

Dalle Molle Institute
for Perceptual Artificial
Intelligence • P.O.Box 592 •
Martigny • Valais • Switzerland

JANUARY 2001

Rebuilding Speech Recognition on
Windows

Haiyan Wang
IDIAP-Com 01-09

phone +41 – 27 – 721 77 11
fax +41 – 27 – 721 77 12
e-mail secretariat@idiap.ch
internet http://www.idiap.ch

1. INTRODUCTION...3

2. ENVIRONMENT..3

2.1 Developing Environment ..3
2.1.1 Technology Requirements ..3

3. DEVELOPING AND REBUILDING..3

3.1 Porting from Unix to PC ..4
3.1.1 Data formation..4
3.1.2 Function name ..4
3.1.3 Calling method ...4
3.1.4 Lost function...4
3.1.5 Old bugs..4
3.1.6 Porting verification ...5

3.2 Optimizing using the features of Windows. ...5
3.2.1 Exchange data through buffer...5
3.2.2 Data form of transport ..5
3.2.3 Function position ..5
3.2.4 Changing method..6
3.2.5 Transporting verification ..6
3.2.6 Using Multi-thread ...6

1. INTRODUCTION

In InfoVox project, speech recognition block is designed to process the
raw audio data into interpretable sentences. The raw audio data is
recorded by telephonic block. The speech recognition block employs the
automatic speech recognition technology developed in IDIAP to extract
sentences from these raw audio data. The extracted sentences are then
output to language processing block.

2. ENVIRONMENT

2.1 Developing Environment

Software - “Windows NT”, C/C++ language under “Microsoft Visual Studio”

Hardware – PC,

2.1.1 Technology Requirements

Automatic Speech Recognition – is based on a large vocabulary continuous
speech recognition system, adapted to Swiss-French, and running on
Windows NT platform. The recognizer is based on a state-of-the-art
hybrid HMM/ANN system, using hidden Markov models (HMM) and artificial
neural networks(ANN), to model phonetic units.

Due to the requirements of InfoVox Project, Speech recognition block is
consisted of three essential parts: Rasta, Mlp, and Decoder.

RASTA (relative spectral analysis) extracts acoustic vectors from
overlapped windows of audio data. Each acoustic vector has 12
coefficients + 1 energy. The width of the window is 30ms of which the
center shifts every 10ms.

MLP (Multi Layer Perception, or ANN = Artificial Neural Network)
associates with each acoustic vector a relevant phoneme probability.

DECODER, or NOWAY, rebuilds the words and sentences from phonemes
according to syntactic and semantic rules respectively.

3. DEVELOPING AND REBUILDING

The developing of speech recognition block is consisted of two parts:
transporting the speech recognition block from Unix to Windows NT;
optimizing using the features of Windows.

3.1 Porting from Unix to PC

Due to the differences between Unix and Windows and also the differences
between compliers, it is not avoidable to change the source code itself.
There are mainly five kinds of differences between Unix version source
code and windows version code: data formation, function name, calling
method, lost functions, old bugs.

3.1.1 Data formation

The binary data is stored in big endian format on Unix while in little
endian format on Windows NT platform. Before reusing any binary data
from Unix, the bytes’order should be reversed. For example:

little endian integer
[00 01 02 03]

big endian integer
[03 02 01 00]

3.1.2 Function name

Some common library functions do not share the same names on Unix and
windows, such as popen(), pclose(), rindex() and so on. Their names on
windows are individually _popen(), _pclose(), strrchr(). Because there
is no such a list that can tell you the windows version name of each
function, you must make sure that both names refer to the same function.

3.1.3 Calling method

For some functions, Unix and windows employ different default calling
parameters, for example, the function to open a file "fopen". Without an
explicit declaration when call the function "fopen", Unix opens a binary
file while windows opens a text file. If a file is not opened correctly,
some running error will occur unpredictably.

3.1.4 Lost function

Not all the functions on Unix has its copy version on windows. Some
functions, like rint() and getopt(), have to be implemented by yourself.

3.1.5 Old bugs

Unix does not check the same kinds of compiling or running errors and
warnings as Windows, for example, the multiple definitions. Some bugs in
the original code cause running errors though they are not explicitly

appearing on Unix. For example: if a file is opened several times
without been closed, it would cause an error on NT.

3.1.6 Porting verification

The executable program of the speech recognition block has been verified
with the Unix version program. The same raw audio data is feed to both
ported windows version program and the original one on Unix paralleled
with the same running parameters. The running parameters are listed in
appendix A. Nine raw audio samples are chosen to perform this
verification. The verification results are the same as those on Unix,
which show that the porting of speech recognition block is successful.

3.2 Optimizing using the features of Windows.

Since the final goal of the InfoVox project is to have a real-time
system, it’s important to increase the running speed of speech
recognition block.

3.2.1 Exchange data through buffer

The internal results of Rasta, MLP, and Decoder is transfer with files
in the Unix version. On windows, the read and write file operations
take 100 times more than buffer process. The following section
describes how to change model interface to buffer instead of file.

3.2.2 Data form of transport

Firstly, you must know the data form of transport among each model.

Between Rasta and Mlp, transport several groups of 39 float data,([12
coefficients + 1 energy] [12∆ coefficients + 1∆ energy] [12∆∆
coefficients + 1∆∆ energy]).

Between Mlp and Decoder, transport several groups of 36 float data,
which are values of phonemes probability, and in front of each group,
There is a integer which represents order number.

3.2.3 Function position

Secondly, you have to find the functions which do operation of reading
or writing file.

3.2.4 Changing method

Thirdly, you should create global transporting buffer, and remove the
sentences which read or write file. For sentences of reading file,
replace with setting values of input buffer to temperate variables; For
sentences of writing file, replace with setting values of temperate
variables to output buffer.

There is one thing should be emphasized: In the optimized version of
application, has ignored the integer which represents order number for
output of Mlp. Thus makes convenient for buffer transporting.

3.2.5 Transporting verification

At last, You must test if the new results of buffer version are the same
as those of file version. You can also compute the running time for nine
audio samples.

The results and running time of the nine raw audio samples are listed in
appendix B.

3.2.6 Using Multi-thread

Windows allows building multiple concurrent execution threads running
simultaneously. At the original period of developing, we’ve implemented
a parallel control program integrated with RASTA and MLP using Multi-
thread technology. A mutex was used to protect a shared resource from
simultaneous access by multiple threads. Nevertheless, the running
tests showed that the performance of the application in fact decreased.
After investigation and analysis, it was concluded that it is
impractical to build multi-threading between RASTA and MLP. The running
speed of RASTA and MLP are quite different, so it is almost impossible
to realize parallel operation. Moreover, Creating Multi-thread requires
extra system expense to implement multi-threading.

However, this multi-thread application provides a framework for the
InfoVOX system, and it may have potential usage in other applications.

APPENDIX A

PARAMETRES OF the MODELS
Speech recognition application consist of following sequence models:
Rasta, Mlp and Decoder. In PC version, All environment parameters are
fixed at present. Here is a short presentation of the parameter setting
of these three models:

#---RASTA (extract acoustic vectors)
-w 30 frame-length; analysis window size
-s 10 frame-shift; window step size

 -S 8000 sample-rate; Sampling frequency
 -n 12 number of output parameters

 -q 2 degree of delta calculation
 -c 17 num of critical-band-like filters
 -u 29.021531 upper cutoff zero freq

 -m 10 model order
 -p 0.940000 pole position

 -r 1.000000 for partially rasta, partially plp
 -W 0.540000 windowing constant

-l 0.600000 liftering exponent
 -M adds a small constant to the power
spectrum
 -d debug

-L for log rasta; log-rasta=yes

#---MLP(evaluate likelihood of the phonemes)
 0 sort of use(0:reco; 1:training)

../SFP.234-600-36.softmax file of weights and
biases

 234 nodes num of input layer
 600 nodes num of hidden layer

36 nodes num of output layer

#---DECODER(do the recognition)

-dictionary ../data/diction.French
name of the file that contains vocabulary words with their

transcriptions
-mlp_phonemes ../data/phonemes.French
 name of the file with phonemes of MLP
-binary ../data/lm.bin
name of the file with language model in binary format
-states 2
number of states per phoneme
-silence
whether one wants to add ’#h’ (silence) as last phoneme to

the vocabulary words
-alpha 0.25
scaling factor (additioner, will be logarithmed)
-beta 6
scaling factor (multiplier)

APPENDIX B

 VITERBI Recognition Results (before optimization)

message00.au running time on Unix:6.55 running time on PC:4.407

aller au bonjour pour les ce jours que de n’ai la ce d’abord restaurant
italien en pour centre de martigny la mais par cherche

message01.au running time on Unix:10.22 running time on PC:6.672

c’est ouvert le je voudrais sais ce moi pour parce faire que cette je
��������	�
���	���� ����	���������	�
����	��������

����
��
� ������
��������������	����	�������������������������������	 ���	�

message02.au running time on Unix:6.46 running time on PC:3.375

������	� ��
� 	����	���� ��� ��	������
��
�� ��	���� �	 � ��� �������
famille avec des prix raisonnable

message03.au running time on Unix:4.78 running time on PC:2.906

le mexicain restaurant du italien en adresses merci donc centre de ville
martigny si

message04.au running time on Unix:3.85 running time on PC:2.500

c’est soixante quand restaurant on parce aimerait que au-��
 � �������
soixante

message05.au running time on Unix:8.23 running time on PC:5.843

������	� � ��� ���� 	����	���� �
� �� ���	� �� ��	����� �����	� ��	� �

�����	����� ������ 	����	���� ����� ��� ���� ���� ���
���
�� �	 �
restauration pas dire compris exactement oui cent pas merci bourg

message06.au running time on Unix:3.56 running time on PC:2.781

c’est jusqu’ ����	����	���������������	������������
�������	����������

message07.au running time on Unix:7.59 running time on PC:4.125

�����������	�������	��������
��������
���
������������ ���� ���
�-

 ��������	��������
����	�������
� ���
� ����������	�

message08.au running time on Unix:1.92 running time on PC:1.578

ou le macdo

