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Guidelines

The following lab manual is structured as follows:
e cach section corresponds to a theme
e cach subsection corresponds to a separate experiment.

The subsections begin with useful formulas and definitions that will be put in practice during the
experiments. These are followed by the description of the experiment and by an example of how to
realize it in MATLAB.

If you follow the examples literally, you will be able to progress into the lab session without worrying
about the experimental implementation details. If you have ideas for better MATLAB implementations,
you are welcome to put them in practice provided you don’t loose too much time: remember that a
lab session is no more than 3 hours long.

The subsections also contain questions that you should think about. Corresponding answers are
given right after, in case of problem. You can read them right after the question, but: the purpose of
this lab is to make you

Think !

If you get lost with some of the questions or some of the explanations, DO ASK the assistants or
the teacher for help : they are here to make the course understood. There is no such thing as a stupid
question, and the only obstacle to knowledge is laziness.

Have a nice lab;
Teacher & Assistants

Before you begin...

If this lab manual has been handed to you as a hardcopy :

1. get the lab package from
ftp.idiap.ch/pub/sacha/labs/Session2.tgz

2. un-archive the package:
% gunzip Session2.tgz
% tar xvf Session2.tar

3. change directory:
% cd session2

4. start MATLAB:
% matlab

Then go on with the experiments...

This document was created by : Sacha Krstulovi¢ (sacha®idiap.ch).
This document is currently maintained by : Sacha Krstulovié¢ (sacha@idiap.ch). Last modification on November 27, 2001.

This document is part of the package Session2.tgz available by ftp as: ftp.idiap.ch/pub/sacha/labs/Session2.tgz .
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1 Preamble

Useful formulas and definitions:

- a Markov chain or process is a sequence of events, usually called states, the probability of each
of which is dependent only on the event immediately preceding it.

- a Hidden Markov Model (HMM) represents stochastic sequences as Markov chains where the
states are not directly observed, but are associated with a probability density function (pdf).
The generation of a random sequence is then the result of a random walk in the chain (i.e. the
browsing of a random sequence of states @ = {q1,---qx}) and of a draw (called an emission)
at each visit of a state.

The sequence of states, which is the quantity of interest in speech recognition and in most of the
other pattern recognition problems, can be observed only through the stochastic processes defined
into each state (i.e. you must know the parameters of the pdfs of each state before being able to
associate a sequence of states @ = {q1,---qx } to a sequence of observations X = {z1,---zx}).
The true sequence of states is therefore hidden by a first layer of stochastic processes.

HMMs are dynamic models, in the sense that they are specifically designed to account for some
macroscopic structure of the random sequences. In the previous lab, concerned with Gaussian
Statistics and Statistical Pattern Recognition, random sequences of observations were considered
as the result of a series of independent draws in one or several Gaussian densities. To this simple
statistical modeling scheme, HMMs add the specification of some statistical dependence between
the (Gaussian) densities from which the observations are drawn.

- HMM terminology :

— the emission probabilities are the pdfs that characterize each state ¢;, i.e. p(z|g;). To
simplify the notations, they will be denoted b;(z). For practical reasons, they are usually
Gaussian or combinations of Gaussians, but the states could be parameterized in terms of
any other kind of pdf (including discrete probabilities and artificial neural networks).

— the transition probabilities are the probability to go from a state ¢ to a state j, i.e. P(g;|g;).
They are stored in matrices where each term a;; denotes a probability P(g;|g;).

— non-emitting initial and final states: if a random sequence X = {z1,---xk} has a finite
length K, the fact that the sequence begins or ends has to be modeled as two additional
discrete events. In HMMs, this corresponds to the addition of two non-emitting states, the
initial state and the final state. Since their role is just to model the “start” or “end” events,
they are not associated with some emission probabilities.

The transitions starting from the initial state correspond to the modeling of an initial state
distribution P(I|q;), which indicates the probability to start the state sequence with the
emitting state g;.
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The final state usually has only one non-null transition that loops onto itself with a proba-
bility of 1 (it is an absorbent state), so that the state sequence gets “trapped” into it when
it is reached.

— ergodic versus left-right HMMs: a HMM allowing for transitions from any emitting state
to any other emitting state is called an ergodic HMM. Alternately, an HMM where the
transitions only go from one state to itself or to a unique follower is called a left-right
HMM.

Values used throughout the experiments:

The following 2-dimensional Gaussian densities will be used to model simulated vowel observations,
where the considered features are the two first formants:

Density Nyq, : H/a) = [ 1;38 } fa) = [ ;ggg 52388 }
Density N, : Bye) = [ 1228 } X/e) = { 1?7)52)3 3(7322(5) ]
Density Ny;; Hyi) = [ 2;;8 } X = { 3;38 Sggg }
Density N, : Bjo) = { 218 ] Xo) = [ 3288 23388 }
Do Nt =[] s e ]

(Those densities have been used in the previous lab session.) They will be combined into Markov
Models that will be used to model some observation sequences. The resulting HMMs are described in
table 1.

The parameters of the densities and of the Markov models are stored in the file data.mat. A
Markov model named, e.g., hmml is stored as an object with fields hmml.means, hmml.vars and
hmm1.trans, and corresponds to the model HMMI1 of table 1. The means fields contains a list of mean
vectors; the vars field contains a list of variance matrices; the trans field contains the transition
matrix; e.g to access the mean of the 3"¢ state of hmm1, use:
>> hmml.means{3}

The initial and final states are characterized by an empty mean and variance value.

Preliminary Matlab commands:

Before realizing the experiments, execute the following commands:
>> colordef none; % Set a black background for the figures
>> load data; 7% Load the experimental data

>> whos % View the loaded variables
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Emission probabilities

HMM1:
e state 1:
e state 2:
e state 3:
o state 4:

e state 5:

HMM2:
e state 1:
e state 2:
e state 3:
e state 4:

e state 5:

HMMS3:
e state 1:
e state 2:
e state 3:
o state 4:
e state b:
HMMA4 :
e state 1:
e state 2:
e state 3:
o state 4:
e state 5:
HMMS5:
e state 1:
e state 2:
e state 3:
e state 4:
e state 5:
HMMG6 :
e state 1:
e state 2:
e state 3:
o state 4:

e state 5:

initial state

Gaussian N,
Gaussian N;,
Gaussian N,/

final state

initial state

Gaussian N4,
Gaussian N;,
Gaussian N,/

final state

initial state

Gaussian N,
Gaussian N;,
Gaussian N,/

final state

initial state

Gaussian N4,
Gaussian N;,
Gaussian N,/

final state

initial state

Gaussian N,/
Gaussian N;,
Gaussian N,

final state

initial state

Gaussian N,
Gaussian N;,
Gaussian N,/

final state

Transition matrix

0.0 1.0 0.0
0.0 0.4 0.3

0.0 0.3 0.4 0.3 0.0

0.0 0.3 0.3
0.0 0.0 0.0

0.0 1.0 0.0

0.0 0.95 0.025 0.025 0.0

0.0 0.025 0.95
0.0 0.02 0.02
0.0 0.0 0.0

0.0 1.0 0.0
0.0 0.5 0.5
0.0 0.0 0.5
0.0 0.0 0.0
0.0 0.0 0.0

0.0 1.0 0.0
0.0 0.95 0.05
0.0 0.0 0.95
0.0 0.0 0.0
0.0 0.0 0.0

0.0 1.0 0.0
0.0 0.95 0.05
0.0 0.0 0.95
0.0 0.0 0.0
0.0 0.0 0.0

0.0 1.0 0.0
0.0 0.95 0.05
0.0 0.0 0.95
0.0 0.0 0.0
0.0 0.0 0.0

Sketch of the model

0.0 0.0
0.3 0.0

0.3 0.1
0.0 1.0

0.0 0.0

0.025 0.0
0.95 0.01
0.0 1.0

0.0 0.0
0.0 0.0
0.5 0.0
0.5 0.5
0.0 1.0

0.0 0.0
0.0 0.0
0.05 0.0
0.95 0.05
0.0 1.0

0.0 0.0
0.0 0.0
0.05 0.0
0.95 0.05

0.0 1.0

0.0 0.0 0.95 0.95 0.95

O 0.05
Dan°

0.0 0.0
0.05 0.0 G
0.95 0.05
0.0 1.0

Table 1: List of the Markov models used in the experiments.

3
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2 Generating samples from Hidden Markov Models

Experiment :

Generate a sample X coming from the Hidden Markov Models HMM1, HMM2 and HMM4. Use the
function genhmm (>> help genhmm) to do several draws with each of these models. View the resulting
samples and state sequences with the help of the functions plotseq and plotseq?2.

Example:

Do a draw:
>> [X,stateSeq] = genhmm(hmm1);

Use the functions plotseq and plotseq2 to picture the obtained 2-dimensional data. In the resulting
views, the obtained sequences are represented by a yellow line where each point is overlaid with a
colored dot. The different colors indicate the state from which any particular point has been drawn.
>> figure; plotseq(X,stateSeq); % View of both dimensions as separate sequences
This view highlights the notion of sequence of states associated with a sequence of sample points.
>> figure; plotseq2(X,stateSeq,hmml); % 2D view of the resulting sequence,

% with the location of the Gaussian states
This view highlights the spatial repartition of the sample points.
Draw several new samples with the same parameters and visualize them :
>> clf; [X,stateSeq]l = genhmm(hmml); plotseq(X,stateSeq);
(To be repeated several times.)
Repeat with another model:
>> [X,stateSeq] = genhmm(hmm2) ;plotseq(X,stateSeq);
and re-iterate the experiment. Also re-iterate with model HMM3.

Questions:

1. How can you verify that a transition matrix is valid ?

2. What is the effect of the different transition matrices on the sequences obtained during the
current experiment ? Hence, what is the role of the transition probabilities in the Markovian
modeling framework ?

3. What would happen if we didn’t have a final state ?
4. In the case of HMMs with plain Gaussian emission probabilities, what quantities should be

present in the complete parameter set © that specifies a particular model ?

If the model is ergodic with N states (including the initial and final), and represents data of
dimension D, what is the total number of parameters in © ?

5. Which type of HMM (ergodic or left-right) would you use to model words ?

Answers:
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Answers (continued) :
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3 Pattern recognition with HMMs

3.1 Likelihood of a sequence given a HMM

In section 2, we have generated some stochastic observation sequences from various HMMs. Now, it is
useful to study the reverse problem, namely : given a new observation sequence and a set of models,
which model explains best the sequence, or in other terms which model gives the highest likelihood
to the data ?

To solve this problem, it is necessary to compute p(X|0), i.e. the likelihood of an observation
sequence given a model.

Useful formulas and definitions:

- Probability of a state sequence: the probability of a state sequence @ = {qi1,-- ,qr} coming
from a HMM with parameters © corresponds to the product of the transition probabilities from
one state to the following:

T-1
P(Q|©) = H Att+1 = G1,2 - G23° - Ar-1,T

t=1

- Likelihood of an observation sequence given a state sequence, or likelihood of an observation

sequence along a single path: given an observation sequence X = {z1,x2, - ,zr} and a state
sequence @ = {q1,- - ,qr} (of the same length) determined from a HMM with parameters O,
the likelihood of X along the path @ is equal to:
T
p(X]Q,0) = Hp(l“i|fh; ©) =bi(21) - ba(22) - - br(zr)
i=1

i.e. it is the product of the emission probabilities computed along the considered path.

In the previous lab, we had learned how to compute the likelihood of a single observation with
respect to a Gaussian model. This method can be applied here, for each term z;, if the states
contain Gaussian pdfs.

- Joint likelihood of an observation sequence X and a path @ : it consists in the probability that
X and @ occur simultaneously, p(X, Q|©), and decomposes into a product of the two quantities
defined previously :

p(X,Q[0) = p(X|Q,0)P(Q|0) (Bayes)
- Likelihood of a sequence with respect to a HMM: the likelihood of an observation sequence
X = {x1,22, - ,x7} with respect to a Hidden Markov Model with parameters @ expands as
follows :

p(X1|0) = > p(X,Qle)

every possible Q

i.e. it is the sum of the joint likelihoods of the sequence over all possible state sequence allowed
by the model.

- the forward recursion: in practice, the enumeration of every possible state sequence is infeasi-
ble. Nevertheless, p(X|0) can be computed in a recursive way by the forward recursion. This
algorithm defines a forward variable a;(7) corresponding to:

ai(i) = p(z1, 22, 3, ¢" = ¢]O)

i.e. ay(i) is the probability of having observed the partial sequence {1, %2, - ,2+} and being in
the state ¢ at time ¢ (event denoted ¢! in the course), given the parameters ©. For a HMM with
5 states (where states 1 and N are the non-emitting initial and final states, and states 2--- N —1
are emitting), a;(z) can be computed recursively as follows:
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The Forward Recursion

1. Initialization
a1(i) = a1 bi(z1), 2<i<N-1

where ay; are the transitions from the initial non-emitting state to the emitting states with
pdfs b; j=2...n—1(z). Note that b;(z) and byz do not exist since they correspond to the
non-emitting initial and final states.

2. Recursion

N-1
. i 1<tT
Oét+1(]) = [Z at(l)'aij] b]'(xH-l)v 22]2]\7_]_

=2

3. Termination

N-1
p(X10) = [Z ar(i) 'aiN]

=2

i.e. at the end of the observation sequence, sum the probabilities of the paths converging
to the final state (state number N).

(For more detail about the forward procedure, refer to [?], chap.6.4.1).

This procedure raises a very important implementation issue. As a matter of fact, the compu-
tation of the oy vector consists in products of a large number of values that are less than 1 (in
general, significantly less than 1). Hence, after a few observations (¢ &~ 10), the values of a; head
exponentially to 0, and the floating point arithmetic precision is exceeded (even in the case of
double precision arithmetics). Two solutions exist for that problem. One consists in scaling the
values and undo the scaling at the end of the procedure: see [?] for more explanations. The
other solution consists in using log-likelihoods and log-probabilities, and to compute log p(X|0)
instead of p(X0©).

Questions:

1. The following formula can be used to compute the log of a sum given the logs of the sum’s
arguments:

log(a + b) = f(loga,logb) = loga + log (1 + ellogb—log “))

Demonstrate its validity.

Naturally, one has the choice between using log(a + b) = log a + log (1 + ellogb—log “)) or log(a+
b) =logb + log (1 + e(loga~1og?))  which are equivalent in theory. If loga > logb, which version
leads to the most precise implementation ?

2. Express the log version of the forward recursion. (Don’t fully develop the log of the sum in

. . . 1 ”»
the recursion step, just call it “logsum”: Zfil T —5 logsumilil(log z;).) In addition to the
arithmetic precision issues, what are the other computational advantages of the log version ?
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3.2 Bayesian classification

Question:
The forward recursion allows us to compute the likelihood of an observation sequence with respect to
a HMM. Hence, given a sequence of features, we are able to find the most likely generative model in
a Maximum Likelihood sense. What additional quantities and assumptions do we need to perform a
true Bayesian classification rather than a Maximum Likelihood classification of the sequences ?
Which additional condition makes the result of Bayesian classification equivalent to the result of
ML classification ?
Answer :
U010 155D)D
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3.3 Maximum Likelihood classification

In practice, for speech recognition, it is very often assumed that all the model priors are equal (i.e.
that the words or phonemes to recognize have equal probabilities of occurring in the observed speech).
Hence, the speech recognition task consists mostly in performing the Maximum Likelihood classifi-
cation of acoustic feature sequences. For that purpose, we must have of a set of HMMs that model
the acoustic sequences corresponding to a set of phonemes or a set of words. These models can be
considered as “stochastic templates”. Then, we associate a new sequence to the most likely generative
model. This part is called the decoding of the acoustic feature sequences.

Experiment :

Classify the sequences X, X2, - X4, given in the file data.mat, in a maximum likelihood sense with
respect to the six Markov models given in table 1. Use the function logfwd to compute the log-forward
recursion expressed in the previous section. Store the results in a matrix (they will be used in the
next section) and note them in the table below.

Example:

>> plot (X1(:,1),X1(:,2));
>> logProb(1,1) = logfwd(X1,hmml)

>> logProb(1,2) = logfwd(X1,hmm2)
etc.
>> logProb(3,2) = logfwd(X3,hmm2)
etc.

Filling the 1logProb matrix can be done automatically with the help of loops:

>> for i=1:6,
for j=1:6,
stri = num2str(i);
strj = num2str(j);
eval([ ’logProb(’ , stri , ’,’ , strj , ’)=logfwd(X’ , stri , ’,hmm’ , strj , ’);’ 1);
end;
end;
>> logProb

Most likely

Sequence | logp(X|€1) | logp(X[02) | logp(X[0s) | logp(X[O4) | logp(X|Os) | logp(X[05) | ¥

X1

X2

X3

X4

X5

X6

Answer :

CIWINH < °X ‘OWIWH < X FIWINH < "X ‘SWINH < ¢X ‘SWIWH < °X ‘TWINH < 'X
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4 Optimal state sequence

Useful formulas and definitions:

In speech recognition and several other pattern recognition applications, it is useful to associate an
“optimal” sequence of states to a sequence of observations, given the parameters of a model. For
instance, in the case of speech recognition, knowing which frames of features “belong” to which state
allows to locate the word boundaries across time. This is called the alignment of acoustic feature
sequences.

A “reasonable” optimality criterion consists in choosing the state sequence (or path) that brings a
maximum likelihood with respect to a given model. This sequence can be determined recursively via
the Viterbi algorithm. This algorithm makes use of two variables:

e the highest likelihood 6;(7) along a single path among all the paths ending in state 7 at time ¢:

&i(i)=  max  p(qi,q2, Q1,4 = qisT1,To, - 14]O)
q1,92,- gt —1

e a variable ¢;(7) which allows to keep track of the “best path” ending in state i at time ¢:

Yu(i) = argmax p(qi, g2, ,Q—1,q" = i, T1, T2, - 7¢|O)
1,92, ,qt—1

Note that these variables are vectors of (N —2) elements, (N —2) being the number of emitting states.
With the help of these variables, the algorithm takes the following steps :

The Viterbi Algorithm ‘

1. Initialization
(51(2) = ali-bi(xl), QSZSN—].

where, again, ay; are the transitions from the initial non-emitting state to the emitting states
with pdfs b; j=2..n—1(x), and where b1(z) and byz do not exist since they correspond to the
non-emitting initial and final states.

2. Recursion

_ _ 1<t<T-1
6t+1(]) = 2§%31€f(—1 [(51;(1) . a'ij] . bj($t+1)a 2<j< N -1
, 1<t<T-1
1/}t+1 - %{zgn’ll\fa—xl [615(2) ) aij] ) 2 S ] S N -1

“Optimal policy is composed of optimal sub-policies”: find the path that leads to a maximum
likelihood considering the best likelihood at the previous step and the transitions from it; then
multiply by the current likelihood given the current state. Hence, the best path is found by
induction.

3. Termination

p*(X10) = p X 107 (0) - ain]
qar = a<g<rrjlvax1 [07(7) - a;n]

Find the best likelihood when the end of the observation sequence is reached, given that the
final state is the non-emitting state V.

4. Backtracking
*:{q)lk))q}} so that qZ:¢t+1(qZ+1)7 t:T_]-aT_Qa"'>]-

Read (decode) the best sequence of states from the v, vectors.

10
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Hence, the Viterbi algorithm delivers two useful results, given an observation sequence X = {z1,--- ,z7}
and a model O:

e the selection, among all the possible paths in the considered model, of the best path Q* =
{¢t, -+, 45}, which corresponds to the state sequence giving a maximum of likelihood to the
observation sequence X;

e the likelihood along the best path, p(X,Q*|©) = p*(X]|O©). As opposed to the the forward
procedure, where all the possible paths are considered, the Viterbi computes a likelihood along
the best path only.

(For more detail about the Viterbi algorithm, refer to [?], chap.6.4.1).

Questions:

1. From an algorithmic point of view, what is the main difference between the computation of the
0 variable in the Viterbi algorithm and that of the « variable in the forward procedure 7

2. Give the log version of the Viterbi algorithm.

Answers:

"pDO] 1PU0UDINAUL0D Y] 42YINS U bUDINAY)D
‘paproav si (orguduodra up fo uowvindwod ayy buinjoaur) wowviado WNSSO] IY) ‘U0SLIN SIY] UT

12— r1-o2=1 ("B)™a=10 gy os {Ib*--.‘Ib} =0

Suppeippeq (p)

[Nm So1+ (2 )(5 ] IX’eAI[u>f3>'e — Ip

I-N>1>¢

[N’D o1+ (1) (,,«059] Xeur (0lx).d9o1

uoryeurwiag, (9)

AZET e ] S = e
II__Aiég% ‘(TH)fq Sor + [-%BOH ©) (50,§9] T = (£) 5oy
uorsinday (q)
0 = (1)
I-N>1>¢ ‘()qSor+ w80l = (1) 4,0

uonezireyu] () G

UOISUNIDL PADMAOS 2Y) UDYF 42MOd [DUOUDINAULOD §53) §IYDT 2UNPIV0LA 19U A Y} ‘DoUd[ "¢ Jo
uouDINAdW09 Y] UL SU0WDIIA0 XeW 2UL03q © Jo u0DInduwod ay) ur bulivaddo aiom Jpy) SWns 2YJ |

Experiments:

1. Use the function logvit to find the best path of the sequences X, --- Xg with respect to the
most likely model found in section 3.3 (i.e. X;: HMMI1, Xo: HMM3, X3: HMM5, X : HMMA4,
X5: HMM6 and Xg: HMM2). Compare with the state sequences ST, - -+ STg originally used to
generate X1, - Xg (use the function compseq, which provides a view of the first dimension of
the observations as a time series, and allows to compare the original alignment to the Viterbi
solution).

11
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2. Use the function logvit to compute the probabilities of the sequences Xi,-:- X4 along the
best paths with respect to each model 04, --©g. Note your results below. Compare with the

log-likelihoods obtained in the section 3.3 with the forward procedure.

Examples:

1. Best paths and comparison with the original paths:
>> figure;

>> [STbest,bestProb]
>> [STbest,bestProb]

logvit(X1,hmml); compseq(X1,ST1,STbest);
logvit (X2,hmm3); compseq(X2,ST2,STbest);
Repeat for the remaining sequences.

2. Probabilities along the best paths for all the models:
>> [STbest,bestProb(1,1)] = logvit(X1,hmml);

>> [STbest,bestProb(1,2)]

etc.

>> [STbest,bestProb(3,2)]
etc. (You can also use loops here.)

To compare with the complete log-likelihood, issued by the forward recurrence:

>> diffProb = logProb - bestProb

Likelihoods along the best path :

logvit (X1,hmm2) ;

logvit (X3,hmm2) ;

Sequence

log p*(X101)

log p™(X|©2)

log p*(X|©3)

log p™(X|©4)

log p™(X|©5)

log p™(X1©s)

Most likely
model

X1

X2

X3

X4

X5

X6

Difference between log-likelihoods and likelihoods along the best path :

Sequence

HMM1

HMM2

HMM3

HMM4

HMM5

HMM6

X1

X2

X3

X4

X5

X6

Question:

Is the likelihood along the best path a good approximation of the real likelihood of a sequence given

a model ?

Answer :
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5 Training of HMMs

Decoding or aligning acoustic feature sequences requires the prior specification of the parameters of
some HMMs. As explained in section 3.3, these models have the role of stochastic templates to which
we compare the observations. But how to determine templates that represent efficiently the phonemes
or the words that we want to model ? The solution is to estimate the parameters of the HMMs from
a database containing observation sequences, in a supervised or an unsupervised way.

Questions:

In the previous lab session, we have learned how to estimate the parameters of Gaussian pdfs given a
set of training data. Suppose that you have a database containing several utterances of the imaginary
word /aiy/, and that you want to train a HMM for this word. Suppose also that this database comes
with a labeling of the data, i.e. some data structures that tell you where are the phoneme boundaries
for each instance of the word.

1. Which model architecture (ergodic or left-right) would you choose 7 With how many states ?
Justify your choice.

2. How would you compute the parameters of the proposed HMM ?

3. Suppose you didn’t have the phonetic labeling (unsupervised training). Propose a recursive
procedure to train the model, making use of one of the algorithms studied during the present
session.

Answers:

‘u01rubooas yagads , pliom oo,
ut swyLobyp buruinay pasn fipppun gsows ayg fo auo s1 pup ‘(spgap uof [;] 998) SWNH fo buruiniy
2y 03 paydopo fiporf1dads wypL0bD pIa UD §1 WYPL06ID o) M -wnng Y, (1942314 Y3 Jo ppajsul
UOISINIAL PADMAOS JY] §8N U0ISU20 §1YY) SIWDLL 241903 2Yy7 Jo bugjaqn) 2y 01 $390d101340d 29035 YIDI
24aYm “UWYPL0b)D YDA\ -WUNRY Y7 Pa)Ivo ‘U01s40 [0S, D §751T9 94Yy) ‘fluvpunng Qo] snowaid 2y
buranp supisSSNDE) 2y} UL} 03 PIsn ‘JH-1QI3A Y] 03 4D)ULS §1 wWypLob) s1y3 fo jdroutid Yy

‘punoq 4ybry

D 07 21303dwifisn $2W009qQ DIVP bururnay Y3 fo pooyndyr Yy Jo uoynjond ayy uaym dois oS
uvo 2u() “((q) 03 0b) 2104271-2.4 ‘DUO sNOWALA Y] WoLl s4[J1p §]9qD] fo uouNQLIsIP MU Y3 [T (p)
‘$9)dwnTd HUIUIDLY DY UO S[IQD) JUOS DINQLLISIP-4 0F WYL0b]D 194991 Y3 287) (9)
“bu)aqD) JUaLIND Y1 U0 busfipps ‘ppow 2y3 23vpdy) (q)

(oouns239n

Yova Jo yibua) ay3 buop spaqu) 21guoYd Jo sU0NGLIYSIP Uad fo apouws fi)pnsn 24v s29uINbas
papur Y, [)  bujaqp) (01Ul UD INJPSU0D Yorym ‘saouanbas 2903s fiinigiqin dwos ypm 34v3s (v)

:fivm buwnojjof ayy up buruinay paswiadnsun w.Lofiad o3
a)qussod s1 31 9oudf] "s24ngDaf [0 99UINDIS D UO §]IQD] IULOS IINGLLISIP 0F SMO]ID AUNPIIO0LA 1QLIJIA Y] &

"TUDUL UOLPISUDA] Y] JUIULLIIIP UDI M ‘9IDIS S1Y] WOLS
SU0IISUDLY JO UdqQUINY 10307 Y3 fiq 99D D WOLf 1.4DIS JDYY SUOINSUD.LY 2y) burproap Ag " (9gv1s 4oyOUD
40 fjasqr) buimopof oYy 07 99015 2UO WLOL[ SUOLNSUDAY DY) JUN0D 0§D UDI am ‘5)aqD] Y3 buwmouy fig

“(129D] 4203 40) 23D3S YIDI YPM PaYDLI0SSD figrsuUIP
uvIssnoL) 2y3 fo suagowvind 9y) 2ndwios 03 qv) SNOWALA Y} UL PILPNIS SLOIDULSI IIUDLIDA PUD UDIUL
2Y3 98N UDI dM UIF 403990 24ngwaf yova 03 (/fi/ 40 /1/ ‘/v/) 19qD) D 2016 UDD IM PUD ‘UOLDALISQO
busuanay yova s6107aq 930S YIWYM 03 MOUY IM ‘DIUDISUL YIDI L0f SIUDPUNOQ 2179U0Yd Y] MOUY oM JT ‘g

"§9303s Burggiwd 901qy ypm pNH WS1I-3§e v
fiq /fivn/ piom ay3 jopous 03 2)qUUOSDAL 240f.42Y) SPUNOS 1] *SI)dWDS bUINDLD PUD /’i/N 07 burprsunay
fiypourf pup “wwbo sapdwos busmvap puo /Y \r 0 burpsuoiy uayy /°/pr [pd ayp wouf sajduins Guimp.p
Jo ynsas ay) 03 pagppunisso aq uvd /fitn/ piom oY) ‘uUIE “S421f1550)0 UDISSNDLY) fiq 9)qvindas aq 03
PIWNSSD 24D $2§SDJD J1gouoyd ayy vy] suvdw swy3 ‘qu) snowaud ay3 ur Sy fipprquqosd fo sa1315UIP
21f199ds fiaqo 2wauoyd JoULISIP YIVI YJUN PIIDIIOSSD SIUINDIS UOIDALISQO Y] IDY] PIWNSSD 9q UDI ] ']

13



J LAvALINLINYGg UL LLlveivig

After the lab...

This lab manual can be kept as additional course material. If you want to browse the experiments
again, you can use the script:

>> lab2demo

which will automatically redo all the computation and plots for you.
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