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Guidelines

The following lab manual is structured as follows:
e cach section corresponds to a theme
e cach subsection corresponds to a separate experiment.

The subsections begin with useful formulas and definitions that will be put in practice during the
experiments. These are followed by the description of the experiment and by an example of how to
realize it in MATLAB.

If you follow the examples literally, you will be able to progress into the lab session without worrying
about the experimental implementation details. If you have ideas for better MATLAB implementations,
you are welcome to put them in practice provided you don’t loose too much time: remember that a
lab session is no more than 3 hours long.

The subsections also contain questions that you should think about. Corresponding answers are
given right after, in case of problem. You can read them right after the question, but: the purpose of
this lab is to make you

Think !

If you get lost with some of the questions or some of the explanations, DO ASK the assistants or
the teacher for help : they are here to make the course understood. There is no such thing as a stupid
question, and the only obstacle to knowledge is laziness.

Have a nice lab;
Teacher & Assistants

Before you begin...

If this lab manual has been handed to you as a hardcopy :

1. get the lab package from
ftp.idiap.ch/pub/sacha/labs/Sessionl.tgz

2. un-archive the package:
% gunzip Sessionl.tgz
% tar xvf Sessionl.tar

3. change directory:
% cd sessionil

4. start MATLAB:
% matlab

Then go on with the experiments...

This document was created by : Sacha Krstulovi¢ (sacha®idiap.ch).
This document is currently maintained by : Sacha Krstulovié¢ (sacha@idiap.ch). Last modification on November 27, 2001.

This document is part of the package Session4.tgz available by ftp as: ftp.idiap.ch/pub/sacha/labs/Sessionl.tgz .
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1 Gaussian statistics

1.1 Samples from a Gaussian density
Useful formulas and definitions:

- The Gaussian probability density function (Gaussian pdf) for the d-dimensional random variable
z ON(,X) (i-e. variable z following the Gaussian, or Normal, probability law) is given by :

g(u72)(x) 6_%(x_H)TE_1(x—u)

1
VNG e)

where y is the mean vector and ¥ is the variance-covariance matrix. p and ¥ are the parameters
of the Gaussian distribution. Speech features (also referred as acoustic vectors) are examples of
d-dimensional variables, and it is usually assumed that they follow a Gaussian distribution.

- If 2 O N(0,I) (x follows a normal law with zero mean and unit variance; I denotes the identity
matrix), and if y = VI x + p, then y O N (u, D).

- VT defines the standard deviation of the random variable z (écart-type in French). Beware: this
square root is meant in the matriz sense.
Experiment :

Generate a sample X of N points, i.e. X = {x1,22,---,zn}, with N = 10000, coming from a
2-dimensional Gaussian process that has mean:

(730
#=\ 1090
1. 8000 for both dimensions (spherical process) (sample X;):

s _ [ 8000 0
1= 0 8000

and variance:

2. expressed as a diagonal covariance matrix (sample X5):

s, _ [ 8000 0
2= 0 18500
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3. expressed as a full covariance matrix (sample X3):

s, — | 8000 8400
37| 8400 18500

Use the function gausview (>> help gausview) to plot the results as clouds of points in the 2-
dimensional plane, and to view the corresponding 2-dimensional probability density functions (pdfs)
in 2D and 3D.

Example:
>> N = 10000;
>> mu = [730 1090]; sigma_1 = [8000 O; O 8000];

>> X1 = randn(N,2) * sqrtm(sigma_1) + repmat(mu,N,1);

>> gausview(X1,mu,sigma_1,’Sample X17);

Repeat the three previous steps for the two other Gaussians. Use the radio buttons to switch the
plots on/off. Use the “view” buttons to switch between 2D and 3D. Use the mouse to rotate the plot.

Note: if you don’t know what one of the cited MATLAB command does, use
>> help command
to get some help. If the help doesn’t make it clearer, ask the assistants.

Question:

By simple inspection of 2D views of the data and of the corresponding pdf contours, how can you tell
which sample corresponds to a spherical process, which sample corresponds to a pdf with a diagonal
covariance, and which to a pdf with a full covariance ?

Answer :
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1.2 Gaussian modeling: mean and variance of a sample
Useful formulas and definitions:
. ~ 1 N
- Mean estimator: i = « > Ti

- Unbiased covariance estimator: ¥ = i1 S (2 — p) 7 (z; — p)

1=

Experiment :

Take the set X3 of 10000 points generated from N (i, ¥3). Compute an estimate fi of its mean and
an estimate X of its variance:

1. with all the available points f(10000) = ZA3(10000) =
2. with only 1000 points f(1000) = ZA3(1000) =
3. with only 100 points f(100) = 2(100) =

Compare the estimated value i with the original value of p by measuring the Euclidean distance that
separates them. Compare the estimated value 3 with the original value of ¥3 by measuring the matrix
2-norm of their difference (]| A — B ||» constitutes a measure of similarity of two matrices A and B;
use MATLAB’S norm command).

Example:

In the case of 1000 points (case 2.):

>> X = X3(1:1000,:);

>> N = size(X,1)

>> mu_1000 = sum(X)/N -or- >> mu_1000 = mean(X)

>> sigma 1000 = (X - repmat(mu-1000,N,1))’ * (X - repmat(mu-1000,N,1)) / (N-1)
-or- >> sigma 1000 = cov(X)

>> Y, Comparison of the values:

>> emu = sqrt( (mu_-1000 - mu) * (mu_-1000 - mu)’ )

>> % (This is the Euclidean distance between mu_ 1000 and mu)

>> e_sigma = norm( sigma_1000 - sigma_3 )

>> % (This is the 2-norm of the difference between sigma 1000 and sigma_3)

Question:

When comparing the estimated values j and 3 with the original values of p and X3 (using the
Euclidean distance and the matrix 2-norm), what can you observe ?

Answer :

“DI0P YY) JO S]PPOUL IIDUNIID JULOS IIDULLYSD 0 §I)AULDLI
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1.3 Likelihood of a sample with respect to a Gaussian model
Useful formulas and definitions:

- Likelihood : the likelihood of a sample point given a Gaussian model (i.e. given a set of param-
eters © = (u, X)) is the value of the probability density function for that point. In the case of
Gaussian models, this amounts to compute the value of the pdf expression given at the beginning
of section 1.1.

- Joint likelihood: for a set of independent identically distributed (i.i.d.) points, say X =
{z1,29,--- ,zN}, the joint (or total) likelihood is the product of the likelihood for each point.
For instance, in the Gaussian case:

N N
p(X10) = [ p(@il®) = [[ p(ziln, ngz ;)
=1 i=1
Experiment :
Given the 4 Gaussian models:
730 8000 0 730 8000 0
N 91_({ 1090]’{ 0 8000}) Ao 92_({ 1090]’{ 0 18500])
730 8000 8400 270 8000 8400
Nz Og = ({ 1090 } ’ [ 8400 18500 D Nuw O4= Q 1690 ] ’ { 8400 18500 D

compute the following log-likelihoods for the whole sample X3 (10000 points) :
log p(X3|01), log p(X5(02), log p(X3|03) and log p(X3|04).

(First answer the following question and then look at the exemple given on the next page.)

Question:

Why do we want to compute the log-likelihood rather than the simple likelihood ?

Answer :
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Example:

>> N = size(X3,1)

>> mu_1 = [730 1090]; sigma_1 = [8000 0; 0 8000];

>> logLikel = O;

>> for i = 1:N;

logLikel = logLikel + (X3(i,:) - mu_1)x*inv(sigma_1)*(X3(i,:) - mu_1)’;
end;

>> logLikel = - 0.5 * ( logLikel + Nxlog(det(sigma_1)) + 2*N*log(2*pi) )

Note: if you don’t understand why the different models generate a different log-likelihood value for
the data, use the function gausview to compare the relative positions of the models N, N3, N3 and
N, with respect to the data set X3, e.g.:

>> mu_1 = [730 1090]; sigma_1 = [8000 0; 0 8000];

>> gausview(X3,mu_1,sigma_1,’Comparison of X3 and N1’);

Question:

Of N1, N3, N3 and N, which model “explains” best the data X3 ? Which model has the highest
number of parameters 7 Which model would you choose for a good compromise between the number
of parameters and the capacity to represent accurately the data ?

Answer :

9)AWDTI UNO UL TN [PPOW Y} §D
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2 Statistical pattern recognition

2.1 A-priori class probabilities
Experiment :

Load data from file “vowels.mat”. This file contains a database of simulated 2-dimensional speech
features in the form of artificial pairs of formant values (the first and the second spectral formants,
[F1, F5]). These artificial values represent the features that would be extracted from several occurrences
of vowels /a/, /e/, /i/, /o] and /y/'. They are grouped in matrices of size N x 2, where each of the
N lines is a training example and 2 is the dimension of the features (in our case, formant frequency
pairs).

Supposing that the whole database covers adequately an imaginary language made only of /a/’s,
/e/’s, /i/’s, Jo/’s and /y/’s, compute the probability P(qx) of each class qi, k € {/a/, /e/, i/, ]o/,[y/}.
What are the most common and the least common phoneme in the language ?

Example:

>> clear all; load vowels.mat; whos

>> Na = size(a,1); Ne = size(e,1); Ni = size(i,1); No = size(o,1); Ny = size(y,1);
>> N = Na + Ne + Ni + No + Ny;

>> Pa = Na/N

1 /y/ is the phonetic symbol for “u” like in the French word “tutu”.
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>> Pi = Ni/N
etc.

Answer :

/f/ $1 wowwod 3s0a) ayg dpym ‘/a/ asofoudyy st sowauoyd uowwod gsows 2y J “/fi/ 4of ¢ puv
/0/ 40f ¢1°0 */1/ 40f g0 */3/ 4of &0 st [ GG 0 st yrads fuvwbvwir sy ur /v/ buisn o fippquqoid oy

2.2 Gaussian modeling of classes
Experiment :

Plot each vowel’s data as clouds of points in the 2D plane. Train the Gaussian models corresponding
to each class (use directly the mean and cov commands). Plot their contours (use directly the function
plotgaus(mu, sigma,color) where color = [R,G,B]).

Example:

>> plotvow; % Plot the clouds of simulated vowel features
(Do not close the obtained figure, it will be used later on.)

Then compute and plot the Gaussian models :

>> mu_a = mean(a);

>> sigmaa = cov(a);

>> plotgaus(mu.a,sigma.a,[0 1 1]);

>> mu_e = mean(e);

>> sigmae = cov(e);

>> plotgaus (mu_e,sigma e, [0 1 1]);

etc.

Note your results below :

o) = X/a) =
He) = X/e) =
Hyi) = X/i) =
ffo) = X/o) =
fy) = Xy =

2.3 Bayesian classification
Useful formulas and definitions:

- Bayes’ decision rule:
X € q if P(q]X,0) > P(q;|X,0), Vj #k

This formula means: given a set of classes g, characterized by a set of known parameters O,
a set of one or more speech feature vectors X (also called observations) belongs to the class
which has the highest probability once we actually know (or “see”, or “measure”) the sample
X. P(qr|X, ©) is therefore called the a posteriori probability, because it depends on having seen
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the observations, as opposed to the a priori probability P(g;|®) which does not depend on any
observation (but depends of course on knowing how to characterize all the classes g, which
means knowing the parameter set ©).

- For some classification tasks (e.g. speech recognition), it is more practical to resort to Bayes’ law,
which makes use of likelihoods, rather than trying to estimate directly the posterior probability.
Bayes’ law says:

P(qi]x,0) = 2L

X|qr, ©)P(qx|O)

p(X]©)

where ¢y, is a class, X is a sample containing one or more feature vectors and © is the parameter

set of all the class models.

- The speech features are usually considered equi-probable. Hence, it is considered that P(g;| X, ©)

is proportional to p(X|qk, ©)P(qr|©) for all the classes:
Vk, P(qr|X,0) o p(X|qx, ©)P(qk|O)

- Once again, it is more convenient to do the computation in the log domain :

Question:

log P(qx| X, ©) ~ log p(X|qx, ©) + log P(qx|©)

1. In our case (Gaussian models for phoneme classes), what is the meaning of the © given in the
above formulas ?

2. What is the expression of p(X|qx, ©), and of log p(X|g, ©) ?
3. What is the definition of the probability P(gq;|©) ?

Answer :
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“§°] u013998 UL Passaudra fipvaup ‘wyivbo) sy puv fpd
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Question:

Now, we have modeled each vowel class with a Gaussian pdf (by computing means and variances), we
know the probability P(q) of each class in the imaginary language, and we assume that the speech
features (as opposed to speech classes) are equi-probable. What is the most probable class g for the
speech feature points = (Fy, F»)T given in the following table ? (Compute the posterior probabilities
according to the example given on the next page.)

x| B B | 1ogPle) | tog Plaresle) | log Plasisle) | log Plase/le) | log Plajyle) | MO PrOP:
1. | 400 | 1800
2. | 400 | 1000
3. | 530 | 1000
4. | 600 | 1300
5. | 670 | 1300
6. | 420 | 2500




& T ol il suriactto & MALALID LI VAL L AL LUy IV UV ITINL LA JLY

Example:

Use function gloglike(point,mu,sigma) to compute the likelihoods. Don’t forget to add the log of
the prior probability ! E.g., for point 1. and class /a/:
>> gloglike([400,1800] ,mu_a,sigma a) + log(Pa)

Answer :

/Y9 /e JB)r Jo/ s B g ) T

2.4 Discriminant surfaces
Useful formulas and definitions:
- Discriminant function: a set of functions fi(z) allows to classify a sample x into k classes gy if:
zE€q & filz,0) > filz,0)), VI#Ek

In this case, the k functions fi(x) are called discriminant functions.

Question:

What is the link between discriminant functions and Bayesian classifiers ?

Answer :

(1b) g 301 + (b|x)d 301 < (h)g 301 + (b|T)d30] &
(16) g (1b|z)d < (1b) g (b|x)d <
¥ # 1A (z|b)g < (z|)g & WDz

S U0KIUNS JUDUIWLLISEP D fjasye st D ssppo 03 sbuojpq x aydwws v goyy (x|ID) g Apprqogosd 140149350d-D 2],

Experiment :

The iso-likelihood lines for the Gaussian pdfs N (p/;/, % ;/) and N (1/e/, % /¢ ), which we used before
to model the class /i/ and the class /e/, are plotted on the next page (figure 1). On a second graph, the
iso-likelihood lines for N (u/i/,%/e/) and N (p/e/, 3 /e/) (two pdfs with the same covariance matrix
¥,e/) are represented. On these figures, use a colored pen to join the intersections of the level lines
that correspond to equal likelihoods.

Question:

What is the nature of the surface that separates class /i/ from class /e/ when the two models have
different variances 7 Can you explain the origin of this form ?

What is the nature of the surface that separates class /i/ from class /e/ when the two models have
the same variances 7 Why is it different from the previous discriminant surface ?

Answer :

(-o8ed 9xou UO ponUNIUOY)) Sadow fiun 3 99uDwDR09 Y3 uodn puadap jou s90p
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Iso-likelihood lines with DIFFERENT covariances
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Figure 1: Iso-likelihood lines for the Gaussian
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3 Unsupervised training

In the previous section, we have computed the models for classes /a/, /e/, /i/, /o/ and /y/ by knowing
a-priori which training samples belongs to which class (we were disposing of a labeling of the training
data). Hence, we have performed a supervised training of Gaussian models. Now, suppose that we
only have unlabeled training data that we want to separate in several classes (e.g., 5 classes) without
knowing a-priori which point belongs to which class. This is called unsupervised training. Several
algorithms are available for that purpose, among which: the K-means, the Viterbi-EM and the EM
(Expectation-Maximization) algorithm.
All these algorithms are characterized by the following components :

e a set of models g, (not necessarily Gaussian), defined by some parameters © (means, variances,
priors,...);

e 3 measure of membership, telling to which extent a data point “belongs” to a model;
e a “recipe” to update the model parameters in function of the membership information.

The measure of membership usually takes the form of a measure of distance or the form of a measure
of probability. It replaces the missing labeling information to permit the application of standard
parameter estimation techniques. It also defines implicitly a global criterion of “goodness of fit” of
the models to the data, e.g.:

e in the case of a distance, the models that are globally closer from the data characterize it better;

e in the case of a probability measure, the models bringing a better likelihood for the data explain
it better.

Table 1 summarizes the components of each of the algorithm that will be studied in the following
experiments. More detail will be given in the corresponding subsections.
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3.1 K-means algorithm

Synopsis

of the algorithm:

e Start with K initial prototypes pg, k=1,--- , K.

e Do:

4.

. For each data-point z,, n = 1,---, N, compute the squared Euclidean distance from the

kth prototype:

di(zn) = llon — pell”
(wn - lffk)T(xn - lffk)

Assign each data-point z,, to its closest prototype g, i.e. assign z,, to the class gy if:

Note: using the square of the Euclidean distance for the classification gives the same result
as using the true Euclidean distance, since the square root is a monotonically growing
function. But the computational load is obviously lighter when the square root is dropped.

Replace each prototype with the mean of the data-points assigned to the corresponding
class;

Go to 1.

e Until: no further change occurs.

The global criterion defined in the present case is:

K
J:Z Z di(zn)

k=1, €qr

and represents the total squared distance between the data and the models they belong to. This
criterion is locally minimized by the algorithm.

Experiment :

Use the K-means explorer utility :

KMEANS K-means algorithm exploration tool

Launch it with KMEANS(DATA,NCLUST) where DATA is the matrix
of observations (one observation per row) and NCLUST is the
desired number of clusters.

The clusters are initialized with a heuristic that spreads
them randomly around mean(DATA) with standard deviation
sqrtm(cov (DATA)) .

If you want to set your own initial clusters, use
KMEANS (DATA ,MEANS) where MEANS is a cell array containing
NCLUST initial mean vectors.

Example: for two clusters
means{1} = [1 2]; means{2} = [3 4];
kmeans (data,means) ;

12
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Launch it with the data sample allvow, which was part of file vowels.mat and gathers all the
simulated vowels data. Do several runs with different cases of initialization of the algorithm:

1. 5 initial clusters determined according to the default heuristic;
2. some initial MEANS values equal to some data points;
3. some initial MEANS values equal to {it/q/, ft/e/s 1/i/sH/o)s t)y) }-

Iterate the algorithm until its convergence. Observe the evolution of the cluster centers, of the data-
points attribution chart and of the total squared Euclidean distance. (It is possible to zoom these
plots: left click inside the axes to zoom 2x centered on the point under the mouse; right click to zoom
out; click and drag to zoom into an area; double click to reset the figure to the original). Observe the
mean values found after the convergence of the algorithm.

Example:

>> kmeans (allvow,5) ;

_or -

>> means = { mu.a, mue, mui, muo, muy };

>> kmeans(allvow,means) ;

Enlarge the window, then push the buttons, zoom etc. After the convergence, use:
>> for k=1:5, disp(kmeans result means{k}); end

to see the resulting means.

Question:

1. Does the final solution depend on the initialization of the algorithm ?
2. Describe the evolution of the total squared Euclidean distance.

3. What is the nature of the discriminant surfaces corresponding to a minimum Euclidean distance
classification scheme ?

4. Is the algorithm suitable for fitting Gaussian clusters ?

Answer :
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3.2 Viterbi-EM algorithm for Gaussian clustering
Synopsis of the algorithm:

e Start from K initial Gaussian models AN (ug,Xr), k = 1---K, characterized by the set of
parameters © (i.e. the set of all means and variances py and X5, k = 1--- K). Set the initial
prior probabilities P(q) to 1/K.

e Do:

1. Classify each data-point using Bayes’ rule.
This step is equivalent to having a set ) of boolean hidden variables that give a labeling
of the data by taking the value 1 (belongs) or 0 (does not belong) for each class ¢ and
each point z,,. The value of () that maximizes p(X, Q|©) precisely tells which is the most

probable model for each point of the whole set X of training data.

Hence, each data point is assigned to its most probable cluster q,(fld).

13
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2. Update the parameters:

— update the means:

ugcnew) = mean of the points belonging to q,gOld)

— update the variances:

= variance of the points belonging to q,(:ld)

Eznew)
— update the priors:

number of training points belonging to q,(:ld)

P (new) @(new) —
() | ) total number of training points

3. Goto 1.

e Until: no further change occurs.

The global criterion defined in the present case is:

L£©) = > P(X]0) = > > p(X,Q|0)
X Q X
K
= > ) logp(zn|O4)
k=1 x,€Eqx

and represents the joint likelihood of the data with respect to the models they belong to. This criterion
is locally maximized by the algorithm.

Experiment :
Use the Viterbi-EM explorer utility :

VITERB Viterbi version of the EM algorithm

Launch it with VITERB(DATA,NCLUST) where DATA is the matrix
of observations (one observation per row) and NCLUST is the
desired number of clusters.

The clusters are initialized with a heuristic that spreads
them randomly around mean(DATA) with standard deviation
sqrtm(cov(DATA)). Their initial covariance is set to cov(DATA).

If you want to set your own initial clusters, use
VITERB(DATA,MEANS,VARS) where MEANS and VARS are cell arrays
containing respectively NCLUST initial mean vectors and NCLUST
initial covariance matrices. In this case, the initial a-priori
probabilities are set equal to 1/NCLUST.

To set your own initial priors, use VITERB(DATA,MEANS,VARS,PRIORS)
where PRIORS is a vector containing NCLUST a priori probabilities.

Example: for two clusters
means{1} = [1 2]; means{2} =
vars{1} = [2 0;0 2]; vars{2}
viterb(data,means,vars);

[3 4];
= [1 0;0 11;

Launch it with the dataset allvow. Do several runs with different cases of initialization of the
algorithm :

1. 5 initial clusters determined according to the default heuristic;

14
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2. some initial MEANS values equal to some data points, and some random VARS values (try for
instance cov(allvow) for all the classes);

3. the initial MEANS, VARS and PRIORS values found by the K-means algorithm.

4. some initial MEANS values equal to {ft/a/,H/e/sH/i/s1/0/> 1)y}, VARS values equal to
{Z/a/,z/e/,z/i/,2/0/,2/y/}, and PRIORS values equal to [P/a/,P/e/,P/i/,P/O/,P/y/];

5. some initial MEANS and VARS values chosen by yourself.

Iterate the algorithm until it converges. Observe the evolution of the clusters, of the data points
attribution chart and of the total likelihood curve. Observe the mean, variance and priors values
found after the convergence of the algorithm. Compare them with the values computed in section 2.2
(with supervised training).

Example:

>> viterb(allvow,5);

_or -

>> means = { mu.a, mue, mui, muo, muy };

>> vars = { sigma a, sigma e, sigma i, sigma o, sigmay };

>> viterb(allvow,means,vars);

Enlarge the window, then push the buttons, zoom etc. After convergence, use:
>> for k=1:5, disp(viterbresultmeans{k}); end

>> for k=1:5, disp(viterbresult_vars{k}); end

>> for k=1:5, disp(viterbresult priors(k)); end

to see the resulting means, variances and priors.

Question:

1. Does the final solution depend on the initialization of the algorithm ?

2. Describe the evolution of the total likelihood. Is it monotonic ?

3. In terms of optimization of the likelihood, what does the final solution correspond to ?

4. What is the nature of the discriminant surfaces corresponding to the Gaussian classification ?

5. Is the algorithm suitable for fitting Gaussian clusters ?

Answer :
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3.3 EM algorithm for Gaussian clustering
Synopsis of the algorithm :

e Start from K initial Gaussian models N (ug,X¢), k = 1--- K, with equal priors set to P(qx) =
1/K.
e Do:

(old))

1. Estimation step: compute the probability P( (old) |a: for each data point z, to

belong to the class q,(:ld) :

P(g""1001") - play g, 0C!D)
p(wn|@(0ld))

Pla"" e, 011

This step is equivalent to having a set Q of continuous hidden varlables, taking values in
the interval [0,1], that give a labeling of the data by telling to which extent a point z),
belongs to the class gi. This represents a soft classification, since a point can belong, e.g.,
by 60% to class 1 and by 40% to class 2 (think of Schrédinger’s cat which is 60% alive and
40% dead as long as nobody opens the box or performs Bayesian classification).

2. Maximization step:

— update the means:

u(new) _ 2521 an(ql(;)ld) |~Tna @(old))
’ SN Pz, 00)
— update the variances:
old new new
Sony P |20, 0D (0 — i) (0 — )T

n=1
SN P |z, ©C1D)

n=1

Egcnew) —

— update the priors:
p( new)|® new) Z P Old @(old))

In the present case, all the data points participate to the update of all the models, but
their participation is weighted by the value of P(q,(cOld) |2, ©D),
3. Goto 1.

e Until: the total likelihood increase for the training data falls under some desired threshold.

The global criterion defined in the present case is:

£(0) = logp(X]0) = log 3 p(X,Q|0)

log ) P(Q|X,0)p(X|0) (Bayes)
Q

K
= log Z P(qr]|X,0)p(X|0)
k=1

Applying Jensen’s inequality (log Ej Ajy; > Ej Ajlogy; if Ej Aj = 1), we obtain :

K
L©) ~ Y P(a|X,0)logp(X|0)

1

=~
Il

N
ZP Qk|~75n: 10gp(£n|@)

I
TMN

Hence, the final J represents a lower boundary for the joint likelihood of all the data with respect to
all the models. This criterion is locally maximized by the algorithm.
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Experiment :
Use the EM explorer utility :

EMALGO EM algorithm explorer

Launch it with EMALGO(DATA,NCLUST) where DATA is the matrix
of observations (one observation per row) and NCLUST is the
desired number of clusters.

The clusters are initialized with a heuristic that spreads
them randomly around mean(DATA) with standard deviation
sqrtm(cov(DATA)*10) . Their initial covariance is set to cov(DATA).

If you want to set your own initial clusters, use

EMALGO (DATA,MEANS,VARS) where MEANS and VARS are cell arrays
containing respectively NCLUST initial mean vectors and NCLUST
initial covariance matrices. In this case, the initial a-priori
probabilities are set equal to 1/NCLUST.

To set your own initial priors, use VITERB(DATA,MEANS,VARS,PRIORS)
where PRIORS is a vector containing NCLUST a priori probabilities.

Example: for two clusters
means{1} = [1 2]; means{2} =
vars{1} = [2 0;0 2]; vars{2}
emalgo(data,means,vars) ;

[3 4];
= [1 0;0 11;

Launch it with again the same dataset allvow. Do several runs with different cases of initialization
of the algorithm:

1. 5 clusters determined according to the default heuristic;

2. some initial MEANS values equal to some data points, and some random VARS values (e.g.
cov(allvow) for all the classes);

3. the initial MEANS and VARS values found by the K-means algorithm.

4. some initial MEANS values equal to {ft/a/,H/e/sH1/i/s1)0/> 1)y}, VARS values equal to
{E/a/,E/e/,E/i/,E/o/,E/y/}, and PRIORS values equal to [P/a/,P/e/,P/i/,P/O/,P/y/];

5. some initial MEANS and VARS values chosen by yourself.

(If you have time, also increase the number of clusters and play again with the algorithm.)

Iterate the algorithm until the total likelihood reaches an asymptotic convergence. Observe the
evolution of the clusters and of the total likelihood curve. (In the EM case, the data points attribution
chart is not given because each data point participates to the update of each cluster.) Observe the
mean, variance and prior values found after the convergence of the algorithm. Compare them with
the values found in section 2.2.

Example:

>> emalgo(allvow,5);

_or -

>> means = { mu.a, mue, mui, muo, muy };

>> vars = { sigma a, sigma e, sigma i, sigma o, sigmay };

>> emalgo(allvow,means,vars) ;

Enlarge the window, then push the buttons, zoom etc. After convergence, use:
>> for k=1:5, disp(emalgo resultmeans{k}); end

>> for k=1:5, disp(emalgo result_vars{k}); end

>> for k=1:5, disp(emalgo result priors(k)); end

to see the resulting means, variances and priors.
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Question:

1. Does the final solution depend on the initialization of the algorithm ?
2. Describe the evolution of the total likelihood. Is it monotonic ?
3. In terms of optimization of the likelihood, what does the final solution correspond to ?

4. Is the algorithm suitable for fitting Gaussian clusters ?

Answer :
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After the lab...

This lab manual can be kept as additional course material. If you want to browse the experiments
again, you can use the script :

>> labldemo

which will automatically redo all the computation and plots for you (except those of section 3).
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