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Abstract. Information about speech reliability can be extracted and then integrated in a recog-
niser by various means. The full combination (FC) approach allows the weighting of the posterior
values estimated locally in the time frequency representation, according a speech reliability mea-
sure. Since most of the speech segments are voiced, we use a method exploiting the harmonicity
of speech tos derive these weights. We test this method together with the direct integration of
the a priori SNR. Then, we run speech recognition with different kind of weighting functions. The
weights are continuous or binary values. This corresponds to a soft or to a hard decision func-
tion about the speech reliability, which is derived from an observable harmonicity index. Using a
binary decision process, the effect is, for each time frame, to collapse the set of combinations of
sub-bands into a single combination. On the other hand, we substitute empirical values to these
terms, including functions of the a priori SNR, which are continuous or discrete, but not based
on a probabilistic estimation. We establish the average scores in % WER for a panel of noises at
different levels, stationary or not, narrow-band or wide-band. All these functions are found to be
sub-optimal comparatively to the constant weighting, but a robustness of the FC for narrow-band
noises is observed.
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1 Introduction

Preliminary experiments leads us to expect that multistream speech recognition can be made more
robust with the inclusion of estimates of the stream’s reliability [5, 2]. In this field, reliability or weight-
ing factors are empirically estimated, or calculated using a probabilistic method. Several techniques
are available for generating subband speech reliability. However these often require a frame duration
which is too long to provide accurate estimates in an environment where the noise changes rapidly.
The SNR estimation proposed in [6] demonstrate this situation. In this paper we propose a short term
reliability [1] measure based on a harmonicity index.

We will see that this harmonic index is well correlated with the SNR and provides solutions for
estimation of weighting factors. We will compare this kind of weights to optimal estimation using
the true SNR, value. The multistream recognition is performed by the Full Combination model [7, 3],
allowing an entry point for external posterior weigthing based on a speech reliability measure.

2 The Full Combination ASR

Multistream ASR aims to make an adaptive fusion of the different sources, according to the match
between each stream and the set of trained data. In our case a stream .J will be one of the 16 combina-
tions of d = 4 subbands, including the empty stream of data 9. We shown [7] that full-band posterior
P(qx|X) for each phoneme can be written into a weighted sum of all combination of subband accord-
ing to the reliability of corresponding subband posteriors. If we assume that the best estimates of
posteriors is produced by the cleanest data, then the weighting factor for the stream z; corresponds
to the probability that the “data of z; better matchs the data of the training set” (this event is called
L;). Using Bayes we estimate the posteriors of the full band X as:

P(ar1X) = X25" Plar, Lj1X) = X205 Plaslz;).P(L;|X). (Eq)

In our approach each basic event is relative to the local time frequency cell subband : P(SNR; > T5)
where SN R; is its SNR. This local probability is given by a detector which is more or less sensitive
(good detection) and specific (noisy cells detected as noisy). Therefore a continuous weighting factor
is more appropriate than a binary one as this will be confirmed by this study.

It has been shown that (1) FC is more efficient than other common subband models [7], and (2),
avoiding the need to train 2¢ — 1 experts because good estimates of subband combinations can be ob-
tained from a product of the d subband experts. We will only use this approximation approach AFC.
Let |.J| be the number of subbands in the stream .J. If we assume' that the subband data vectors z;
are independant given class g we then have :

P(zjlqr) ~ [1;es P(xilqe), then® :

~—

) p(z;)) ~ . p(zi
P(qk|m’)p(qk) _ieHJP(qk' ’)p(qk)

HieJ P(qr|z:)

Plarles) == i1 g,)

e, 2)

Link with partial recognition

The estimation technique for weighting factors which is introduced by the AFC model can be empirical
or, preferably, derived from a probabilistic approach as shown in next section. Then let C; be : “Time

lweaker assumption than a complete independence
2@ is canceled by normalisation.
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frequency cell feature vector in subband i matches the clean speech vector” 3. Assuming that all “C;”
are independent (which is almost always the case for non-adjacent subbands [8]), then weight for a
stream .J will be estimated as :

P(Lj|X) = HieJ P(Cz|1'z) HigJ(l - P(Cz|1’z))

Partial recognition is run if the probability P(C;|z;) is binary. In that case, the cells where speech
is occluded by noise are ignored and FC is similar to a partial recognition process [4]. In [2] we
performed a marginal partial recognition which remains feasible thanks to spectral redundancy of for-
mants. However this model is limited by its noise detection performance. Probabilistic model carries
more information than a binary mask indeed the local noise detector is not perfect and corresponding
soft decision probabilities can be assigned to the terms P(L|X) of AFC. We will now compare AFC
to partial recognition, under various conditions (we use prefix B for binary functions, S for Soft).

3 A Probabilistic estimation of short time speech reliability
from harmonicity

We develop here technique for estimating the probability that a cell is corrupted by noise. Most speech
is composed of voiced segments. Therefore, the autocorrelogram of the demodulated signal can be used
as a basis for differentiating between harmonic signal and noise. An interesting property is that this
differentiation has been shown to be efficient with a time window in the same range than the average
phoneme duration [2], and in a frequency domain divided in four subbands.

A correlogram of a noisy cell is less modulated than a clean one. We use that fact to estimate the
reliability of a cell for which time and frequency definitions are compatible with the recognition process
(125 ms of duration). Before the autocorrelation, we compute the demodulated signal after Half Wave
Rectification followed by Band-Pass Filtering in the pitch domain ([90, 350] Hz). We calculate for
each cell the ratio R; = R1/R0, where R1 is the local maximum in time delay segment corresponding
to the fundamental frequency and RO the cell energy. This measure is comparable to the HNR index
[9]. We construct the histogram of R; relatively to its local SNR. Initial data population comprised
60 sentences of the training set with added gaussian white noise at (SNR = [-21 — 18...39]dB). The
distribution of R; relative to local SNR, Fig 1, show the strong correlation between SNR and R; which
has been demonstrated in [1]. We extract from these distributions the Probability Density Function
at a given cell

where SN R; is the local SNR of the cell.

Based on the histograms we construct the Cumulative Density (Fig.2) of each subband for a given
SNR threshold T; : P(Cji|z;) = P(SNR; > Ti|R;, x;) For various subbands we get functions (called
Spro) with similar graphs that are shifted on the R; axis depending on the subband definition. We set
Ti at 0dB according to experimental results [3]. The left part of the Mi function is built upon very
few samples, so the function is not well defined, but this is not a major issue because only a few test
samples are concerned.

Partial recognition (Bpro) is easily derived :

if P(C;) > 1/2 then P(C;) =1 else 0.

Actually this threshold value depends on the detector R; and can also be estimated from the ROC
curve.

3For simpler notation we do not note the time variable. In this paper equations are written for a given time frame
called cell.
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Figure 1: Histograms of the 2 first subband. Note the strong nonlinearly correlation between SNR and
Ri
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Figure 2: Reliability function in subband 3 for threshold T1 = -6,0,6,12 dB (from top to bottom).
Similar functions are found for other subbands.

4 Empirical weighting factor

P(C;) can be estimated by an empirical weighting factor as long as it is correlated with the reliability of
the different input streams. At first the empirical weighting factor is the value of R; after rectification.
We measured that its square root performs better (Method SqRS). The BsqR method is derived by
thresholding SsqRS, we choose the threshold 0.5.

In order to refer to optimal values, we use the SNR calculated from clean and noisy samples on
each time-frequency cell of 125 ms. The SNR weight is a priori chosen as

sqXNR = sqrt(1/(1 + 1/(105NF/10)))

The same decision threshold as the previous method is applied (BsqXNR) corresponding roughly
to SNR = 0dB. We also studied another empirical weight (Srel) derived from a detector of speech
pause [6]. In a similar way we estimate the relative SNR index

N _ _ (SNR;—SNRiyin)
P(C’) ~ (SNRimax—SNR;MmIN)

where SN R;yrn and SN Ry ax are the extreme values determined from statistics on our noisy
subset. SNR;prny = —64 dB for all subbands ¢, but SNR;prax equals [63,54,52,43] dB for each
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respective subband.

The different methods are listed below with their characteristics. For all the binary functions
Td = 0.5. fullband = no weight. Soft functions : blind = proba, given (equalised) / SsqXNR =
empirical, given / Srel = empirical, given / SsqR = empirical, estimate / Spro = proba, estimate.
Binary function : BsqXNR = empirical, given / BsqR = empirical, estimate / Bpro = proba, estimate.

5 Recognition evaluation

We use a hybrid ANN/HMM system and Numbers95, a multispeaker free format numbers telephone
speech database. Our model is trained on 9 consecutive data frames. The posterior probabilities esti-
mated by the ANN (about 1500 hidden units), divided by their priors, are passed as scaled likelihoods
to a HMM for decoding using a 1 to 3 repeated-state model. No language model is used. For AFC only
five ANN are trained: 1 for full band and 1 for each subband. We choose 1 subband for approximately
each formant, and we carefully defined the subband with the minimal frequency overlap using the
PLP filter bank. Frequency ranges are in Hz 115-629; 565-1370; 1262-2292; 2122-3769; 115-3769. The
respective extracted coefficients are 5, 5, 3, 3, 11.

We tested two narrow band noises 300 Hz wide and centered in different subband. We also use
a nonstationary noise composed of periodic sequences [1,2,3,4,4, 3,2, 1] of respective noisy subband
number [2]. We used natural Factory noise from Noisex and a Daimler car noise.Tests were constructed
by averaging scores obtained with 200 utterances repeated at 6 different SNRs from —12¢018 dB, by
step of 6db, silence included. All the features are processed by Jrasta (which is referenced in [5]).

gwn | fact | car | narbl | narb3 | n.st
fband 38.2 | 37.8 | 33.7 | 26.6 30.8 | 90.6
blind 46.9 | 45.6 | 44.2 | 245 21.7 | 49.9
Srel 472 | 45.0 | 439 | 214 20.1 | 51.9
SsqXNR || 60.0 | 57.3 | 55.8 | 23.5 204 | 62.8
SsqR 47.7 | 45.6 | 44.8 | 28.9 204 | 49.6
Spro 47.3 | 45.0 | 45.0 | 27.1 19.3 | 59.8
BsgXNR || 61.5 | 58.5 | 57.4 | 24.2 20.6 | 64.5
BsqR 60.9 | 57.6 | 53.6 | 459 30.6 | 67.1
Bpro 58.1 | 54.8 | 51.7 | 34.8 23.5 | 66.1

Table 1: Word Error Rate (WER) in % average on 200 sentences* 6 levels. Col: Gaussian White Noise,
factory, car, narrow banb 1 and 3, nonstation. noise. Raw: fband : full band alone. Confidence interval = +-1
at WER=20%. Partial recognition of three subbands after exclusion of noisy sbl or 3 in the case of narbl or
narb3 gives 22.7 or 19.0 WER%.

6 Discussion and conclusion

We tested various approaches to weight the posterior values estimated locally in the time frequency
representation. We get some little significative improvement with Spro in narb3 noise. The definition
of T; of Spro method is an issue when optimizing the AFC’s interface, but extensive experiments [3]
show that there is no clear optimum value. A method’s performance depended on the noise structure
: wide band (gwn,factory, car noise) or narrow band noise (bl, b3) and whether it was stationary
or not. AFC system will always outperform the full band when a significant part of each subband
remains clean and the rest is stationary or not noise (90 % versus 50 % WER in the nonstationary
case). The optimality of the constant weighting for narrow band noises in band 1 or 3, or in the
case of nonstationary noise, demonstrates that AFC approach offers the potential rapid adaptation
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to changing and unpredictable narrow noise. This is due to unreliable posteriors which are minimized
during normalisation (Eq2).

The main observation is whathever the weighting function integrated in EqO. the result is worse
than the use of a constant weighting value (blind). This effect does not depend on the nature (proba-
bilist or empirical), neither on the support (estimated speech reliability or SNR given) of the variable
which is introduced. Moreover, step functions, as binary decision functions, are worse than continuous
functions, due to the largest difference with the constant function. So we conclude that the fusion of
an external source of information cannot be realised well with the FC model in this condition, despite
the apparent compatibility of the formalism with the introduction of such an information. This might
be due to the Jrasta pre-processing which removes a lot of noise so SNR of the input signal and
posteriors reliability might no longer be strongly correlated.

On the other hand, intrinsic weighting factors compatible with the FC formalism could improve
the model [3]. This factors could be derived from outputs of the recognition system as well as a priori
knowledge about the streams’ reliability (e.g. the weighting of each subband or each stream by its
reliability for speech recognition, knowing a priori that lower frequency subbands carry more phonetic
information, or knowing that the larger streams are more reliable).
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