

Figure 3 shows the adaptive contour tracking the sail, with the contour following the shrinking
boundary. In figure 1 we can see that the correlation has used the contour to produce a new bounding
box when it is lost. This new bounding box is better fitted to the target than the original bounding
box. This shows not only that the correlation tracker can be corrected for position from the contour,
but that a better bounding box may be acquired from the contour where the object changes size.

The problem for the correlation that is caused by the reduction in the size of the tracked object
is shown in figure 2. This figure shows two graphs of the correlation space from the sequence shown
in figure 1. The graph 2(a) shows the correlation space in the early part of the sequence, and has a
well defined peak. Graph 2(b) shows the correlation space at the point at which the bounding box is
corrected from the active contour, this displays a broad, flat peak in correlation space. Here the peak
is elongated along the x direction, leading to ambiguity in location of the correct bounding box.

The results in figures 6 to 11 show excerpts from an extended tracking sequence. This video clip
causes either tracking system applied in isolation to fail quickly. Figure 4 shows five frames taken
from the tracking using correlation alone. Here the bounding box gradually slides off the object to the
background. In figure 5 the results of using the adaptive contour alone are shown. This figure shows
the adaptive contour losing the object in the first six frames of the sequence. The new tracking system
is able to follow the object well into the clip without losing the objects position, in fact tracking is
still reliable after 50 frames of the sequence. The sequence is sampled at 14 frames per second, and
segments are shown in figures 8, 9, 10 and 11.

When the composite tracking algorithm is applied to the guide video sequence the two algorithms
interact in the following manner. The adaptive contour algorithm loses tracking at the seventh frame
of the sequence (frame 6(c) in figures 6 and 7) and is reset from the correlation. The contour then
successfully regains lock on the object. The correlation algorithm slowly slides off the back of the object
and loses track at the 23rd frame (frame 9(c) in figures 8 and 9). The bounding box is corrected from

Fic. 3 -
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the adaptive contour and also adjusted to a better size. The correlation has more success tracking
with the new bounding box. Figures 10 and 11 show the adaptive contour once again losing track
of the guide at frame 35 of the sequence (frame 10(a) in the figures). The correlation is again used
to provide a corrected position. While the position given by the correlation is not perfect, figure 10
shows that the adaptive contour is able to adjust from the corrected position to a positive track of
the guide. Thus this sequence shows the two algorithms, failing at different times during the sequence,
and correcting each other for far better tracking performance than either could achieved by itself.

5 Conclusion

The results in the previous section show the advantages of this approach to tracking. While there
are still cases which defeat the composite tracker, it has been clearly shown that this tracker performs
better than either tracker in isolation. Most importantly the tracking performance is improved wi-
thout specialisation of the tracking algorithms for a specific task. Frequently the performance of such
algorithms is improved at the expense of generality.

It remains to develop more sophisticated measures for tracking success. The measure used for
correlation is effective, but returns only a binary result. Given the used supervised nature of this
method, a less discrete measure is desirable. Future work will examine rate of change of correlation,
and shape of peaks in correlation, as possible better measures. Either of these measures could be used
to give an estimate of confidence, rather than a simple success or failure result. Similarly, the success
of the adaptive contour is determined by preset thresholds on the colour gradient, the fraction of
unlocked points, and the Mahalanobis distance.

Currently, the parameters of the adaptive contour are set at compile time. These include the
covariance of the actual and virtual observations, and steady state search scale, all of which are
critical in determining how the contour reacts to occlusion or distraction. Increasing the reaction
speed of the tracker makes the contour more easily distorted, but increasing its robustness means that
it reacts slowly to changes in velocity, and may lose lock on the object. Again, it will be useful to
determine values for these parameters according to the specific sequence being tracked.
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Case | Region | Edge | Bounding box
1 Success | Success Agree
2 Success | Success Disagree
3 Success | Failure
4 Failure | Success
) Failure | Failure

TAB. 1 — Table of possible tracking outcomes
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F1c. 1 — Correlation box with snake correction
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Fic. 3 — Snake tracking of sail
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orrelation tracking alone
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Fia. 5 — Adaptive contours tracking alone
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F1a. 6 — First correction of adaptive contour, displaying contour
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F1c. 7 — First correction of adaptive contour, displaying correlation
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Fic. 8 — First update of correlation, displaying adaptive contours
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F1G. 9 — First update of correlation, displaying correlation
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Fic. 10 — Second correction of contours, adaptive contours displayed
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Fic. 11 — Second correction of contours, correlation displayed
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