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Abstract

If the data vector for input to an automatic classifier is incomplete, the optimal estimate for each

class probability must be calculated as the expected value of the classifier output. We identify a

form of Radial Basis Function (RBF) classifier whose expected outputs can easily be evaluated in

terms of the original function parameters. Two ways are described in which this classifier can be

applied to robust automatic speech recognition, depending on whether or not the position of

missing data is known.
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1. Introduction

In any realistic automatic recognition task it is common that part of the input feature vector to be classified is

corrupted by some kind of noise process, and the recognition performance of a system which is not trained to expect

this kind of noise will degrade dramatically as the noise level increases. In many cases this problem can be reduced by

applying some kind of noise removal or data enhancement process. But there are also many situations in which some

feature components are irretrievable. The approach taken in this case depends on to what extent it is possible to

identify which features have been corrupted.

If the position of missing features is given, then the estimate for the posterior probability for each class, which is best

in the sense that it gives the maximum probability of correct classification, can be obtained as the expected value of

the classifier output for that class, conditioned by any available constraints on the missing data [10]. The main

problem with this approach is that for most classifiers, the expected value of the class probability outputs cannot be

obtained as a simple closed form expression from the classifier parameters.

If the position of missing data is not known, one successful approach [6, 11, 12] has been to train a separate classifier

for each possible position of missing data and then to combine the posteriors for one class as a weighted sum over all

classifiers. Even with equal weights this approach shows some robustness to missing data, because “uncertain”

classifiers tend to contribute equal and therefore small probabilities to each class. The problem with this approach is

that the number of different possible positions of missing data is generally far too large to allow training of a separate

classifier for each position.

In this paper we present a particular form of Radial Basis Function (RBF) classifier in which the output layer uses

Bayes’ Rule to directly transform pooled mixture likelihoods from the RBF layer into a-posteriori class probabilities

[2, 3, 8, 17]. Even though the output units are non-linear, the expected outputs of this classifier, for any given missing

data components, are a simple function of the original classifier parameters. The use of closely related RBF networks

for recognition with missing data is not new [1], but to the author’s knowledge the particular form of incomplete data

classification network (IDCN) described here has not been used before in either of the techniques presented in this

report.

In Section 2 we present the IDCN architecture, and describe how it can be applied in two different kinds of HMM/

ANN hybrid system for automatic speech recognition (ASR), depending on whether the position of missing data is

known, or otherwise. In Section 3 we describe various ways in which the IDCN can be trained for ASR. Section 4

shows how network outputs (class posterior probabilities) are calculated when some of the input features are missing.

In Section 5 the work is summarised, problems arising are briefly discussed and new ways forward are suggested.

x
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2. IDCN architecture

The network has one input, one hidden and one output layer, as shown in Fig.1. Each RBF unit in the hidden layer
uses a diagonal covariance Gaussian to model the probability density for input vector x having been
generated by this Gaussian, while each output unit uses a function to model the posterior probability that is
from output class . If  denotes that  was generated by Gaussian , and  that  is from class , then:

(1)

(2)

where

(3)

(4)

Although the above structure of the IDCN does not change, the way in which it is applied depends on whether the

position of missing input data is known.

2.1 Position of missing data given

The IDCN can be used as a front end to a conventional HMM based ASR system, whereby the log likelihoods which

are normally calculated from the Gaussian mixture models for each hidden state are replaced, during decoding, by log

scaled likelihoods from the IDCN (by dividing by their class priors , then taking the logarithm). This comprises

a form of HMM/ANN based ASR system [3] which is suitable for use with missing data when the position of missing

data is given. The main potential advantages of this model over the purely HMM based missing-data theory based

system described in [10] is that the ANN is discriminatively trained and provides a more powerful model for

capturing spectral dynamics.

...
...

...
...

...
...

y j x( ) p x r j( )= zk x( ) P sk x( )=

xnx
yny

znz

xi zky j

x1 z1y1

x

Figure 1: RBF network used here for classification with incomplete data. The output layer uses Bayes’ Rule
to directly transform pooled mixture likelihoods from the RBF layer into a-posteriori class probabilities.
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2.2 Position of missing data unknown

In principle a single IDCN can be used to replace the different ANN experts which are normally required [12] to

cover all possible selections of missing features from a dimensional feature vector. Provided that the combined

features input to each ANN expert are merely concatenated (i.e. no compression, orthogonalisation, or whatever is

applied), the expected posteriors for each position of missing features can be computed directly from the IDCN

parameters, and then simply combined in a linearly weighted sum [11] or geometrically weighted product [5].

3. IDCN training

Classifier parameters to be trained are the mean and variance vectors in Eq.(1) for each Gaussian RBF unit, and the

output layer weights, , in Eq.(3).

In order for the performance of this classifier to compete with that of the MLP, it is essential that all parameters are

trained together, and with a discriminative objective function. Unsupervised discriminative training is also possible,

using minimum classification error techniques [9]. However, in this article we take the simpler approach of training

by supervised gradient descent. During training the softmax function is used to constrain the weights

 to lie in , and sum to one.

(5)

This gives the full set of parameters to be trained as , for , , .

3.1 Parameter initialisation

Any hill climbing procedure can encounter problems with local minima, so that system performance may be very

sensitive to the initial parameter values used. In the context of the TIDigits connected digits ASR task, the following

two methods were tested [13] for initialising the RBF layer parameters (means, variances, and priors ):

• Randomly assign each data point to an RBF centre, followed by k-means clustering and likelihood

maximisation by Expectation Maximisation (EM).

• Use HTK (version 1.5) [18] to train a set of 400 pooled Gaussians, using the Baum-Welch forward-backward

training algorithm, with embedded realignment.

As well as training the RBF layer parameters, HTK also trains mix weights for each of the hidden states as

specified by whatever HMM structure is to be used in recognition. Whichever of the above methods was used, the

trained HMM model was also used to provide a training data segmentation, from which we can estimate . Once

the Gaussian parameters were initialised, two methods were tested for initialising the weights , using the given

segmentation:

• Use HMM trained mix weights  only:

(6)

• Use HMM trained Gaussians only (see Appendix A for derivation of this rule):

, , (7)

2d

d

w

w jk P r j sk,( )= 0 1,[ ]

w jk e
α jk e

α lm

l m,
∑⁄=

µij vij α jk, ,( ) i 1…nx= j 1…ny= k 1…nz=

P r j( )

P r j sk( )

P sk( )
w

P r j sk( )

w jk P r j sk,( ) P r j sk( )P sk( )= =

P r j( ) P r j sk( )P sk( )
k
∑= P sk r j( ) y j xi( )

xi sk∈
∑ y j xi( )

i
∑⁄≅ w jk P r j( )P sk r j( )=
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Of these different RBF layer and output layer initialisation methods, the best results by far were obtained using RBFs

trained using HTK, and output weights trained using Eq.(7).

Before gradient descent training, the auxiliary parameters  were then initialised as:

(8)

3.2 Error gradient calculation

Whichever error function is used, the derivatives of with respect to each of the model parameters were obtained

by the usual “error back propagation” (EBP) approach, first calculating the “delta” values for each output unit. See

Appendix B for details of EBP algorithm and derivation of Eqs(9 - 12):

(9)

(10)

(11)

(12)

If  is the target posterior for class , then for three common error functions (to be minimised):

: mean square error (13)

: cross-entropy (14)

: correlation (15)

we have , with  (dropping the  subscript) as:

: mean square error (16)

: cross-entropy (17)

: correlation (18)

Best results here used the cross-entropy objective.

α

α jk w jk( )log=

E E
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-------------
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------
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---------------------
l
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---------
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k
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----------------------- 1–
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  y j
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-------- w jkδk
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α jk∂
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τ l l
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i k,
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E tk xi( ) zlog k xi( )
i k,
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E zk xi( )tk xi( )
i k,
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E∂
zl∂

------
Ei∂
zl∂

--------
i

∑=
Ei∂
zl∂

-------- i

zl τ l–

τ– l zl⁄

τ l–
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3.3 Gradient descent iteration

A constant “momentum” factor is used, and an adaptable learning rate, [4]. With , ,

, , we have (where  is a unit vector):

(19)

(20)

(21)

Training continues until the correct state classification rate on the cross-validation set stops increasing.

The gradient with respect to all IDCN parameters was evaluated, and all parameters updated, using all frames from a

fixed number of utterances which were selected at random from the full training set. We found that very small

samples led rapidly to one or more RBFs developing zero priors, from which they could not escape. As a compromise

between processing speed and performance level at convergence, we settled on samples of 100 utterances.

It was found that further training of the RBF parameters by EM, after gradient descent training had converged,

followed by application of Eq.(7), inevitably resulted in a very rapid increase in data likelihood, accompanied by an

equally dramatic fall in classification accuracy. As a result this technique was not used.

4. Recognition with missing data

As outlined in Section 2, the way in which the IDCN is incorporated into a recognition system depends on whether or

not the position of missing data is given. If it is given then expected posterior probabilities for each state need to be

calculated just once, for the given position of missing data. Otherwise the expected posteriors need to be calculated

for all possible positions of missing data, and averaged [3]. Whichever is the case, for any given position of missing

data we may denote the present and missing components of the feature vector by . The estimate for

which results in the highest probability of correct classification is then given by the expected value of the classifier

output function, conditioned on and any knowledge which may constrain missing data values [10]. For the

RBF classifier presented here this leads to the following estimates.

If nothing is known about the missing data then (see Appendix C for derivation of Eqs(22 - 24)):

(22)

If each missing feature has a limited range of possible values (as is the case for filterbank features, which are bounded

below by zero and above by their observed value):

(23)

(24)

In Eqs. (22) and (24) is the marginal diagonal Gaussian over the indicated components. Posteriors

are obtained by scaling the above values to sum to one across all classes.

θ 1= ϕ g E∇= g0 0=

dw0 0= ϕ0 1= ĝ

ϕ t 1+ ϕ t 1 0.5dwt
ˆ ĝt⋅–( )=

dwt 1+ ϕ t 1+ θdwt ĝt–( )=

wt 1+ wt dwt 1++=

xp xm,( ) P sk x( )

xp κm

ẑk x( ) E P sk x( ) xp[ ]= w jky j xp( )
j

∑∝

ẑk x( ) E P sk x( ) xp xm rm∈,[ ]=

w jky j xp( ) y j xm( ) xmd
rm

∫
j

∑∝

y j xp( ) x ẑk x( )
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It should be noted that it is only due to the consistent probabilistic interpretation of each stage of processing by this

network that it is so simple to obtain the marginal posteriors in this way directly from the full system parameters.

5. Summary and conclusion

We have shown that an RBF network, in which the output layer uses Bayes’ Rule to directly transform pooled

mixture likelihoods from the RBF layer into a-posteriori class probabilities, is a suitable candidate network for

classification with missing data. This is because it can be discriminatively trained, and the expected values of its

posterior class probability outputs can readily be evaluated as a simple function of the original model parameters. We

have further shown how this network can be incorporated into two different approaches to robust ASR. For the case

where the position of missing data is known we can integrate the IDCN into an HMM system by replacing the usual

state likelihoods by scaled state likelihoods output from the IDCN. In this case the posteriors based system should

show some advantage over the likelihood based system due to discriminative training. However, ASR tests [13] have

shown that severe problems arise with local minima during IDCN training by gradient descent, to the point that very

little performance improvement is possible after parameter initialisation through normal non discriminative EM based

HMM training. In fact, performance of the IDCN/HMM system was almost identical to that of a Gaussian mixture

likelihood based HMM system, using the same missing feature theory and the same method for detecting missing

data [16]. It is possible that the performance of the IDCN in this case could be improved by use of a more effective

discriminative HMM training procedure, such as MCE [9] and/or boosting [15].

When the position of missing data is not known, the IDCN offers a new approach to multi-stream processing which

should permit large numbers of feature streams to be combined with greatly reduced effort. This approach remains to

be tested.
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Appendix A: Using HTK for both Gaussians and output layer weights
initialisation

HTK can be used to estimate the Gaussian parameters , , and mix weights for each pooled Gaussian

and hidden state . The trained HMMs can then be used to produce a state level segmentation. From this

segmentation we can directly estimate state priors from the relative frequency of occurrence of each state in

the training data1. The number of free parameters to be trained should first be reduced by combining and

 into . We have tested two ways of doing this.

Method 1 uses Eq.(6), Section 3.1.

Method 2 starts as method 1, but then estimates by first estimating using

Eq.(7), and then estimating  using Eq.(7)

This is derived as follows:

(25)

(26)

(27)

(28)

In the ASR tests made, it was found that method 2 gave far better recognition results. However, it is not clear why this

should be so, and so this result may not generalise to other databases.

1. If one or more states occur only a small number of times (so that the variance of the relative error in the relative frequency
estimate is unacceptably high) then all state prior estimates should be weighted towards the uniform prior . This is
a commonly used probability estimate correction, which is directly related to the so called “m estimate”, where the
weighting factor is proportional to the “prior degree of belief” that the probabilities are all equal.

µ j v j P r j sk( )
r j sk

P sk( )
P r j sk( )

1 nk⁄
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w jk P r j sk,( ) P r j sk( )P sk( )= =
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P sk r j( ) y j xi( )
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i
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∑⁄=

p xi r
j

( )
xi sk∈
∑ p xi r j( )

i
∑⁄= y j xi( )

xi sk∈
∑ y j xi( )

i
∑⁄=



IDIAP-RR 00-2314

Appendix B:  Derivation of IDCN error gradient equations

Although in the present case the neural network under consideration has only one hidden layer, it is still helpful to

make use of the “error back propagation” (EBP) theoretical framework, which is based around the idea that, for any

network with connections between adjacent layers only, the contributions to the error gradient for parameters in the

network at layer  can be obtained in terms of quantities  which are first evaluated for each node in layer .

, where (29)

The “delta rule” makes use of the chain rule for partial differentials, as follows:

(30)

We can obtain the error gradient with respect to the output layer parameters  as follows:

(31)

(32)

(33)

(34)

(35)

The error gradient for parameters  and  in the hidden layer can be obtained in a similar way as follows:

, , (36)

, (37)

, (38)
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Appendix C: Derivation of expected class posterior probabilities

When a parametric classifier is trained to estimate posterior class probabilities , and the position of

missing components in the data vector is given so that it can be partitioned into present and missing parts ,

then the estimate for the posterior probability for each class which is best in the sense that it gives the maximum

probability of correct classification, is given by the expected value of the network output, conditioned on the data

which is not missing, and any available knowledge which may be used to constrain the missing data values1 [10].

(39)

Here we will consider just two missing-data conditions. One in which nothing at all is known about the missing data

values, and another in which the missing data is known to lie within a given range, . In the second case we have:

 when , else (40)

so (41)

where  is independent of . The integral can easily be evaluated as follows:

(42)

Here we consider only the case of diagonal covariance, so that  [14], and

(43)

The integral in Eq.(43) can easily be evaluated as the product of univariate Gaussian integrals, each of which can be

evaluated using the C standard erf function. If the missing data is unbounded then the integral is just unity and can be

ignored. As , the constant  can be eliminated, to obtain  as follows:

(44)

(45)

1. Note that the analysis presented in [1] regarding posteriors estimation with missing data is incorrect.
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