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Abstract. The challenge of automatic speech recognition (ASR) increases when speaker variabil-
ity is encountered. Being able to automatically use different acoustic models according to speaker
type might help to increase the robustness of ASR. We present a system that attempts to do so
by augmenting the standard acoustic observations with pitch information. This allows the sys-
tem to use acoustic models more appropriate to speech with the given pitch. Furthermore, pitch
information is more easily detected in noisy conditions; thus, it may be of use in robust speech
recognition. Using dynamic Bayesian networks (DBNs) allows further refinement of the system by
eliminating unnecessary statistical dependencies and thus reducing the number of parameters. We
show that when a system is trained on observed pitch data and performs recognition with missing
pitch data, it can perform significantly better than a system that uses acoustics information only.
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Figure 1: A sample Bayesian network with variables A, B, C, and D, along with the corresponding
DAG and probability distributions.

1 Introduction

Speech is the most common mode of communication among human beings. The objective of speech
recognition is to recognize the message being spoken. The speech recognition system performance is
mostly affected by speaker variability, channel noise, etc. In the literature, different approaches have
been proposed to adapt the model to a speaker to improve the performance of the system [1]. In
this paper, we describe an approach to use pitch within the framework of dynamic Bayesian networks
(DBNs) [2, 3] to reduce the effect of speaker variability on the performance of the system.

In [4], we showed how a DBN can be used to incorporate the auxiliary information of articulator
positions into speech recognition. While keeping the standard acoustics variable, we included an
additional variable to hold a causal variable for the acoustics; this variable held the causal articulator
information. In that work, only certain articulatory information was used: the lips, the tongue, and
the jaw. In this paper, we present a system that models another cause of the acoustics: the pitch.
The goal behind using pitch is do speaker clustering within the acoustic models. That is, the acoustic
model used depends on the pitch for the current frame. If the pitch is missing for the current frame,
the DBN uses the expected distribution of the pitch values to apply a weight to the different acoustic
model cluster possibilities.

Speech is produced by the excitation of a time-varying vocal tract by a time-varying source (vibra-
tion of the vocal cords). The acoustic correlate of the vibration of the vocal cords is the fundamental
frequency (Fp) or pitch frequency [5]. In this paper, we define pitch to be Fy. Pitch is a speaker-
specific feature and is used for speaker recognition [6]. In this work, by clustering the pitch we intend
to cluster the speakers so as to derive appropriate models which could help in reducing the effect
of speaker variability on the system performance. The voice source parameters include the type of
phonation (voiced or unvoiced) and the measure of periodicity (Fp) of the speech signal, if it is voiced.
Thus estimation of pitch implicitly provides information about voicing.

The presence vs. absence of voicing plays a vital role in phonetics. That is, a language can have
two phonemes whose characteristics differ only regarding whether there is voicing or not. An example
of this is the phonemes /z/ (voiced) and /s/ (unvoiced).

2 Bayesian Networks

We are using DBNs as our models because they allow more flexibility than hidden Markov models
(HMMs) in modifying the model topology and in handling missing data [7]. A DBN is actually a
generalization of an HMM and has the potential to take on a wider range of topologies. A Bayesian
network (BN) is defined by the following three items (see Figure 1):

1. a set of variables X that represents all items that you are attempting to model (e.g., Acoustics,
Transitions,Phonemes, Pronunciation, etc.)

2. a directed acyclic graph (DAG) whose edges incorporate the conditional (in-)dependencies of
X (e.g., a directed edge from Phoneme to Acoustics indicates that Acoustics is dependent on
Phoneme).

3. a local probability distribution for each z; € X:
P(z;|parents(x;)) (1)
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The joint probability of all of the variables in the BN is represented by the product of all the component
local probability distributions:

P(zy,x9,...,2N) = H P(z;|parents(z;)) (2)
LN

It is important to see in Figure 1 that, unlike in HMMs, the edges in a BN do not themselves carry
any probabilities. Rather, they dictate the conditional variables within the probability distributions
of each variable.

3 Using Acoustic and Pitch Variables in a Dynamic Bayesian
Network

One approach to using Acoustics and Pitch variables in an HMM would be to concatenate them into
a single feature vector. You would then be utilizing it in the HMM emission probability,

P(zt,ptlqr), (3)

where z; is the current acoustic vector at time ¢, p; the associated pitch value (estimated as explained
in Section 5.2.1), and ¢ the hypothesized phonetic state. DBNs facilitate making changes to (3) to
allow better modeling. For example, you can easily take the following steps (though there are other
possibilities as well):

1. the joint probability of Acoustics data and of Pitch data given the hidden phonetic state can
be factored as follows:

P(x¢, pelar) = P(xe|pe, ar) P(pelar)- (4)

This step itself does not theoretically change the system but allows the succeeding changes to
be done. Note that the BN framework allows you to easily deal with either variable (Acoustics
or Pitch) being missing with the other being observed.

2. you can easily introduce temporal dependencies to only one of the variables while leaving the
other independent of the past, given its parent(s). For example, you can add a temporal depen-
dency for the Pitch variable: p;_1 = p;. Thus, adding this dependency to (4) gives:

P(z¢, ptlar) = P(welpe, qr) P(pelpe—1,qr)- (5)

3. you can make (conditional) independence assumptions [8] that affect only certain of the factors
and not others. For example, if p; and g are independent then

P(pe|pe—1,ar) = P(pe|pe—1)- (6)

This then simplifies (5):
P(zt,pelar) = P(we|pe, ) P(pelpe—1)- (7)

4 The Dynamic Bayesian Network for Automatic Speech Recog-
nition

Figure 2 presents the DBN, based on [7], for doing ASR of isolated-words (our chosen task) with both

acoustic and pitch information. It has the following variables:

e Deterministic variables

1. Position: the current sub-model number of the word model.

2. Phone: maps the sub-model number from Position to an actual phonetic model.
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Figure 2: Pitch-Acoustics DBN, based on equation (5). The black variables (Acoustics and the final
Position and Transition) are always observed in training and recognition. The grey variables (Pitch)
are always observed in training but are hidden in some recognition tests.

e Stochastic variables

1. Transition: the probability of exiting from this phonetic model (that is, the next frame
will be in a new phonetic model).

2. Pitch: the probability of the pitch for this frame.

3. Acoustics: the probability of the acoustics for this frame (also known as the emission
probability).

If the temporal dependencies between the Pitch variables(Pitchi—y = Pitch;) in Figure 2 are
removed, then the DBN is functionally equivalent to a standard ASR HMM. That is, assuming that
both the Acoustics and the Pitch variables are always observed, it is theoretically the same as an
HMM where the emission is a vector composed of both the acoustics and the pitch. However, as
explained in Section 3, using the DBN framework allows you to easily explore different relations
among the variables such as the temporal dependency over time of Pitch and the independence of
Pitch from Phone.

5 Experiments

5.1 Database

Our experiments were set within the task of speaker-independent, task-independent, isolated word
recognition. That is, none of the speakers used in training were used in the recognition evaluation;
likewise, none of the isolated-words in training were used in the recognition evaluation. The database
used in our experiments was PhoneBook [9], which was initially used in speech recognition experiments
in [10].

5.2 Preprocessing
5.2.1 Feature Calculation

Similarly to [7], mel-frequency cepstral coefficients (MFCCs) were extracted from the 8 kHz signal
using a window of 25 ms with a shift of 8.3 ms for each successive frame. Cepstral mean subtraction
and energy normalization were performed. Ten MFCCs plus Cy (the energy coefficient) as well as the
deltas (first-derivatives) of those eleven coefficients were computed for each frame, using 20 filterbanks
and a pre-emphasis coefficient of 0.97.
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Figure 3: Phone-independent Pitch-Acoustics DBN, based on equation (7). This is one time-slice of
Figure 2 with the edge between Phone and Pitch removed, making Pitch independent of Phone. The
dashed lines are connections coming from the previous time-slice.

Position - i}

-
-

Transition

Phone

Acoustics .

Figure 4: Acoustics DBN (the baseline DBN). This is one time-slice of Figure 2 with Pitch removed.
Thus, this is equivalent to the standard, acoustics-only, discrete ASR HMM. The dashed lines are
connections coming from the previous time-slice.

The pitch for our studies is estimated using the Simple Inverse Filter Tracking (SIFT) algo-
rithm [11], which is based on an inverse filter formulation. This method retains the advantages of the
autocorrelation and cepstral analysis techniques. The speech signal is prefiltered by a low pass filter
with a cut-off frequency of 800 Hz, and the output of the filter is sampled at 2 kHz before computing
the inverse filter coefficients using the Durbin algorithm.

5.2.2 Discretization

BNs are mostly easily used when all variables are in the discrete domain. Therefore, all real-valued
data (acoustic features and pitch) were discretized using K-means clustering.

As in [7], the ten MFCCs, the ten delta-MFCCs, the one Cy, and the one delta-Cy were clustered
according to 256, 256, 16, and 16 prototypes, respectively. The Cy and delta-Cy values were then
combined into a single, 256 prototype stream. Thus, there were three acoustic streams: MFCC,
delta-MFCC, and Cy/delta-Cy, each with 256 prototypes.

Different prototype sizes were tried for the Pitch data: 2, 4, and 8. In all cases, one of the
prototypes was reserved for the pitch value of 0 (i.e., unvoiced speech). All of the non-zero pitch
values (i.e., voiced speech) were then clustered according to the number of remaining prototypes (1, 3,
and 7, respectively). Note that in the 2 prototype case, this effectively means that the two prototypes
only distinguish between voiced and unvoiced speech and would therefore not be clustering speakers;
the DBN from Figure 2 with only 2 pitch prototypes would thus be similar to the ‘articulator’ DBN
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WER # Parameters
Baseline (No Pitch) 7.8% 33k

Observed | Missing
Pitch Pitch

2 Pitch Prototypes 8.5% 7.6% 66k
4 Pitch Prototypes 7.9% 7.1% 133k
8 Pitch Prototypes 8.6% N/A 270k

Table 1: Pitch-Acoustics DBN vs. Acoustics DBN performance, in terms of word error rate (WER).
Using the same trained systems, recognition was done in two different ways: one with the Pitch
variable observed and the other with it being missing. (N/A: Not Available).

WER # Parameters
Baseline (No Pitch) 7.8% 33k

Observed | Missing
Pitch Pitch

2 Pitch Prototypes 8.5% 7.7% 65k
4 Pitch Prototypes 8.0% N/A 131k
8 Pitch Prototypes 8.9% N/A 263k

Table 2: Phone-independent Pitch-Acoustics DBN vs. Acoustics DBN performance, in terms of word
error rate (WER). Using the same trained systems, recognition was done in two different ways: one
with the Pitch variable observed and the other with it being missing. (N/A: Not Available).

in [7] except that he kept the Pitch variable (which he called the Context variable) hidden while we
kept it observed (except as noted below).

5.3 Tests

Theoretically equivalent to a standard, discrete ASR HMM, an Acoustics DBN (Figure 4) was trained
as a baseline for all tests. Two DBNs with an included Pitch variable were also used: the Pitch-
Acoustics DBN (Figure 2) and the Phone-independent Pitch-Acoustics DBN (Figure 3). When re-
ferring to the Pitch-Acoustics DBN and the Phone-independent Pitch-Acoustics DBN collectively, we
will use the short term ‘Pitch DBN’. Forty-one monophones, were used; with beginning and ending
silence, this gives a total of 43 ‘phones’. There were three states per phone, resulting in 129 hidden
phonetic states for each DBN. We used the ‘small’ training set and validation set as defined in [10]
for PhoneBook. All of the systems presented here were trained on this training set using expectation-
maximization (EM) training with observed acoustics and observed pitch information; we considered
the training to have converged when the data log likelihood increased by less than 1% from the previ-
ous EM iteration. All of the recognition results presented here were performed on the validation set,
which has its own unique speakers and tasks.

Table 1 presents results using the Pitch-Acoustic DBN from Figure 2 while Table 2 presents results
using the Phone-independent Pitch-Acoustics DBN from Figure 3. The baseline Acoustics DBN is
only significantly! better than the Pitch DBNs that have 8 pitch prototypes (with Pitch observed).
The baseline system is not significantly better than any of the other systems with Pitch observed.
Furthermore, the Pitch-Acoustics DBN does not do significantly better than the Phone-independent
Pitch-Acoustics DBN.

Having had good results in [4] in treating a causal variable (i.e., one in the same position as Pitch)
as hidden, we also hid the Pitch data for some additional recognition tests. That is, we used the
exact same systems as used in the “Observed” experiments of Tables 1 & 2 (trained with observed

LAll significance tests used for this paper are at 95% confidence.
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Pitch data) but treated the Pitch data as missing during recognition. In all of the results provided in
Tables 1 & 2, any given Pitch DBN does significantly better with the pitch data missing than the same
Pitch DBN with observed pitch data. Furthermore, the Pitch-Acoustics DBN with 4 pitch prototypes
with missing pitch data does significantly better than the baseline Acoustics DBN.

6 Discussion

We have the following conclusions from these initial experiments:

1. A Pitch-Acoustics DBN, as in Figure 2, with four pitch prototypes and missing Pitch data,
performs significantly better than the baseline Acoustics DBN.

2. A Pitch DBN, as in both Figures 2 & 3, performs significantly better with the Pitch variable
having missing values than with its having observed values.

3. A Pitch DBN, as in both Figures 2 & 3, does not perform better than the baseline Acoustics
DBN when the pitch data is observed.

4. A Pitch-Acoustics DBN, as in Figure 2, does not perform significantly better than a Phone-
independent Pitch-Acoustics DBN, as in Figure 3.

Conclusion 1 does show that there is more research to be done to see if an even better Pitch DBN
can be constructed; a significant improvement was achieved over the baseline Acoustics DBN.

From conclusions 2 & 3, we propose that our pitch estimator is not robust enough to be used
directly in recognition. However, relevant information and statistical relationships can be extracted
from its output during training. The DBN training indeed seems to have extracted relevant correlation
information among the Phone, Acoustics, and Pitch variables. Furthermore, the Pitch’s temporal
dependency may have helped to smooth and correct the output from the pitch estimator (the pitch
estimator does not use temporal information). So, in recognition it is better to use the statistical
properties learned from training instead of the observations from the pitch estimator; the DBN can
then infer the distribution of the hidden pitch variables given the observed acoustics. Furthermore,
more study is needed to see if perhaps the resulting DBN would be a more accurate pitch estimator
than the one we used.
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