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1 Introduction

Automatic speech recognition (ASR), the technology that allows computer systems to transcribe
speech waveforms into words, relies essentially on traditional digital signal processing and statistical
modeling methods to analyze and model the speech signal. The core ASR technology is typically
not based on connectionnist methods, even though neural network processing is commonly seen as
a promissing alternative to some of the current algorithms. Because of the maturity of the current
technology, neural networks have to compete with high performance algorithms to gain acceptance in
the speech recognition field, and it is only recently that significant performance improvements over
state-of-the-art systems have been obtained by using neural networks in specific subsystems of the
speech recognizer.

In this paper, we review the main neural network approaches to speech recognition. To limit
the scope of this review, we will focus on speech recognizers intended to process large-vocabulary
continuous speech (as opposed to small-scale systems to be integrated in electronic devices and that
recognize only a few command words), and we will discuss exclusively systems based on multi-layer
feedforward neural networks, or multi-layer perceptrons (MLP).

Automatic Speech Recognition

Traditional ASR systems follow a hierarchical architecture. A grammar specifies the sentences
allowed by the application. (Alternatively, for very large vocabulary systems, a statistical language
model may be used to define the probabilities of various word sequences in the domain of application.)
Each word allowed by the grammar is listed in a dictionary that specifies its possible pronunciations
in terms of sequences of phones (e.g. “k-aa-t” for the word “cat”). Phones are further decomposed into
smaller units whose acoustic realizations are represented by statistical acoustic models.

When a speech waveform is input to a recognizer, it is first processed by a front-end unit that
extracts from the raw signal a sequence of observations or features. This sequence of observations is
then decoded into the sequence of speech units whose acoustic models best fit the observations, and
that respect the constraints imposed by the dictionary and language model.

Front End Processing

The purpose of the front-end is to extract from the speech signal a set of features that are robust
to acoustic variations but representative of the lexical content of the signal. Typically, the waveform
is divided in overlapping “frames” of approximately 25 msec over which the signal is assumed to
be stationary. The speech frames then undergo a spectral analysis from which a feature vector is
derived. Many variants of spectral analysis have been used, including Linear Predictive Coding (LPC),
Perceptual Linear Prediction (PLP) (Hermansky, 1990), and log power spectral or cepstral coeflicients
(which are the Fourier transform of the log spectrum) computed from a spectrum with “mel scale”
spacing, which roughly corresponds to auditory “critical bands” (Davis and Mermelstein, 1980).

To model the time dynamics of the signal, the feature vector is augmented with the first and second
time derivatives of its components.

Acoustic Modeling

The acoustic models used to represent the acoustic realizations of the speech units are based on
the underlying assumption that words consist of sequences of units that have varying length, and that
each unit has constant spectral properties. The nonstationary characteristics of speech arise as the
sequence of units is traversed in time. While this is not an accurate model for many speech sounds,
it is a simplifying assumption that allows powerful statistical techniques to be applied.

The most commonly used tool to model the speech units is the hidden Markov model (HMM).
HMDMs assume that the sequence of feature vectors is a piecewise stationary process. Accordingly, an
utterance is modeled as a succession of stationary states with instantaneous transitions between these
states (modeling the temporal structure of speech), and a set of state output processes —one output
process associated to each state— that model the actual observed feature vectors (modeling the locally
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stationary character of the speech signal). This output process is typically represented by a Gaussian
mixture model (GMM) over the feature vectors. The “hidden” qualifier in HMMs refers to the fact
that the underlying stochastic process (i.e. the sequence of states) is not directly observable, but still
affects the observed sequence of acoustic vectors.

While it is theoretically conceivable to have an HMM for every possible utterance, this is clearly
unfeasible for all but extremely constrained tasks. Instead, a hierarchical scheme is typically adopted
where a sentence is modeled as a sequence of words, and each word is modeled as a sequence of subword
units. The units most commonly used are the phones, i.e., the acoustic realizations of phonemes.

A further refinement is the use of context-dependent phone units, usually referred to as triphones,
which are the acoustic realizations of phonemes in the specific context defined by the previous and
following phonemes. Typically three HMM states with a left-to-right structure are used to model
phone or triphone units.

The simplest and most efficient algorithms to train the parameters of the HMM probability es-
timators (the Gaussian mixture models as well as the inter-state transition probabilities) are based
on maximum likelihood (ML) techniques, that is on finding the model parameters that maximize the
likelihood of the training data. The most common of these is the forward-backward algorithm (Baum
et al., 1972) a form of the well-known Estimation Maximization (EM) algorithm.

Discriminative Training

Some of the efforts aimed at improving speech recognition have focussed on extending the model
training paradigm beyond that of maximum likelihood, and to optimize training criteria more closely
related to the actual recognition metric, the recognition error rate.

It has been argued that ML training has the potential for poor discrimination due to the fact that
it maximizes the likelihoods of individual models independently of the likelihoods of other (possibly
competing) models. Neural network classifiers based on MLPs provide the simplest architecture for
discriminative training: feature vectors extracted from the data frames can be input to an MLP and
classified into N classes corresponding to the speech units to be modeled, phones or triphones. When
appropriately trained, such an MLP classifier can be shown to minimize the classification error-rate
over the training data. This form of training explicitly maximizes the discrimination between the
correct output class and its competitors. This approach underlies the hybrid MLP/HMM models
(Morgan and Bourlard, 1993) that will be described in a later section.

This type of discrimination is “local” in the sense that it makes the models compete over a single
frame of data at a time. Speech recognition however is not so much concerned with correctly recog-
nizing individual frames of data as it is with correctly recognizing entire word sequences composed of
many data frames. This observation calls for what is referred to as “global” discrimination, where the
training algorithm attempts to increase the likelihood of the correct word string while decreasing the
likelihoods of all other competing word strings.

A number of approaches to “global” discriminative training have been proposed. The first approach
is that of maximum mutual information (MMI), which maximizes the mutual information between the
spoken word sequence and its acoustic observations. As a consequence of this formulation, the training
procedure maximizes the probability of the correct word sequence while minimizing the probability
of the other possible word sequences (Bahl et al., 1986). A common implementation of MMI uses the
N-best hypotheses from the recognizer to approximate the likelihood of the competing word sequences.

Another popular training criterion is minimum classification error (MCE), where an approximation
to the number of classification errors in the training data is computed and minimized. The approxi-
mation is based on computing the difference between a discriminant function for the correct class and
a geometric average of the discriminants for the competing classes, and passing this difference through
a sigmoid that outputs one when any of the competing classes has a higher discriminant value than
the correct class, and zero otherwise (Juang et al., 1992). This method has been used initially to train
neural network classifiers and later to train hybrid HMM/MLP hybrid systems.

Yet another approach, REMAP, uses transition-based MLP models with local conditional transition
probabilities to estimate the global posterior probabilities of sentences (Konig et al., 1996).
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Even though discriminative training had been introduced early in the speech area under the form
of MMI, it is the advent of neural networks that spured the interest in discriminative approaches.

2 Acoustic Modeling with MLPs

The idea of combining HMMs and MLPs for the acoustic modeling of speech signals was motivated
by the observation that HMMs and MLPs have complementary properties: (1) HMMs are clearly
dynamic and very well suited to temporal data, but several assumptions limit their generality; (2)
MLPs can approximate any kind of nonlinear discriminant functions, are very flexible, and do not
need strong assumptions about the distribution of the input data, but they cannot properly handle
time sequences. However, HMMs are based on strict formalisms, making them difficult to interface
with other modules in a heterogeneous system. The first such implementations were the so-called
hybrid HMM /MLP models.

Contezt Independent Hybrid HMM/MLP Models

In hybrid models (Bourlard and Morgan, 1993), an MLP is used to evaluate the likelihoods of
the observations given the phones, p(x¢|q;), where x; denotes the observation vector at time ¢, and
g; denotes the jt* phone-state. The MLP is trained as a classifier that estimates phone-class pos-
terior probabilities, P(g;|x;). The posteriors are then inverted with the Bayes rule, according to
p(x¢|g;) = P(gjlx¢)p(x¢)/P(g;). The resulting likelihood is used in lieu of the GMM-generated emis-
sion probability computed in a conventional HMM-based ASR system. The rest of the HMM structure
(transition probabilities, decoding procedure, etc.) is kept unchanged. Because the MLP learns the
boundaries between the phone classes, the hybrid models show better phone discrimination charac-
teristics than traditional ASR systems.

In order to provide the MLP with more contextual information, the phone posterior probabilities
can advantageously be conditioned upon a window of several consecutive observations (typically 9
frames: x;_4,X;—3,...Xy, ...X¢+4 ), rather than upon a single frame of data.

Extension to Context Dependent Hybrid Models

In early implementations of hybrid models, the context of a phone, which is known to influence
its acoustic realizations because of co-articulation effects, was ignored. This context, denoted here by
¢i, can take the form of one or several phones to the right and/or to the left of the current phone,
g;. With context modeling, the likelihood of an observation x; can be expressed as p(x¢|q;,c;) =
P(gj, cilxt).p(x¢)/P(gj,ci), and, in the context of hybrid models, the posterior probability P(g;, ci|x+)
needs to be estimated by an MLP. Simply extending the context-independent approach to estimate
biphone or triphone posteriors would greatly increase the number of outputs of the MLP, and thus
the number of parameters to estimate. Because this is undesirable, factorization approaches were
proposed in which the posterior probability of a phone and of its context, P(g;,c;|x¢), is decomposed
into products of probabilities that can be estimated with smaller MLP classifiers. In (Bourlard et
al., 1992), this posterior is expressed as P(q;, c;|x¢) = P(cilgj,x:)P(q;|x¢), where both terms on the
right-hand side of the equation can be estimated by separate MLPs (further context factorization
is possible in the case of left and right context modeling). In (Franco et al., 1994), the phone and
context posterior is factored as P(gj, c;|x¢) = P(gj|ci, x¢)P(ci|xt), where p(gj|c;i,X¢) is estimated by
a context-dependent MLP whose training data contains only token whose context is ¢;, and that is
initialized as the context-independent MLP estimating P(q;|x¢). P(c;i|x¢) is estimated by a MLP
classifier similar to that estimating P(g;|x;).

Hierarchical Connectionist Acoustic Models

In very large systems (tens of hours of training data — thousands of HMM states), context classifiers
are difficult to train because of the nonuniform distribution of context classes for different phones,
and because of the large amount of training data. To overcome this problem, (Fritsch, 1997) proposed
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to cluster the HMM states in a tree-structured hierarchy, and to estimate the posterior probability
of a given state as a product of the posteriors of the parent nodes in the tree. This approach is very
modular, and allows as many small MLPs as necessary to be trained for a given task. This was the
first connectionist approach to outperform state-of-the-art standard HMM systems on the notoriously
difficult Switchboard corpus, a large database of conversational telephone speech.

Recurrent Neural Networks

Recurrent MLPs have been used to overcome the independence assumption made by the HMM
framework, that is, the assumption that each frame of data is independent from the surrounding frames
and that the probability of a sequence of frames can be computed as the product of the probabilities
of the individual frames (Robinson, 1994).

In recurrent MLP implementations of hybrid HMM /MLP recognizers, posterior phone probabilities
are estimated based not only on the current observations but also on a set of state variables that are
themselves functions of the observations and state variables at the previous time step. The recurrence
built in the state variables allows the network to capture the dynamic evolution of the speech signal in
a more principled and efficient way than by increasing the number of data frames in the input window
as in non-recurrent hybrid systems. The weights of the recurrent MLP are typically trained with the
backpropagation through time algorithm, a method for “unfolding” the recurrence and treating the
time-expanded structure as a multi-layer time-independent feedforward MLP.

This approach proved to be competitive with state-of-the-art HMM-based recognizers on large-
vocabulary continuous speech recognition tasks (Hochberg et al., 1994).

Multiband Recognition

Hybrid MLP/HMM systems were recently used in multiband recognition, a technique by which
the speech frequency band is divided in several sub-bands that are recognized in parallel. The sub-
band segments can be recombined at the frame, phone, or word level, either with a MLP combiner
or with a simpler (non-adaptive) mechanism. This approach has shown great potential for speech
environments with band-limited noise (by weighting the clean frequency bands more than the noisy
bands) (Bourlard et al., 1996) (Tibrewala et al., 1997), and in combination with a full-band hybrid
recognizer (Mirghafori et al., 1998).

3 MLP Front-End Processing

The front-end unit, which is responsible for extracting from the waveform vectors of features to be
modeled and recognized, is probably the most critical component of an ASR system in that, ultimately,
the performance and the simplicity of the acoustic models are determined by the information contained
in the speech features and by the relevance of their representation.

Although most of the early attempts at incorporating MLPs in ASR systems focussed on the
acoustic models rather than the front end, MLP-based feature extractors have progressively gained
more interest in the speech community. There are several reasons for this.

First, traditional front-end units are designed based on classical DSP principles (guided to some
extent by our knowledge of the human hearing system). They are mostly non-parametric, rigid,
and offer little room for optimization from observed data. The introduction of trainable elements
in the front-end allows for a more data-driven design. Second, MLP-based front ends can be jointly
optimized with the acoustic models, thereby allowing a closer integration between the two modules.
This is especially relevant in the context of discriminative training. Finally, MLPs are powerful
tools for introducing new knowledge sources into the front-end unit, without having to make specific
modeling assumptions. The following sections will give a few examples of these points.

Speaker Normalization and Adaptation

Speaker recognition systems are typically trained from utterances spoken by different speakers.
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These are speaker-independent (SI) recognizers. Speaker-dependent (SD) recognizers, trained from
a single speaker’s data, typically outperform SI systems, but are understandably harder to obtain,
because of the difficulty of collecting massive amounts of speech from each user of the system. Part of
the performance gap between SD and SI recognizers can be regained with techniques such as speaker
adaptation, i.e. adjusting the SI models to fit a specific voice, and speaker normalization (also refered
to as feature adaptation), i.e. factoring out inter-speaker differences.

There is a vast body of literature on this topic, most of which does not make use of MLPs. Model
adaptation algorithms differ in terms of which parameters are adapted (e.g. Gaussian means only or
means and variances), what criterion is used (maximum likelihood or maximum a posteriori), how the
transformations are constrained, etc. Similarly, feature transformations come in different flavors. A
few examples of adaptation/normalization implementations using MLPs are given below.

In (Neto et al., 1995), a single layer MLP was inserted between the PLP cepstral front end and
a SI connectionist recognizer. It was trained from a small amount of data for each test speaker,
to normalize out speaker-specific characteristics from the feature stream. This layer was trained
by freezing the parameters of the SI system after it had been trained, and backpropagating errors
through the recognizer, down to the MLP layer. This technique brought a 35% WER improvement
over the SI recognizer (the SD WER however was 54% lower than the ST WER). Instead, retraining
the parameters of the SI recognizer with speaker-specific data (speaker adaptation) didn’t work as well
(and is trickier because of the larger number of parameters to adjust). (Abrash et al., 1995) reached
similar conclusions for native speakers, but found speaker adaptation to work better than speaker
normalization for nonnative test speakers, presumably because of the greater difference between the
test speakers and the (native) training population.

In order to improve the acoustic resolution of the feature transformation, (Abrash, 1997) followed a
“mixture of experts” approach ((Jordan, 1994), (Zhao et al., 1995)). Instead of transforming the speech
features with a global transformation according to x' = T'(x), he considered a stack of transformation
networks, T;(.), each specializing at a specific region of the acoustic space, r;. The overall feature
transformation is then expressed as a weighted sum of local transformations, x' = >, P(r;|x)T;(x),
where the posterior probabilities P(r;|x) are estimated by a so-called gating network. In particular,
the acoustic regions can be defined to correspond to the different phonemes, or to groups of phonemes.

As mentioned previously, speaker adaptation can also be performed in the model domain, i.e. by
transforming the parameters of the SI acoustic models. In (Abrash et al., 1996), a nonlinear model
transformation was proposed to adapt the means of a standard GMM-based HMM system. The
MLP transformations were trained with a generalization of the EM algorithm (GEM), in which the
maximization step (M step) is performed with a series of steepest ascend iterations, a technique
inspired from backpropagation training.

Joint Feature Extraction and Model Training

Steepest descent/ascent training and the concept of backpropagating error gradients throughout a
given structure as commonly done in the field of MLPs finds applications in various aspects of speech
recognition. For example, in (Bengio, 1990), a MLP feature transformation was trained along with the
HMM-based acoustic models to maximize the MMI criterion for a plosive consonant classification task.
Here the feature transformation is SI, and is meant to increase acoustic discrimination rather than
focusing on speaker variability. Jointly optimizing both sets of parameters gave higher recognition
rates than optimizing the two modules separately.

Similarly, in (Rahim et al., 1998), a feature transformation and a set of acoustic models were
jointly trained to minimize the classification errors between subword units (MCE training). The
transformation and the acoustic models were iteratively trained by freezing one of the two modules,
training the other one, and vice versa. The authors showed that multiple parallel transformations (one
for each word class) gave better recognition results than a single transformation, and that a nonlinear
MLP transformation performed better than an affine transformation.

It should be noted however that such joint optimization approaches do not require the use of
MLP-based/transformed front-ends. For example, in (Biem, 1997), the MCE criterion is used to
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jointly train the parameters of the front-end filterbank and of a prototype-based classifier.
Noise Robustness

ASR systems typically show lower performances when operated in noisy environments (e.g. speech
transmitted through a handsfree phone in a moving car). Noises corrupt the speech waveform, and
are often difficult to model due to the changing nature of the environment that produces them (speed
of the car, quality of the road, weather conditions, etc).

To help solve this problem, MLPs were trained to extract clean speech from noisy input signals.
In (Tamura and Waibel, 1988), a signal mapping was performed at the waveform level, by presenting
60 samples of noisy speech to the MLP and using 60 samples from the original clean signal as desired
outputs. Good performance was reported in human listening tests. In (Sorensen, 1991), a similar
approach was applied to feature vectors rather than to the raw waveform. Experiments with the
LPC-cepstrum and with an “auditory feature” defined at an intermediate level between waveform and
cepstrum showed from 10 to 65% WER improvement (depending on the SNR) on an isolated word
recognition task. In these tests, the auditory feature mapping outperformed the cepstrum mapping.

MLPs have also been used to combine knowledge sources such as instantaneous and sentence-
level measures of the SNR, sentence-level estimates of the noise level, and noise-corrupted features to
compute an estimate of the feature noise, and subtract this estimate from the noisy feature vector
(Weintraub and Beaufays, 1999). This approach reduced the WER, on a large-vocabulary conversa-
tional speech database corrupted by additive car noise by up to 40%.

Even though these figures are impressive, noise reduction is still an active research topic await-
ing more developments, especially in applications where the noise is non-stationary and where it is
correlated with the speech signal (e.g. speech reverberation in cars).

MLP Front Ends for Speaker Verification

Speaker verification, the task of recognizing a person’s identity from his/her voice, is similar
in essence to speech recognition: a front-end unit extracts features from the test waveform, and a
subsequent classifier uses statistical models of the users’s voices to identify the speaker’s identity. In
(Heck et al., 1999), a MLP was trained to perform frame-level classification of speakers. The inputs
to the MLP are 9 adjacent frames of cepstral features, the outputs are speaker posterior probabilities.
The MLP has 4 hidden layers, with a bottleneck in the middle. The first 2 layers can be seen as
performing discriminative feature compression, whereas the last 2 layers perform speaker classification.
After training of the MLP, the last 2 layers are chopped off, and the features computed by remaining
layers are fed into a traditional GMM-based speaker classifier. This approach resulted in 15% speaker
classification improvement over the baseline GMM classifier. The approach was successfully extended
to input in the MLP lower-level features such as filterbank log-energies.

4 Confidence in Recognition Results

Although speech recognition has made tremendous progress in the last decade, the technology is
not faultless, and error correction mechanism must be available for a deployed application to be
successful. In particular, it is important to assess how confident the recognizer is in its understanding
of the user’s request before processing it. One way of implementing such a feature is to estimate the
posterior probability that each word in the utterance was correctly recognized, and to decide, based
on the word posteriors, whether to execute the request or reprompt the user.

Neural networks have been used to implement such a mechanism (Weintraub et al., 1997). During
recognition, one gathers a set of cues relative to the current word and to its decoding by the recognizer,
e.g. how well the acoustic models match the data, whether there are other likely decodings of the
spoken segment, how the durations of the sub-word segments fit their expected distributions, etc.
These cues act as knowledge sources that are input to an MLP classifier. The MLP is trained with
a target output equal to 1 (if the word was correctly recognized) or 0 (misrecognition). At run-time,
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the MLP classifier will output the posterior probability that the word is correctly recognized, given
the measured knowledge sources.

5 Conclusion

Speech recognition was already a fairly mature field by the time multilayer MLPs and the backprop-
agation algorithm gained general acceptance from the research community. As a consequence, MLPs
were experimented with to replace specific components of a well-defined architecture, rather than as
a way to solve a brand new problem. A posteriori, the question is thus where and how have MLPs
helped to improve speech recognition systems.

Virtually every possible functionality of multilayer MLPs has been exploited: MLP classifiers were
used for phone and triphone classification, MLP estimators proved to be useful in feature transforma-
tion and noise estimation, MLP combiners helped in merging different knowledge sources to estimate
confidence measures, even MLP predictors were experimented with.

In all these applications, the main advantages of MLPs over other statistical modeling methods are:
(1) MLP implementations typically require fewer assumptions and can be optimized in a data-driven
fashion (the appropriate use of massive amounts of training data seems to be the key to successful
speech recognition), (2) backpropagation training can be generalized to any optimization criterion,
including maximum likelihood and all forms of discriminative training, and (3) MLP modules can
easily be integrated in non-adaptive architectures.

However, most industrial speech recognizers to date count very few MLP components. This can
be attributed in part to historical reasons, but more fundamentally MLPs have some limitations that
still hamper their integration in ASR systems. In particular, their training time is typically greater
than that of non-connectionist models for which closed-form or fast iterative solutions can be found.
This is problematic with very large data sets where weeks of training may be necessary to achieve
the desired performance. It is even more critical when one considers that, somewhat disconcertingly,
increasing the amount of training data and the number of parameters remains the best way to improve
recognition performance! Nonetheless, MLPs have made great progress in the speech recognition field
since the first edition of this book: scalable implementations have started to appear in the literature,
and MLP-based models have outperformed state-of-the-art traditional ASR systems on some of the
most challenging recognition tasks.
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