IDIAP

Martigny - Valais - Suisse

REPORT

SUPPORT VECTOR MACHINES
FOR LARGE-SCALE REGRESSION
PROBLEMS

Ronan Collobert ! Samy Bengio °

IDIAP-RR 00-17

IDIAP RESEARCH

August 16, 2000

Dalle Molle Institute
for Perceptual Artificial
Intelligence o P.O.Box 592 e
Martigny e Valais @ Switzerland

phone +41 —27—721 77 11
fax +41 —27—-721 77 12

e-mail secretariat@idiap.ch

) o 1 IDIAP, CP 592, 1920 Martigny, Switzerland, collober@idiap.ch
internet http://www.idiap.ch 2 IDIAP, CP 592, 1920 Martigny, Switzerland, bengio@idiap.ch

IDIAP Research Report 00-17

SUPPORT VECTOR MACHINES FOR LARGE-SCALE
REGRESSION PROBLEMS

Ronan Collobert Samy Bengio

AucgusTt 16, 2000

Abstract. Support Vector Machines (SVMs) for regression problems are trained by solving a
quadratic optimization problem which needs on the order of {> memory and time resources to
solve, where [is the number of training examples. In this paper, we propose a decomposition
algorithm, SVMTorch®, which is similar to §VM-Light proposed by Joachims [5] for classification
problems, but adapted to regression problems. With this algorithm, one can now efficiently solve
large-scale regression problems (more than 20000 examples). Comparisons with Nodelib, another
SVM algorithm for large-scale regression problems from Flake and Lawrence [3] yielded significant
time improvements.

'SVMTorch is available at http://www.idiap.ch/learning/SVMTorch.html.

2 IDIAP-RR 00-17

1 Introduction

Vapnik has proposed in [14] a method to solve regression problems using Support Vector Machines.
It has yielded excellent performances on many regression and time series prediction problems (see for
instance [9, 2]). This paper proposes an efficient implementation of SVMs for large-scale regression
problems. Let us first recall how it works.

Given a training set of I ezamples (x;, y;) with x; € E and y; € R, where E is an Euclidean space
with a scalar product denoted (-), we want to estimate the following linear regression:

f(@) = (w-z)+b

(with b € R) with a precision €. For this, we minimize
1 1
sl + > lyi — f(mi)le
i=1

where 1||wl|? is a regularization factor, C' is a fixed constant, and |.|. is the e-insensitive loss function
defined by Vapnik:
|z|e = max{0, |z| — €}.

Written as a constrained optimization problem, it amounts to minimizing

l
r(w, & €)= gllwl’ + ¢ (6 + &)
i=1

subject to
(w-mi) +b) —yi < e+ & (1)
yi — (w- i) +b) <e+ & (2)

To generalize to non-linear regression, we replace the dot product with a kernel k(-). Then,
introducing Lagrange multipliers a and a*, the optimization problem can be stated as:
Minimize the function

Wi, o) = (o —) Ko —a) ~ (a*)y + el +)" 1 3)
subject to
(a—a*)'1=0 (4)
and
0<af, ; <C, i=1.1 (5)

where K is the matrix with coefficients K;; = k(z;, ;). The estimate of the regression function at a
given point is then

1
flx) = Z(a; —a;)k(x;,) + b

=1

where b is computed using the fact that (1) becomes an equality with & = 0if 0 < a; < C and (2)
becomes an equality with £ =0if 0 < af < C.

IDIAP-RR 00-17 3

Solving the minimization problem (3) under the constraints (4) and (5) needs resources on the
order of [? and is thus difficult for problems with large .

In this paper, we propose a method to solve such problems efficiently using a decomposition
algorithm similar to the one proposed by Joachims [5] in the context of classification problems. In
the next section, we give the general algorithm and explain in more details each if its main steps,
as well as a discussion on some important implementation issues, such as a way to efficiently handle
the kernel matrix computation. In the experiment section, we first compare this new algorithm to
Nodelib [3], another SVM algorithm for large-scale regression problems, and then show how the size of
the internal memory allocated to the resolution of the problem is related to the time needed to solve
it.

2 The Decomposition Algorithm

As in the classification algorithm proposed by Joachims [5], which was based on a idea from Osuna
et al [10], our regression algorithm is subdivided into the following four steps:

1. Select g variables as the new working set, called S.
2. Fix the other variables F to their current values and solve the problem (3) with respect to S.

3. Search for variables that are stuck to 0 or C' and that will probably not change anymore. This
is the shrinking phase.

4. Test if the optimization is finished or if we go back to the first step.

2.1 Selection of a New Working Set

We propose to select a new set of variables such that the overall criterion will be the most optimized.
In order to select such working set, we use the same idea as Joachims [5]: simply search for the optimal
gradient descent direction p which is feasible and which has only g non-null components. The variables
corresponding to these components will be our new working set S.

We thus need to minimize:

Vip) = (W (@, a) p (6)
with
p=(dy...dy,d.. .d)"
subject to:
1'd—1"d*=0 (7)
d; >0 for i such that a; =0
df >0 for isuchthatal=0 (8)
d; <0 for i such that a; =C
df <0 for isuchthatal=C
and

-1 <p<1 (9)

card{d; : d; #0} =gq. (10)

4 IDIAP-RR 00-17

Since we are searching for an optimal descent direction, which is a direction where the scalar
product with the gradient is the smallest, we want indeed to minimize (6). The conditions (7)-(8) are
necessary to ensure the feasibility of the obtained direction. The condition (9) is there only to ensure
that the problem has a solution. Finally, (10) is imposed because we are searching for a direction with
only ¢ non-null components.

Note that the derivative of W can be easily computed:

' Kla—a*)+y+1e
*x\
W (e, %) = < Kla—a)—y+1le)’
In order to solve this problem, it thus suffices to consider
W; = 61 Wl’

where §; = 1for 1 <i<land d; = —1forl+1<i <2l Letusforce qto be even, and let us sort the
w; in reverse order. Let us then denote ¢ as the bijection of {1...2[} into itself such that the w,
are sorted. Let us then select the ¢/2 first indices (i) such that:

if p(i) <1, we have 0 < a,;) < C

if (i) > 1, we have 0 < aj;) < C
and let us select also the ¢/2 last indices (i) such that:

if p(i) <1, we have 0 < ay,;y < C

if (i) > I, we have 0 < af;_, < C.

Since we are searching for exactly ¢ variables, the (i) must be distinct. We could have to reduce
q if one variable is selected twice.

Let us now denote ¢;, © = 1...q the ¢ indices we just chose, we note that the direction which has
for j** component 0if j & {c1... ¢}, —0; if j € {c1...cg} and §; if j € {cg41 ... ¢4}, is a solution of
the minimization problem (6) .

Our new working set S is then composed of the ¢ variables corresponding to the indices ¢; (where

an index <[corresponds to a., and an index > [corresponds to a, ;).

ITo see that, let us go back to the minimization problem of

(Zl, . Zl) > Z Wi 24 (11)
i=1...1
subject to
> zi=0 (12)
i
1<z <1 (13)
and
card{z;, z; # 0} = ¢ (14)
with z; = d;p;. (The reasoning is the same if we take the constraints (8) into account).
In the case where | = ¢ = 2r, it is easy to see that the minimum is obtained for z; = —1ifi =1...r and z; = 1 if

i =r+1...q: if for instance z;, is augmented by v > 0 for a i9 < r, then one needs to compensate by —+v another z;
to keep (12). Since we want to minimize (11), the best thing to do, knowing that the w; are sorted in reverse order and
keeping in mind the constraint (13), is to modify 2z, and thus to fix z; = 1 — . Equation (11) is then augmented by
(wiy — wq)7, which is a positive value because the w; are sorted and thus we get out of the minimum.

In the case where [> g = 2r, suppose we found a z which is a solution of (11). Let us denote ki ...kq the ¢ indices
of the components of z which are non-nulls. Using the same argument as in the previous paragraph, it is clear that
Zky - -2k, = —1 and that zg, 41 ... 2k, = L. In other words, if 2z is a solution to our problem, then we necessarily have
2p; = £1. Considering again the order of the w;, is becomes evident that we have to take (k1 = 1)...(kr = r) and
(kry1=1—=71)...(kg =1).

IDIAP-RR 00-17)

2.2 Solving the Sub-Problem

We want to solve the problem (3) taking into account only variables S. To simplify the notation, let

us define
- 2.)
and -
o= (i)
as well as

W(B) = 58" KB —8'b (15)
subject to:
B 1=0 (16)
and
0<6,8<C, i=1.2 (17)

where again §; = 1for 1 <i<land §; = —-1forl+1<i <2l
Now let us suppose we can decompose each of the following variables into two parts (after having
reordered the variables accordingly): the first one corresponds to variables S and the second part
corresponds to the fixed variables F:
_(Bs)
& (Br

and - -
j (Kss Ksr > ‘
Krs Krr

Replacing these variables in (15), (16) and (17), and taking into account the fact that K¢, = Krs,
the minimization problem is now

W(Bs) = 5B5K8s - B (bs — KorBy) (15)

(removing the constants that depend only on F), subject to

Bsl=-Pz1 (19)

and
0<0;8s, <C, i=1.gq (20)
where &; = 1 if the i*" variable in the set S corresponds to an a;, 6; = —1 if it corresponds to an af.

Minimizing (18) under the constraints (19) and (20) can be realized using a constrained quadratic
optimizer, such as a conjugate gradient method with projection or an interior point method [4].

6 IDIAP-RR 00-17

Moreover, following Platt’s idea in SMO [11], if one fixes the size of the working set S to two, the
problem can also be solved analytically.

This particular case is important because experimental results show that it often gives the fastest
convergence times. We thus detailed it here. Let us simplify again the notation:

Bs = < 2 >
h=bs— KsrBr
(=-Br1

=~ ki ki
Ks= (kot koo)

Minimizing (18) under the constraints (19) and (20) is thus equivalent to minimizing

(21, z2) —> % (k11 zf + koo zg + 2k12 21 22) — hiz1 — hazy (21)
subject to
z1+22=((22)
and
0< b2, 032 <C. (23)

We are searching for a minimum in (21) with respect to z; along the line (22). By inserting (22)
into (21), and after some derivations, it is now equivalent to minimizing

Az — - (k?n — 2k12 + ka2) 2‘1 (k12 — k22) ¢ — hy + ho] 21

In the case? where n = ky; — 2ki2 + k22 > 0, this function has a unique minimum for

o (k2o —k12)C+h1 — hs
20 = .

Let us now consider the constraints (22) and 23) They force z; to stay between L and H where

L =max(0, (- C)
H:mlnC’C

H =min(C, (+C)

L =max(-C, (- C) _ :
H = min(0, () if 6, =—1and dy =1
L = max(

H= m1n0C+C 1f61:—1and52:—1.

(
L = max(0, () } i 5, =1 and 3, = —

Thus, taking

H ifz2p>H
207°=2% 20 HL<2<H
L ifz0<L

2Note that this is the most common case. For instance for a gaussian kernel with distinct examples x;, it is easy to
see that is is always the case.

IDIAP-RR 00-17 7

and
o __ o,c
23 =C—z

the minimum of (21) under the constraints (22) and (23) is obtained at (27", 29) if n > 0. In the
pathological case where 1 < 0, it is clear that the solution

o_{ L if A(L) < A(H)
H if A(L) > A(H)

Zl_

and
o __ o
25 =(— 2]

is the minimum.

2.3 Shrinking

The idea of shrinking is to remove some variables that are stuck to the bounds 0 or C', and that will
a priori not change anymore. To do this, we use the fact that (o, a*) minimizes the problem (3)
under the constraints (4) and (5) if and only if there exists numbers A7 € K2, A ¢ %, \¢¢ € R
that verify the following KKT conditions:

W (@, @) + 4 < _11) v LA — (24)

Mo, =0, i=1...1 and A%af, =0, i=(1+1)...21 (25)

AP (;=C)=0, i=1...1 and N7 (af,;-C)=0, i=(+1)...2l (26)
Alov >0 (27)

AP >0 (28)

(@a—a*)'1=0 (29)

0<a*, a<C. (30)

Note that if Al°¥ > 0, then the corresponding variable is equal to 0. Also, if A{” > 0, then the
corresponding variable is equal to C. The idea is thus to search at each iteration for variables A“?,
A% and A¢? that verify as well as possible® the equations (24)-(28), and to remove a variable which
is stuck at 0 if its coefficient)\é"“’ is strictly positive (or just below a constant €sp ink) during a given
number of iterations. Using the same idea, we also eliminate a variable which is stuck at C' if its
coefficient \;” stays strictly positive for a sufficient number of iterations.

To estimate A or A" we start by estimating A’ (note that if 0 < a; < C' then X = AP =0
and if 0 < af < C then M%% = \i¥, = 0). Noting

A={i,0<a; <(C}, B={i, 0<af <C}
we have (with) standing for an estimation of \) :

~ 1 / * ! *
A = m (WiJrl(a: o) - sz (Oé, &)) ' (31)
i€EB

i€A

31f we were really able to find such variables, this would mean that (o, @*) is a solution to our problem.

8 IDIAP-RR 00-17

Then if we have

a; =0 wecompute A°w = Xt 4 W,

af =0 we compute /A\Z:l” = —/A\eq + Wz;+l (32)
a; =C wecompute A7 = —X97 — W,

af =C wecompute A7, = A — W,

and if a variable stays a sufficient number of iterations at 0 (or C') with its corresponding coefficient
)\3-‘”” > €sprink (OT)\}‘p > €shrink), then we remove it from the problem.

2.4 Termination Criterion

Given what has been said in the section on shrinking, if we can always have (29) and (30) during the
resolution of a sub-problem, a reasonable termination criterion is to verify that the A estimated by
(31) and (32) verifies the conditions (24)-(28) with a given precision €qpgq.

Thus we simply verify that

for i such that 0 < §; 8; < C: A7 — €epg < —6iW; (a, @) < A + €epa
for 7 such that 8; =0: W; (o, @) + 0; A1 > —€ena
for 7 such that 8; = C : W; (e, @*) + 0; 2% < €ena

with 6; =1for 1 <i<l,0;=—-1for (I+1) <i <2l and

2.5 Implementation Details

Note that in all the steps needed during one iteration, only two of them could be time consuming:
the one that computes W, and the one that computes bs — KszBr in (18).
We therefore propose to keep in memory a table of W; Moreover, to update this variable, we can
see that
: "+) (B (t+1) (®) * (t+1) * (1)
fori<n W, =W+ Yes, Kij | o —ay) =X es, Kij (] —aqj

K3

fori >n Wf (t+1) _ W; ® Zj651 K a§t+1) _ agt) + Ej652 K;; a;(t“) _ a; (t)

(3

where
Sy = {’L, a; € S} and Sy = {’L, Oé? € S}

For the computation of bs — Ks73 #, we can use the following trick:

(bs - f(srﬁf)i = (bs); — (f(srﬁf + f(ssﬁs)i + (f(ssﬁs)
-W; + ([(‘gsﬁs)i ifi<n

Wi + (f(ssﬂs) if i >n.

i

i

With these two ideas, one can reduce considerably the computational time: instead of computing
all the lines of the matrix K, one can only compute the lines corresponding to the variables in S.

Since we only need these lines for the computations, and since it quickly becomes intractable for
large problems to keep all the matrix K in memory (the size of the matrix being quadratic with
respect to the number of examples), it is interesting to implement a cache that keeps in memory the
lines of K that corresponds to the most used variables instead of recomputing them at each iteration.

IDIAP-RR 00-17 9

3 Experimental Results

3.1 Speed Comparisons

We compared our SVM implementation for regression problems (named SVMTorch) to the one from
Flake and Lawrence [3] using their publicly available software Nodelib, which is an enhanced version
of SMO [11].

Both these algorithms use an internal cache in order to be able to solve large-scale problems. All
the experiments presented in this section have been done on a SPARC Ultra-10 440Mhz, with the
gce compiler. The parameters of the algorithms were not chosen to obtained the best generalization
performances, since the goal was to compare the speed of the algorithms. Both programs used the same
parameters with regard to cache, precision, etc... For Nodelib, the other parameters were set using
the default values proposed by the authors. All the programs were compiled using double precision.
Finally, each program was trained/tested on the same data for a given benchmark.

We compared the programs on two different tasks, using up to three different training set sizes.
The first task was to predict the average number of sunspots of one year, given the average number of
sunspots of the previous 12 years. Since we had access to daily data, we were able to artificially create
one input/output pair for each day: at each day, we compute the yearly average of the year starting
the next day, which has to be predicted using the 12 previous yearly averages. Using this technique,
we had access to 43000 examples with input dimension equal to 12. The last 3000 examples served as
the test set, while we created 3 different training sets of varying sizes: 5000, 20000 and 40000. The
second task was created artificially using the daily sunspot series in order to test the algorithm with
a big input dimension. We selected it to be equal to 240. The test set had 2000 examples while we
created 2 different training sets of varying sizes: 5000 and 20000.

Table 1 gives the computation time results of all the experiments in CPU-seconds. In these
experiments, the following SVM parameters were used: C' = 1000 and precision = 0.01. As it can be
seen, SVMTorch easily outperformed Nodelib in all experiments: the generalization performance of
both algorithm as well as the number of support vectors found were similar but the time spent to find
the solution was largely less for SVM Torch than for Nodelib. However, it seems that as the number of
training examples grows, the speed difference between both algorithms narrows. The speed difference
is also smaller when the input dimension is higher. A further analysis should probably be done in
order to understand these difference variations.

Yearly Sunspots (o = 900, ¢ = 20)
Train size | # of SV | Train MSE | Test MSE | # of CPU-seconds

Nodelib 5000 431 146.15 246.18 245
SVMTorch 432 146.14 246.15 3
Nodelib 20000 1151 126.59 287.60 1253
SVMTorch 1155 126.58 287.64 30
Nodelib 40000 1911 119.46 363.88 2499
SVMTorch 1871 119.76 369.22 94

Artificial Data (o = 10, € = 0.5)
Train size | # of SV | Train MSE | Test MSE | # of CPU-seconds

Nodelib 5000 397 0.09 4.82 825
SVMTorch 394 0.10 4.66 90
Nodelib 20000 1013 0.08 0.60 9598
SVMTorch 1002 0.08 0.60 1037

Table 1: Comparative speed results between SVM Torch and Nodelib on two different databases and
up to 3 different training set sizes. All the experiments used an internal cache of 100Mb.

10 IDIAP-RR 00-17

40000 Training samples
T

20000 Training samples
4000 T 150

3500

140

3000

-
@
S

2500

CPU-seconds)
Time (CPU-seconds)
5
S

3 2000

Time
e
B
1)

1500

100

1000

500 L L L 90 L L L L L L L
50 100 150 200 250 10 15 20 25 30 35 40 45 50

Cache size (Mb) Cache size (Mb)

Figure 1: Evolution of the convergence speed (in seconds) with respect to the size of the internal
cache (in Mb). The left part gives the computational time for the artificial dataset trained with 20000
examples (in dimension 240), while the right part gives the computational time for the sunspots
dataset trained with 40000 examples (in dimension 12).

3.2 Analysis of the Cache Size

In order to show the impact of the cache size on the time needed to train an SVM, we have done
two series of experiments, one for each dataset, varying the size of the cache (from 10 to 50 Mb for
the sunspots dataset and from 50 to 250 for the artificial dataset). Figure 1 shows the results: the
more cache you can afford, the faster the algorithm will find a solution, but the optimal size of the
cache is of course related to the number of training samples: after a given cache size, no more speed
improvement can be achieved.

4 Conclusion

We have presented a new decomposition algorithm intended to efficiently solve large-scale regression
problems using SVMs. This algorithm followed the same principles as the one from Joachims [5] for his
classification algorithm. We also proposed to set the size of the sub-problems to 2 in order to solve it
analytically as it is done in SMO [11]. An internal cache keeping part of the kernel matrix in memory
enables the program to solve large problems without the need to keep quadratic resources in memory
and without the need to recompute every kernel evaluation, which leads to an overall fast algorithm.
An experimental comparison with another algorithm has shown significant time improvement for
large-scale problems.

Finally, note that in the available source code of SVMTorch, we also implemented the same algo-
rithm for classification problems. The result is thus similar mathematically to the one proposed by
Joachims in its SVM-Light software [5], but the speed obtained was twice as fast as SVM-Light (there
are probably many implementation differences, such as the cache, which was not fully described in
Joachims’s paper).

References

[1] C. Chang, C. Hsu, and C. Lin. The analysis of decomposition methods for support vector
machines. In IJCAI’99, Workshop on Support Vector Machines, 1999.

IDIAP-RR 00-17 11

[2] H. Drucker, C.J.C. Burges, L. Kaufman, A. Smola, and V. Vapnik. Support vector regression
machines. In M. Mozer, M. Jordan, and T. Petsche, editors, Advances in Neural Information
Processing Systems 9, pages 155-161. MIT Press, 1997.

[3] G.W. Flake and S. Lawrence. Efficient SVM regression training with SMO. Submitted to Machine
Learning. Available at http://external.nj.nec.com/homepages/flake/smorch.ps.

[4] R. Fletcher. Practical Methods of Optimization. John Wiley and sons, 1987.

[5] Thorsten Joachims. Making large-scale support vector machine learning practical. In
B. Scholkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods. MIT Press, 1999.

[6] S.S. Keerthi and E.G. Gilbert. Convergence of a generalized SMO algorithm for
SVM classifier design. Technical Report CD-00-01, Control Division, Dept. of Mechan-
ical and Production Engineering, National University of Singapore, 2000. Available at
http://guppy.mpe.nus.edu.sg/ “mpessk/svm/conv.ml.ps.gz.

[7] S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, and K.R.K. Murthy. Improvements to platt’s
SMO algorithm for SVM classifier design. Technical Report CD-99-14, Control Division, Dept.
of Mechanical and Production Engineering, National University of Singapore, 1999. To appear in
Neural Computation. Available at http://guppy.mpe.nus.edu.sg/ mpessk/smomod.ps.gz.

[8] P. Laskov. An improved decomposition algorithm for regression support vec-
tor machines. In S.A. Solla, T.K. Leen, and K.-R. Miiller, editors, Advances
in Neural Information Processing Systems 12. MIT Press, 2000. Available at

http://www.cis.udel.edu/"laskov/publications/NIPS-99.ps.gz.

[9] K.-R. Miiller, A. Smola, G. Rétsch, B. Scholkopf, J. Kohlmorgen, and V. Vapnik. Predicting
time series with support vector machines. In W. Gerstner, A. Germond, M. Hasler, and J.-D.
Nicoud, editors, Artificial Neural Networks - ICANN’97, pages 999-1004. Springer, 1997.

[10] Edgar Osuna, Robert Freund, and Federico Girosi. An improved training algorithm for support
vector machines. In J. Principe, L. Giles, N. Morgan, and E. Wilson, editors, Neural Networks
for Signal Processing VII - Proceedings of the 1997 IEEE Workshop, pages 276-285. IEEE, New
York, 1997.

[11] John C. Platt. Fast training of support vector machines using sequential minimal optimization.
In B. Scholkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods. MIT Press, 1999.

[12] S.K. Shevade, S.S. Keerthi, C. Bhattacharyya, and K.R.K. Murthy. Improvements to smo algo-
rithm for svm regression. Technical Report CD-99-16, Control Division, Dept. of Mechanical and
Production Engineering, National University of Singapore, 1999. To appear in IEEE Transaction
on Neural Networks. Available at http://guppy.mpe.nus.edu.sg/ mpessk/smoreg mod.shtml.

[13] A. J. Smola and B. Schélkopf. A tutorial on support vector regression. Technical Report Neu-
roCOLT Technical Report NC-TR-98-030, Royal Holloway College,University of London, UK,
1998.

[14] Vladimir N. Vapnik. The nature of statistical learning theory. Springer, second edition, 1995.

12 IDIAP-RR 00-17

A Things that should have been in the paper

A.1 On the experiments

We forgot to specify that the kernel used in all the experiments was a Gaussian kernel. Thanks to
Flake* for his remark on this.

In the conclusion of our paper, we said that we also implemented a classification version of the
algorithm which was similar to the one proposed by Joachims [5] and that our implementation was
twice as fast as SVM-Light. This assertion holds only for non-sparse data because SVM-Light has
been specially designed for sparse data, while it was not the case in the first version of SVMTorch.
The current version, which now includes sparse data format, is 1.33 times faster that SVM-Light for
sparse data (and still 2 times faster for non-sparse data).

A.2 On the decomposition method

Since the publication of our technical report, we have been aware of many other decomposition algo-
rithms for regression problems that we have not even cited. We try here to resume their work and the
relation with our paper.

Shevade et al [12] proposed two modifications of the SMO algorithm for regression, based on a
previous paper from the same team [7] for the classification problem. Laskov [8] proposed also a
decomposition method for regression problems which is very similar to the second one from Shevade
et al. In fact, it is easy to see that Laskov’s method with a subproblem of size 2 uses the same selection
algorithm as well as the same termination criterion.

Their method for selecting the working set is very similar to the one we proposed, but while we
propose to select variables a; independantly of their counterpart o, they propose to select simulta-
neously pairs of variables {a;, a}}. Even if this seems to be a small difference, let us note that since
a; af = 0 Vi, one of the two variables o; or o is always equal to 0, and choosing the «; and the af
independantly can thus help to quickly eliminate half of the variables, thanks to the shrinking phase,
which of course have a direct impact on the speed of our program.

Similarly, Smola and Schélkopf [13] also proposed earlier to use a decomposition algorithm for
regression based on SMO using an analytical solution for the subproblem, but again they propose to
select 2 pairs of variables (2 a and their corresponding a*) instead of 2 variables, which leads to a
different mathematical formulation. As for Laskov and Shevada et al, they do not use shrinking which
is, in our opinion, the main speed gain of our algorithm.

Finally, Flake and Lawrence [3] proposed again a modification of SMO for regression which uses
the heuristics proposed by Platt [11] and those from Smola and Scholkopf [13] but works on a new
variable A\; = a; —a}, which leads to a different analytical solution. In fact, all the analytical solutions
proposed by these authors are different but need to handle multiple cases for the solution, except our
method.

A.3 On the convergence of the algorithm

In our paper, we did not talked about the convergence of our algorithm. A paper from Chang et al [1]
talks about the convergence of some SVM algorithms based on a decomposition method. However,
using their arguments, we cannot conclude that our algorithm converges to the optimum, even when
no shrinking is done. The hypothesis they use in their proof regarding their method to search for a
feasible solution is slightly different from our method and thus we cannot use their proof in our case.
Keerthi et al [6] also proposed a convergence proof for their method [7], but it applies only to their
classification case. However, we will see in the next section that it also applies to our classification
method as well as our regression method.

4http://wuw.neci.nj.nec.com/homepages/flake/
5this is verified in practice

IDIAP-RR 00-17 13

B Remarks on the relation between many SVM algorithms

As we said in our paper, the algorithm we used in classification is the same, mathematically speaking,
as the one proposed by Joachims [5]. Let us now consider® the paper from Keerthi et al [7] which
proposes two algorithms based on Platt’s algorithm, SMO. In particular, let us focus on the second
method they propose and let us compare this method to the algorithm proposed by Joachims in the
case of a working set of size 2.

We strongly suggest to the reader to refer to the papers from Joachims and Keerthi et al in order
to understand the following notations which will not be re-explained here.

At each iteration, Keerthi et al propose to start by selecting two variables in their working set.
Following their notation, let us denote

Iy = {i:0<a;<C}

L = {ityi=1, a; =0}

IQ = {i:yi:—l, Oéi:C}
I3 = {i:yizl,ai:C’}

I4 = {i:yi:—]., C!iZO}

and let us denote also 44, and i,, the index of the two selected variables. They verify

F; = biow :maX{Fi 1€ I()U[3U[4}

low

and

F; :bup:min{Fi: i€IOUI1UI2}

up
where
Fi =) ajyik(mi, ©5) — vi-
J
One can easily remark that F; = w;, where wj; is the sorting variable used by Joachims in his paper.
Joachims defines the following constraints

dZZO, ‘v’i:aizo

d; <0, Vi:a; =C (33)

and select the following working set variables:

e the one that corresponds to the highest w; such that 0 < a; < C or such that d; = —y; verify
(33), and

e the one that corresponds to the smallest w; such that 0 < a; < C or such that d; = y; verify

This is indeed equivalent to the choice made by Keerthi et al.
Both algorithms then solve the sub-problem and test the optimality of the general problem. The
algorithm from Keerthi et al stops when

blow - bup S T

where 7 is a tolerance factor defined by the user. The algorithm from Joachims stops when the
following conditions are verified:

Vi such that 0 < a; < C, X —7 <y, — 3 ajy;k(zi, Tj) <A+ 7

Vi such that a; =0, vi(3; ayy;k(ms, Tj) +A%) > 1 -1 (34)
Vi such that a; = C, yi(3; yy;k(mi, ©5) + A%) <1+7

6Thanks to Patrick Haffner (http://www.research.att.com/~“haffner) and Ryan Rifkin
(http://five-percent-nation.mit.edu/PersonalPages/rif/) who have stimulated our interest on this.

14 IDIAP-RR 00-17

where \¢? is defined as follows

A = ﬁ D |vi— D agyik(@i, z5)

€A J

with
A={i:0<a; < C}.

It is easy to see that equations (34) are equivalent to

Viely, N1—7<—-F;,<\Y94r
\V/’L.E[lulg, FiZ—Aeq—T
V’L.EI3UI4, Fz S =\ + T

Moreover, since —bj,y < A°? < —by,y, if the optimality conditions from Keerthi et al are verified, then
VielpUI3Uly, F;<by,+17<-=-\9+7

and
Vi€IOUI1UI2, —Fig—blow-l-TSAeq-l-T

which implies the optimality conditions from Joachims.

Since the optimality test of SVM-Light is weaker that the one from Keerthi et al [6], it is easy to
see that one can apply their theorem to show that SVM-Light converges for subproblems of size 2 (as
well as our classification algorithm).

In the same way, one can show that the optimality test we used in our regression algorithm is
weaker than the general algorithm proposed by Keerthi et al [6] and it is easy to see that given the
fact that our algorithm uses a selection method that choose independantly the o and the a*, the proof
from Keerthi et al also applies to our regression algorithm when the subproblem size is set to 2.

C Conclusion

In conclusion, we note that all these decomposition algorithms are extremely related. For instance,
subset selection algorithms from Keerthi et al and Joachims are strictly identical if the shrinking is
not used and for a working subset of size 2 in SVM-Light.

Moreover, it is very easy to see that the regression method from Laskov (again with a subset of
size 2) is equivalent to the one from Shevade et al, which is the same as the classification one from
Keerthi et al. Note also that the method from Flake and Lawrence could be modified using the second
modification from Keerthi et al and would thus be enhanced.

Finally, we think that shrinking makes the main difference with regard to speed, and the selection
method we have chosen simplifies the resolution of the analytic quadratic problem and enables to
obtain a convergence proof for the regression problem.

