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Résumé

Cet article propose deux approches génératives pour le traitement de séquences d’images appliquées
a la reconnaissance dynamique des gestes de la main. Dans un premier temps, un modéle probabiliste
gaussien de régions homogénes de teinte chair (blob) est présenté. Les paramétres des blobs sont
calculés par un algorithme EM (Expectation-Mazimisation). Les blobs obtenus sont moins nombreuz
et plus stables que les zones de pizels de teinte chair connexes dont les blobs sont issus. Dans un
second temps, larticle décrit un modéle hybride o base de réseauxr de neurones et de modéles de
Markov cachés pour traiter des séquences de données et ainsi reconnaitre les trajectoires formées par
les blobs comme des gestes. Les parameétres du modéle sont calculés également par un algorithme EM.
Le modéle obtenu est capable d’effectuer des taches de prédiction et de classification. Une extension
générative de ce modéle est proposée pour prendre en compte la probabilité d’observation des entrées.
Ainsi, le nouveau modéle génératif est capable de rejeter une séquence d’entrée qui n’a jamais été
apprise.

Mots Clef

vision par ordinateur, teinte chair, blobs, modele statistique, algorithme EM, réseaux de neurones,
modeles de Markov cachés.

1 Introduction

La détection et I'analyse des personnes est un probléeme fondamental en vision par ordinateur et
plus spécifiquement dans la conception des interfaces gestuelles. Les interfaces gestuelles basées sur
I’image constituent la voie la plus naturelle pour la construction d’interfaces homme-machine évoluées.

Dans cet article, nous nous intéressons plus particulierement aux gestes de la main. Ainsi, avant
de pouvoir reconnaitre un geste de la main dans des images, il convient tout d’abord d’y repérer la
main. Généralement, les objets importants tels que le visage ou les mains sont détectés a ’aide de
la couleur de la peau. Il existe de nombreux modéles pour représenter et segmenter la couleur de la
peau, mais encore faut-il regrouper les pixels pour former des régions pertinentes autour des objets
(blobs) et éviter que ces dernieres ne fusionnent entre elles ou avec le fond.

Cet article décrit donc, dans sa premiere partie, une formalisation des blobs définissant un modele
génératif (probabiliste gaussien) dont les parametres sont ajustés aux données de 'image par une
procédure EM.

Dans une seconde partie, une nouvelle approche générative pour le traitement des séquences de
données basée sur les Input-Output Hidden Markov Models est présentée aprés un rappel sur les
modeles de Markov cachés. Cette nouvelle approche est appliquée a la reconnaissance des gestes de la
main et plus exactement & la reconnaissance des trajectoires que les blobs de la main forment dans
une séquence d’images.

2 Le traitement de 'image

Les séquences d’images que nous traitons sont issues d’une caméra (Figure 1) et sont au format
CIF (384x288 pixels). Dans ces images, nous nous intéressons a des objets particuliers, les visages
et les mains. Ces objets possedent une teinte caractéristique qu’il est possible de séparer du reste de
I'image.

2.1 Le filtrage de la teinte chair

1l existe de nombreuses méthodes pour modéliser la teinte chair, principalement a ’aide de gaus-
siennes ou de mélanges de gaussiennes [8]. De plus, divers espaces colorimétriques RVB, HSV ou Lab
peuvent étre utilisés.
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FiG. 1 — Image de type visiophone d analyser.

Nous avons choisi ’espace colorimétrique YUV, car c’est le format issu de la caméra et il est
relativement robuste au changement de luminosité grace a la séparation de la luminance (Y) et de la
chrominance (UV).

Fi1G. 2 — Image des pizels de teinte chair.

Nous avons choisi de filtrer I’image en utilisant une table de correspondance des pixels de teinte
chair (Figure 2). Cette technique bien que rudimentaire est efficace et tres rapide. Une fois les pixels
de teinte chair séparés du reste de I’image, nous cherchons a les regrouper en régions.

2.2 Zonage par regroupement des pixels connexes

Une premieére approche pour regrouper les pixels est de tenir compte de leur connexité. Un algo-
rithme d’expansion permet de déterminer des zones de pixels de teinte chair connexes (Figure 3).

De plus, on élimine les zones de hauteur ou de largeur inférieure & 10 pixels. Ceci explique pourquoi
certaines zones n’apparaissent pas dans le fond. Cependant, le bruit de la caméra et la variation de
Iillumination dans la scéne rend ces zones géométriquement instables. Certaines zones apparaissent
ou disparaissent, d’autres peuvent changer de taille ou fusionner ensemble (Figure 4). Nous allons
utiliser une méthode non plus basée uniquement sur la connexité mais sur les composantes spatiales
et chromatiques des pixels pour déterminer des régions homogenes.
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Fic. 3 — Zones connexes de teinte chair a Fic. 4 — Zones connexes de teinte chair a
limage t. l'image t + 1.

3 Les blobs

De nombreux modeles de blobs ont déja été utilisés pour la détection des personnes [15] ou pour
la reconnaissance des gestes de la main [10].

3.1 Le modeéle des blobs

Dans cette section, nous définissons un blob comme un modele probabiliste gaussien que nous
cherchons & ajuster aux pixels de teinte chair de composantes spatiales (x,y) et chromatiques (U,V).
Le nombre de blobs est impossible a estimer car les objets (visage et mains) sont inconnus. Nous
supposerons donc que le nombre de blobs est fixe, puis nous introduirons une méthode pour initialiser
et fusionner les blobs.

Introduisons les notations suivantes:

e P: nombre de pixels de teinte chair dans 'image,

T = {x;}: ensemble des pixels de teinte chair de I'image, aveci =1...P

® X; = T[mi,yi,ui,vi]

o x;,y; : position du pixel dans 'image,

o u;,v; : chrominance du pixel dans 'image.
e B: nombre de blobs fixé au départ,

B = ({p;},{o;}): ensemble des blobs,
avec j=1...B

o p;: vecteur centre des pixels du blob j,
o o;: inverse de la matrice de covariance des pixels du blob j.
Dans ce modele, on suppose connu a priori le nombre de blobs B. On recherche les parametres {y;}
et {o;} qui permettent d’obtenir les meilleurs blobs étant donnés les pixels de teinte chair obtenus
par le filtrage de I'image, c’est-a-dire ceux qui maximisent la vraisemblance des pixels observés.

3.2 La vraisemblance des blobs

Soit © la collection des parameétres {gt;} et {o;}. On peut alors introduire la fonction de vraisem-
blance L (Equation 1) des parametres des blobs © sur I’ensemble des données Z, c’est-a-dire les pixels
de teinte chair.

p
L(©I) = PrZ]|O)=]]Pr(xi|0) (1)

i=1
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L’équation 1 peut étre maximisée par 'algorithme EM.

3.3 L’algorithme EM

L’algorithme EM (Expectation Maximisation) [4] cherche & maximiser la fonction de log-vraisemblance
(Equation 2) sur les parametres O, I’ensemble des données Z étant donné.

1(0,7) =logL(©,1) (2)

Pour simplifier ce probleme, I’hypothése EM est d’introduire un nouvel ensemble de parametres
‘H dits cachés. Ainsi, nous obtenons un nouvel ensemble de données D = (Z,H), appelé ’ensemble
complet des données, de fonction de log-vraisemblance [(©,D). Cependant, cette fonction ne peut pas
étre maximisée directement car H est inconnu. Il a été déja démontré [4] que I'estimation itérative

de la fonction auxiliaire @) (Equation 3) maximise [(©,D) en utilisant les parametres © de l'itération
précédente.

L’algorithme EM est le suivant :
e Pourk=1...K

o Estimation: calcul de

Q(eve(kil)) = EH[Z(6>D) | Z)G(kil)]
o Maximisation :

0" = argmaxe Q(0,0(F 1))

3.4 Ajustement des blobs
3.4.1 Les variables cachées

L’ajout de variables cachées doit faciliter la résolution du probleme. Dans notre cas, ces variables
cachées vont nous permettre d’associer un pixel & un et un seul blob. Soit les parametres cachés
H =hy...hp, ou h; est le blob associé au pixel i.

Nous avons I’ensemble complet des données D défini par:

D= (I,H) = (X1 ...Xp,hl...hp)

La fonction de vraisemblance sur D est :

P
L(©,D) = Pr(Z,H|0O)=]]Pr(xihi|©)
B =1
HPT(Xi | h;,©) Pr(h; | ©) (4)

i=1

Posons z;; la variable aléatoire définie par:

P 1 : hz :j
BTV0 : hi#j
alors on peut réécrire ’équation 4 comme :

P B
L©,p) = [[I]Pr(xi|hi=40)% Pr(h; =j|©)

i=1j=1
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3.4.2 Etape d’Estimation
L’équation 3 nous permet d’écrire la fonction auxiliaire:

Q(0,0) = EyllogL(©,D) |Z,6]
P B

> S Pr(hi=j]7,0)

i=1 j=1

[logPr(x; | h; = 7,0) +logPr(h; = j | O)]

Nous avons supposé précédemment qu’un pixel appartient & un et un seul blob. Nous supposons
que tous les blobs sont équiprobables d’ot1 :

. 1
Pr(hi:j|®):§

De plus, on pose que la fonction de densité de probabilité d’'un pixel de teinte chair x; connaissant
le blob j est une gaussienne, ainsi:

Pr(xi | h; = j,@) = g(xi;ll/jvo-j)

— _| o-j4| o3 (im0 (xi—L;)
(2m)

D’autre part, étant donné qu’un pixel appartient a un et un seul blob, on a:

1 Pr(x; | hi = j,é)
BYP Pr(x; | hi =1,0)

Pr(h;=37|7,0) =

Finalement, nous avons:

P B
Q(@,é) = ZZEU logg(xiaﬂj)o-j)

i=1 j=1
P B 1
+ Z Z Eij log E

i=1 j=1

avec:

_ g(xiaﬂja&j)

- B N A

Zl:l g(xiall‘laal)

L’étape d’estimation de ’algorithme EM s’acheve sur le calcul des E;; en utilisant les données 7

et les parametres précédents ©.

(5)

j

3.4.3 Etape de Maximisation

Dans cet article, nous avons choisi de développer une maximisation analytique des blobs. On

recherche les parametres © de sorte & maximiser la fonction auxiliaire. Pour cela, on calcule les
0Q(0,0) _ 0Q(0,0) _

parametres p; et o; tels que 26

J
Commencons par dériver Q(©,0) par rapport & p; :

A P
8Qa(®76) — 0 & “J — Ez:Pl EZ] Xi (6)
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Ainsi, si 'on cherche & annuler les dérivées, on obtient une somme des pixels pondérés par
Pespérance F;.

A présent, dérivons Q(@,(:)) par rapport & g :
9Q(0.0)

7=
8o-j

-1
o o 253:1 E;; (xi _Mj)T(Xi —uj)
UJ - P
>im1 Eij

(7)

On obtient pour o ; (Equation 7) I'inverse de la matrice de corrélation pondérée par les espérances
E;;.
L’algorithme EM appliqué aux blobs devient a présent :
e Pour k =1...K, avec K étant le nombre d’itérations EM
o Calculer les E;; d’apres I'équation 5,
o Calculer les {p;} d’aprés I’équation 6,
o Calculer les {o;} d’aprés I’équation 7.

A présent, il nous manque une procédure pour initialiser les blobs avant de débuter ’algorithme
EM.

3.5 Initialisation des blobs

On suppose que le nombre de blobs, qui est constant durant ’algorithme EM, doit étre convena-
blement initialisé. Or, on ne le connait pas a priori. Ainsi, les blobs sont initialisés a partir des zones
connexes de teinte chair. Puis, on fusionne les nouveaux blobs avec les blobs de I'image précédente.
Cette approche permet le plus souvent de sur-estimer le nombre de blobs. Une fois ’ensemble des
blobs ci-dessus obtenu, on applique 'algorithme EM. A I’issue de celui-ci, les blobs ont convergé vers
un état stable et se sont répartis sur les objets. Cependant, comme il est possible d’avoir deux blobs
sur le méme objet (Figure 5), il faut introduire un mécanisme pour fusionner les blobs.

e : | : o g
H Y B 5. L -

* L i
e g y A - RN -
S N M 4 E I — __{.[’ % -
P 1‘-: B T = -&?; 5#
. e 2

Fia. 5 — Blobs avant la fusion. Fi1c. 6 — Blobs apreés la fusion.

3.6 Fusion des blobs

La fusion s’effectue sur un critere spatial et chromatique & ’aide d’un “rayon d’attraction” intra-
blob ¢ recalculé apres la maximisation finale des {g;}.
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On pose ¢; comme étant 1’écart moyen spatio-chromatique (Equation 8) des pixels au centre du
blob ;.

1
Cj—m > lxk—pyll (8)

xkEQj

On décide de fusionner deux blobs j et k (Figure 6) si || pj—pr || <sj+sk. En utilisant cette
méthode, on permet & deux blobs suffisamment proches dans ’espace spatio-chromatique de fusionner
ensemble. On peut éviter également qu’un blob-main ne fusionne avec un blob-visage lorsque la main
passe prés du visage ou vient toucher le menton. Cependant, la fusion n’est pas garantie, on peut
trés bien observer temporairement deux blobs sur le méme objet. Mais, lorsque les objets bougent, on
constate que, le plus souvent, I'image apporte de nouvelles informations de teinte chair pour permettre
aux blobs de fusionner.

3.7 Résultats

Nous obtenons des blobs (Figures 7 et 8) plus robustes que les zones de pixels de teinte chair
connexes. En effet, on constate que les blobs sont géométriquement plus stables que les zones.

Fia. 7 — Exemple de blobs du visage et de la Fia. 8 — Exzemple de blobs du visage et de la
main sur fond uniforme. main sur fond compleze.

Prenons I'exemple d’une séquence ne contenant que le visage, la variation de la surface d’un blob-
visage est moindre que celle d’une zone-visage (Figure 9).

100 110 120 130 14C
N® d'image

Fic. 9 — Variation de la surface d’une zone et d’un blob sur une séquence visage seul.
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4 Les “Input-Ouput Hidden Markov Models”

Les Input-Output Hidden Markov Models (IOHMM) ont été introduits par Bengio et Frasconi [2]
pour des problemes d’apprentissage mettant en jeux des données de nature séquentielle. Les IOHMM
ont des similarités avec les modeles de Markov cachés (Hidden Markov Models), mais permettent
d’associer des séquences d’entrées a des séquences de sorties. En effet, dans de nombreux problémes
d’apprentissage, les données sont de nature séquentielle et les réseaux de neurones multi-couches (MLP)
ne sont pas naturellement adaptés a cause du manque d’un mécanisme de mémorisation pour retenir
I'information passée. Certains réseaux de neurones permettent de capturer les relations temporelles en
utilisant des délais dans leurs connexions (Time Delay Neural Networks) [13]. Néanmoins, les relations
temporelles sont fixées a priori par 'architecture du réseau et non par les données elles-mémes qui
ont, généralement des fenétres temporelles de taille variable.

Les réseaux de neurones récurrents (RNN) modélisent la dynamique du systéme en capturant
I'information contextuelle d’une observation & ’autre. L’apprentissage supervisé dans les RNN est
principalement basé sur des méthodes de descente du gradient: Back-Propagation Through Time
[12], Real Time Recurrent Learning [14] et Local Feedback Recurrent Learning [9]. Néanmoins, I’ap-
prentissage avec la descente du gradient est difficile lorsque la durée des dépendances temporelles est
grande. De précédents travaux sur des algorithmes d’apprentissage alternatifs [3], comme les IOHMM,
suggerent que le probleme réside dans la nature essentiellement discrete du processus de stockage de
I'information contextuelle pour une durée de temps indéfinie.

A présent, introduisons les modeles de Markov cachés pour nous familiariser avec les mécanisme
du traitement des données séquentielles.

4.1 Les modéles de Markov cachés

Les modeles de Markov cachés (HMM) modélisent les observations de nature séquentielle (Figure
10).

Observations 001-3 OO"‘ OO'

Etats C)/f_\‘ ({f_\ O
X2 X X

i
F1G6. 10 — Le modéle du HMM.

Ils sont utilisés dans une grande variété d’applications, comme la reconnaissance de la parole [11] ou
de Pécriture manuscrite. Soit of = o7 ...or une séquence d’observation d’apprentissage. L’ensemble
des séquences d’apprentissage est défini par O = (OTP (p)) (Vp = 1...P), ou P est le nombre de
séquences et 7T}, est la longueur de la séquence observée p.

Un HMM & N états discrets X = x1...xxy ou ¢ est I’état du modele & 'instant ¢, est défini par
I'ensemble des parametres A = (A,B,II). Vi,j = 1...N : A = (a;;) est la matrice des probabilités de
transitions entre états, a;; = Pr(gi41 = x; | ¢ = z;); B = (bj(0)) est la probabilité d’observation
dans I'état j, bj(0) = Pr(o | ¢ = x;); Il = (m;) est la distribution des états initiaux, m; = Pr(¢1 = ;).
Un HMM nous permet de calculer la probabilité Pr(of | \) d’une séquence d’observation finie étant
donné le modele A (Equation 9).

N
Pr(ol | \) = Zai,;p 9)
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La probabilité a; ; = Pr(o!,q: = z; | A) d’une séquence d’observation partielle finissant & I'instant
t dans létat x;, est définie par induction par a; 41 = [Ef\;l a;taijlbj(0i41) (VE=1...T —1,Vj =
1...N) et initialisée par ;1 = mib;(01) (Vi =1...N).

Afin d’ajuster les parametres A du modele pour maximiser Pr(O | A), on utilise une procédure
itérative basée sur 'algorithme EM [4]: I’algorithme de Baum-Welch [11]. De cette maniere, un HMM
est capable d’ajuster ses parametres pour modéliser des séquences d’observations. Néanmoins, il n’y
a aucune garantie de pouvoir convenablement discriminer deux classes d’observations O et O’ étant
donné deux modeles A et \'. En effet, Pr(Z | A) > Pr(Z | X') signifie seulement que le modele A est
mieux adapté aux observations Z que le modele X', mais ne signifie pas que Z est O.

4.2 Modélisation d’un IOHMM

Le principe d’'un IOHMM est d’aligner une séquence d’entrée & une séquence d’états discrets, et de
générer une séquence de sortie. Soit ul = u; ... ur la séquence d’entrée et yI = y; ...yr la séquence
de sortie associée. u est le vecteur d’entrée de dimension m (u € R™) et y est le vecteur de sortie de
dimension r (y € R"). P est le nombre de séquences d’entrée/sortie et T est la longueur de la séquence
observée. L’ensemble des séquences d’entrée/sortie est défini par D = (U,)) = (ulT” (p),le” (p)), avec
p=1...P.

Output

Dynamique
Markovienne

Input

FiG. 11 — Représentation du IOHMM.

Un IOHMM repose sur une chaine de n états discrets, ou x; est ’état du modele a 'instant ¢
(Figure 11). Chaque état j est associé & un réseau d’état N et & un réseau de sortie O;. Le vecteur
u; est 'entrée de chacun des réseaux a l'instant ¢ (Figure 12). Un réseau d’état N; a un nombre de
sorties égal au nombre d’états. Chacune de ces sorties donne la probabilité de transition de I’état j
vers un nouvel état.

0; est I’ensemble des parametres du réseau d’état ./\f] (Vj =1...n), ou p;; = T[‘Plj,t e Pnjt)
est la sortie du réseau d’état A & lintant ¢, avec la relation ¢;j; = Pr(zy =i | z4—1 = juy), Le.
la probabilité de transition depuis 1’état j vers I’état i, avec E?Zl wij¢ = 1. 9, est I’ensemble des
parametres du réseau de sortie O; (Vj = 1...n), ou n;, est la sortie du réseau de sortie O; & l'instant
t, avec la relation n;; = Pr(yi | & = j,us).

A présent, nous introduisons deux variables importantes dans le modele:

e (; représente la mémoire du systéme & Uinstant ¢, {; € R™:

n
G = Z Git—19j4 avec t #0

Jj=1

ou (jt = Pr(z; = j | uf) et o est aléatoirement choisi avec la contrainte 37, ¢jo = 1. Cette
variable permet d’intégrer dans le temps toutes les probabilités de transitions.
e 717 constitue la sortie globale du systeme a l'instant ¢, n; € R":

n
n =) G (10)
j=1
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avec la relation n; = Pr(y; | u}), i.e. la probabilité d’avoir la sortie désirée y; connaissant la
séquence d’entrée ut.

Il est également nécessaire de connaitre la fonction de densité de probabilité (pdf) des sorties fy (y¢;m:,t),
i.e. la probabilité Pr(y; | z; = i,u;) d’avoir la sortie désirée y; connaissant le vecteur d’entrée courant
u; et I’état courant x;.

| §;

"= Pr(y, | u,! —
T il w) « mémoire »

du systéme

N\ .
—\\—”'/_,/_:'I:;"?—_ ;i.1= Prix] “1|]§>
A A

A

/ |\ N
My it Mot P1 Pi Put
4 t $ 4 4 $
Output ~u, State
Networks Networks

F1G. 12 — Architecture du IOHMM

Nous formulons le probleme d’apprentissage comme un probleme de maximisation de la vrai-
semblance de I’ensemble des parametres du modele sur I’ensemble des séquences d’apprentissage. La
vraisemblance des séquences d’entrée/sortie D (Equation 11) est, comme dans les HMM, la probabilité
qu’une séquence finie d’observations ait pu étre générée par le IOHMM.

L©,D) = Pr(y|U,0)
P
= []Prvi |u".0) (11)
p=1

O est le vecteur de parametres donné par la concaténation des {;} et des {6;}. Nous introduisons
I’algorithme EM comme une méthode itérative pour estimer le maximum de vraisemblance.
4.3 Apprendre les IOHMM avec EM

Soit X ’ensemble des séquences d’états, X = (xlT” (p)) avec p=1...P. Ces derniers jouent le role
de variables cachées. Ainsi, ’ensemble complet des données est :

Dc = (U,y,X)
= (" ()Y, 0)x" () p=1...P

et la vraisemblance sur D, est:

L(®,D.) = Pr(),X|U0O)

P
= [I Py ®)x" ) | ui*(»),0)
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Afin de simplifier la notation, nous avons choisi d’omettre la variable p. Les dépendances condi-
tionnelles des variables du systéme nous permettent d’écrire la vraisemblance ci-dessus comme:

P Tp
L(®,D.) = H HPT(Yt,l“t | T¢—1,ut,0)

p=1t=1
L’ensemble des séquences d’états X est inconnu, on ne peut donc pas maximiser logL(©,D.)
directement.

4.3.1 Estimation

La fonction auxiliaire @ (Equation 3) doit étre calculée:

Q(©,0) = Ex[logL(©,D.) | U,Y,0]
Tp n
ZPr(wt =1 | UT@) log fY(Yﬁni,t)

1t=1 i=1

M~

S|
I

Pr(xs =d,x_1 = | UT,le,C:)) log pij

M:

+
1

~.
I

Pour chaque séquence (ul,yT) et pour chaque état j = 1...n, on calcule @, 1+, puis on estime
la fonction Q. On cherche alors & ajuster les parametres 6; du réseau d’état N; et les parametres 9,
du réseau de sortie O; pour maximiser Q(0,0).

4.3.2 Maximisation

Les dérivées partielles g 58 nous permettent de calculer par rétro-propagation dans le réseau

Q(9.0)
ik
d’état Nj les nouveaux parametres 65 (poids du réseau d’état) qui maximisent Q(0,0). Les dérivées

partielles %@f) nous permettent de calculer par rétro-propagation dans le réseau de sortie O; les

nouveaux parametres 9 (poids du réseau de sortie) qui maximisent Q(@,(:)).

4.4 Approche générative des IOHMM

Nous proposons une extension au modele des IOHMM par une approche générative. L’idée princi-
pale est d’estimer la probabilité d’observation des entrées depuis un état donné.

O-‘."] O'\I‘ Output

X; Etat

Observation

- _ =)
£ u, v,

Fic. 13 — Représentation du IOHMM génératif.

LS|

Cette probabilité est donnée par une nouvelle sortie v; (Figure 13) qui nous permet de calculer
la probabilité d’observer I'entrée courante u;. Ainsi, nous pouvons calculer une vraisemblance L}
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(Equation 12), appelée Vlikelihood. Le lecteur intéressé trouvera de plus amples détails sur les calculs
dans [6].

n
LY =Pr(vi | u},0) = Pr(viz =i|uf,0) (12)
i=1
4.5 Application a la reconnaissance des gestes de la main
4.5.1 Reconnaissance des gestes appris par le IOHMM

Nous voulons discriminer deux classes de gestes (déictique et symbolique). Les trajectoires ges-
tuelles (Figure 14) sont des séquences de points [z;,y:] (coordonnées du blob de la main dans une
image a l'instant ¢).

SYMBOLIC T
0.8 S
0.6
Y
04 r
0.2 r
O L L L L
0 0.2 0.4 0.6 0.8 1

Fi1G. 14 — Trajectoires gestuelles de la main.
Par conséquent, la dimension d’entrée est m = 2 et la dimension de sortie est » = 1. Nous avons

choisi d’apprendre y; = 1 comme sortie pour les gestes déictiques et y; = 0 comme sortie pour les
gestes symboliques.

0.9

0.8

07+ DEICTIQUE

0.6 -

0.5 7

0.4 [

03

SYMBOLIQUE H

0.2 . . . . . . . P
0 10 20 30 40 50 60 70 80 90 100

F1a. 15 — Distribution de la sortie globale (m}f) du IOHMM en fonction de la durée t de la séquence.

Pour déterminer la classe de la séquence d’entrée, on observe la sortie n; (Equation 10) du IOHMM
au cours du temps ¢ (Figure 15).

Le IOHMM peut discriminer un geste déictique d’un geste symbolique apres que 60% de la séquence
a été présentée. Malheureusement, les gestes non-appris ne peuvent pas étre classifiés par la sortie
globale du IOHMM. Cependant, ’extension générative du modele (GIOHMM) nous permet de calculer
une vraisemblance pour différencier les gestes appris des autres.
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4.5.2 Rejet des gestes non-appris par le GIOHMM

IDIAP-RR 00-45

En I’absence de gestes supplémentaires pour évaluer les performances de rejet, on peut utiliser des
trajectoires de chiffres manuscrits! (Figure 16). Ces derniéres possédent une grande variété de formes

et de mouvements.
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Fic. 16 — Ezemples de chiffres manuscrits.
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Pour chaque classe de chiffres, toutes les séquences sont présentées au GIOHMM ayant appris
les gestes. Le GIOHMM calcule, & chaque instant ¢ pour une séquence d’entrée u, la Vlikelihood

(Equation 12).

log Vlikelihood

-20

Geste

30 40 50 60 70 80 90 100

t/T (%)

Seuil

Fia. 17 — Le log de la Vlikelihood d’un geste et d’un chiffre manuscrit.

La détection d’un geste déictique est montrée. La séquence de données issue de la trajectoire du
blob de la main (Figure 18) est fournie au GIOHMM. La classe du geste est prise en compte lorsque
le log de la Vlikelihood est sous le seuil. Les séquences, dont la Vlikelihood est nulle ou dont le log
de la Vlikelihood est inférieur & un seuil, sont rejetées. Le seuil est déterminé sur les trajectoires de

gestes de ’ensemble de test.

1. PenDigits, Machine Learning Databases

ftp://ftp.ics.uci.edu/pub/machine-learning-databases
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Doom

Deictic

F1G. 18 — Reconnaissance d’un geste déictique. La Vlikelihood (& gauche) indique la fin du geste et le
marqueur ’identifie.

On remarque que le log de la Vlikelihood décroit plus lentement pour un geste que pour un chiffre
manuscrit (Figure 17). Il est donc possible de discriminer une séquence observée d’une séquence
inconnue.

TAB. 1 — Taux de rejet des chiffres manuscrits par le GIOHMM a la fin de la séquence.

0 97.3% 5 956%
1 79,78% 6 87,64%
2 877% T 9855%
3 9569% 8 100%

4 96,56% 9 94,9%

Le résultat du rejet des chiffres manuscrits est présenté (Table 1). Les résultats de rejet des chiffres
manuscrits sont, dans I’ensemble, trés satisfaisants. On constate que les plus mauvais résultats sont
obtenus pour les chiffres 1, 2 et 6. La principale cause a cela est certainement leur ressemblance avec
I'une des trajectoires de geste appris. Cependant, nous ne possédons pas de résultats comparables
pour pouvoir apprécier réellement ceux obtenus.

5 Conclusion

Dans la premiere partie de cet article, nous avons présenté un modele probabiliste gaussien de
blobs dont les parametres sont obtenus par un algorithme EM. Les blobs sont initialisés a partir des
zones de pixels de teinte chair connexes. On observe que les blobs sont géométriquement plus stables
que les zones. Actuellement, les blobs sont utilisés pour la détection des visages [5] et la reconnaissance
des postures de la main [7]. Cependant, les travaux futurs s’orientent vers ’analyse des gestes de la
main au travers de leurs propriétés géométriques. Il nous faut donc des blobs toujours plus stables.
Aussi, nous envisageons d’étudier un nouveau modele, ot le nombre de blobs n’est plus fixé a priori
mais estimé dynamiquement.

La deuxieme partie de cet article a pour ambition de présenter un modele génératif neuro-markovien
comme une approche trés générale pour le traitement des séquences de données. Ce modele a les
propriétés des modeles de Markov cachés et I'efficacité de discrimination des réseaux de neurones.
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Il utilise seulement ’entrée courante et pas une fenétre temporelle fixée a priori. Lorsque les
séquences apprises sont rencontrées, la classification est possible, et lorsque des séquences non-apprises
sont, rencontrées, 'aspect génératif du modele permet de les rejeter. Il a notamment été possible de
différencier les gestes de la main des chiffres manuscrits.
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