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Abstract. In this report, we describe the approach used so far to implement and test a baseline
version of a speaker verification system based on user-customized password, i.e., where the user
can choose his/her own password in a short enrolment phase involving a few pronunciations of
the password. These developments involved:

e Good formalisation of the theoretical background, including hidden Markov model (HMM)
inference, parameter adaptation, scoring and decision threshold.

e Implementation of the automatic hidden Markov model (HMM) inference system, using
local phonetic probabilities generated at the output of a speaker-independent artificial neural
network (ANN). Given a few utterances of a specific password, this program will generate
the most probable HMM topology.

e Adaptation of the ANN parameters towards the targeted speaker: Given the inferred HMM
topology and a few utterances of the password, this software module adapts the parameters
of the speaker independent ANN to better model the Characteristics of the user’s voice. Dif-
ferent adaptation approaches (through ANN constraints), aiming at minimizing the number
of parameters to be adapted, hence guaranteeing optimal generalisation properties, have
been tested and compared.

e Finally, development of different scoring criteria and testing them on large reference databases.

The resulting system was extensively tested on PolyVar (a reference speaker verification task),
yielding initial estimates of the Equal Error Rate (EER) performance. These tests were performed
under the least favorable conditions where all the speakers would have the same password. Initial
tests (discussed in the report enclosed here) show reasonable performance, although not competi-
tive yet with state-of-the-art text-independent speaker verification systems. It looks like the main
issues that will have to be investigated now are related to the improvement of the discriminant
properties of the ANN between different speakers.
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1 Introduction

This report presents initial results obtained with a particular form of Speaker Verification (SV)
system allowing the speaker to use customized passwords.

Many automated services (i.e., electronic banking, electronic shopping, credit cards and calling
cards) require secured access. Today, the most common approach towards access control consists
in using a PIN (Personal Identification Number) code, possibly together with a password, that the
customer has to enter (i,e., via a keyboard) to identify himself/herself. This approach, however, still
suffers from several limitations, including the risk of fraud (in case an impostor has access to the PIN
code and/or password), and the necessity to have access to a keyboard to enter the data.

For improved security and flexibility, the possibility of using the customer’s voice print, by its own
or as an additional security feature, is often considered. Voice prints indeed have characteristics that
are specific to each user and are difficult to reproduce. Besides this, speaker verification is easy to
use, with your personal print (voice) always available and not easily lost or stolen. Indeed, speech
contains many characteristics that are specific to each individual, many of which are independent
of the linguistic message. Furthermore, due to the development of telecommunications and speech
recognition technologies, many voiced-based services are becoming available. In this case, access
control based on speaker verification is even more important, and provides the only truly practical
solution.

Speaker recognition is a generic term for the classification of a speaker’s identity from an
acoustic signal [6]. This problem can be divided into speaker identification and speaker verification.
Today, speaker recognition has many potential applications, including: secured use of access cards
(i.e., calling and credit credits), access control to databases (i.e., telephone and banking applications),
access control to facilities, electronic commerce, information and reservation services, remote access
to computer networks, etc.

In the case of speaker identification, the speaker is classified as being one of a finite set of
speakers. As in the case of speech recognition, this will require the comparison of a speech utterance
with a set of known (registered) references for each potential speaker.

For the case of speaker verification, the speaker is classified as having the purported identity or
not. That is, the goal is to automatically accept or reject an identity that is claimed by the speaker.
In this case, the user will first identify herself/himself (i.e., by introducing or uttering a PIN code),
and the distance between the associated reference and the pronounced utterance will be compared to
a threshold that is determined during training.

Speaker identification thus requires N + 1 decisions for a population size of N speakers (deciding
to associate the unknown voice as belonging to one of the N registered speakers or as being none of
them). Speaker verification, on the other hand, simply involves an hypothesis testing and thus requires
a simple binary decision, i.e., accept or reject the claimed identity, regardless of the population size.
Therefore, speaker identification performance will tend to decrease as the population size increases
while speaker verification performance is quite independent of the population size.

Speaker identification and verification can be based on text-dependent or text-independent
utterances, depending on whether or not the recognition process is constrained to a pre-defined text or
not. In the case of text independent speaker verification, the lexical content of the utterance used for
verification cannot be predicted. In text-dependent speaker verification, the system knows in advance
the access password (or sentence) that will be used by the user. For each individual, there is a model
that encodes both the speaker characteristics as well as the lexical content of the password.

Since verification is based on both the speaker characteristics and the lexical content of a secret
password, text dependent speaker verification systems are generally more robust than text-independent
systems. However, both kinds of systems (text-dependent and text-independent) are susceptible to
fraud, since for typical applications the voice of the speaker could be captured, recorded, and repro-
duced. In the case of a text-dependent system, even a password could be captured. To limit this risk,
particular kinds of text-dependent speaker verification systems based on prompted text have been
developed. In this case, for each access, a recorded or synthetic prompt will ask the user to pronounce
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a different random sentence [5]. The underlying lexicon which could either be very large or limited
to just the 10 digits, would then be used to generate random digit strings. The advantage of such
an approach is that impostors cannot predict the prompted sentence. Consequently, pre-recorded
utterances from the customer will be of no use to the impostor.

In the present report, we study yet another approach towards text-dependent speaker verification,
based on user-customized password. In this case, each user can choose his/her own password in a
short enrolment phase involving a few pronunciations of the password. Although such a system is still
subject to fraud, market studies have recently shown that customers usually felt more comfortable in
having the possibility to choose their own password.

2 User-Customized Password Based on Hybrid HMM/ANN

In real-world services, it often desirable to give the possibility to the user to choose his/her own
password (on which verification will be performed) with no constraints in vocabulary words. Such
a system, referred to as User-Customized Password Speaker Verification (SV-UCP), should
increase performance, flexibility and security. Indeed, for each individual, there is a model that
encodes both the speaker characteristics as well as the lexical content of the password. Speaker
validation can thus use these two features. It is also more flexible for the user, who can choose the
password. Finally, given that the password is chosen from an unconstrained vocabulary, it makes it
more difficult to an impostor to guess the customer’s password.

However, SV-UCP presents new difficulties since the system has to automatically infer the HMM
model associated with the password simply based on a few repetitions of the user’s password. Com-
pared to text-prompted speaker verification, this is quite different since in the latter case the system
knows the prompted text (hence, i.e., its phonetic transcription) used during training and testing.

The approach studied in the present report is exploiting the advantages of hybrid HMM/ANN
systems, in which an Artificial Neural Network (ANN) is used to estimate HMM local posterior
probabilities. In this framework, ANNs have been shown to yield very good phonetic recognition rates,
and this property will be exploited here to automatically infer HMM topologies.

SV-UCP raises two difficult issues. The first problem consists in finding the topology of the HMM
model which better represents the password chosen by the user; this aims at capturing/modeling
the lexical content of the password. The second problem is to quickly adapt the ANN parameters
towards the targeted speaker: this aims at capturing/modeling the speaker characteristics.

Due to the small size of the enrolment (training) data, the most interesting approach tested here
was to use a large speaker-independent ANN (in our case a multilayer perceptron, MLP) to perform
the HMM inference and then to start from that inferred model to adapt the speaker independent ANN
parameters to the characteristics of the user.

In this report, we describe the approach investigated so far and present the initial results. Thus,
after a general description of the approach investigated here (Section 2.2), we describe in detail each
of its main components, i.e., HMM inference (Section 3) and ANN parameter adaptation (Section 4),
including the comparison of different MLP architectures. Section 5 then describes a set of experiments
and the results obtained using the Poly Var database. Finally, Section 6 will draw the initial conclusions
and will discuss some of the future research directions.

2.1 Databases

In the present study, we used two databases, the PolyPhone database [4] for training the Speaker-
Independent MLP and the Swiss-French PolyVar database [4] to perform customer enrolment and
speaker verification tests.
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The PolyPhone database

The Swiss-French PolyPhone database contains telephone calls from about 4,500 speakers recorded
over the Swiss telephone network. The calling sheets were made up of 38 prompted items and questions
and were distributed to people from all over the French speaking part of Switzerland. Among other
items, each speaker was invited to:

e Read 10 sentences selected from different corpora to ensure good phonetic coverage for the
resulting database.

e Simulate a spontaneous query to telephone directory (given the name and the city of subject).

The PolyVar database

For capturing intra-speaker variability, the Poly Var database was also designed and recorded at IDTAP
as a complement to the Swiss French PolyPhone database, to address inter-speaker variability issues,
and is particularly relevant for speaker verification research.

This database comprises telephone recordings from about 143 speakers (85 male speakers and 58
female speakers). Each speaker recorded between 1 and 229 sessions. Several speakers pronounced
the same set of words several times, which makes this database particularly well suited to test user-
customized speaker verification systems, i.e., by:

e Assigning each of the words to one specific customer, thus

e Providing enrolment utterances of that word, as well as test utterances, as well as many impostor
utterances pronouncing the right password.

e Providing several utterances associated with words different than the chosen password, from
both the customer and potential impostors.

2.2 General SV-UCP Approach

All the work described in the present report is thus based on a hybrid HMM/ANN system, which
raises two challenging issues:

1. How to exploit the benefits of HMM/ANN systems exhibited in state-of-the-art speech recogni-
tion system in speaker verification system.

2. How to develop robust speaker verification systems based on user-customized password. Indeed
this seems to still be an open problem, even with standard approaches (typically based on
Gaussian Mixture Models).

The general idea of the approach developed here (see also [10]) is to use:

1. A large speaker independent ANN (with parameters ©), in our case a large speaker indepen-
dent multilayer perceptron (SI-MLP), in order to estimate local posterior probabilities
used in an ergodic HMM M to infer the best user-specific password HMM topology M; (for
a specific user S;). Using all the enrolment utterances and the inferred model M}, the SI-MLP
parameters © are then adapted to yield a set of speaker dependent parameters ©;. The (M
©;) set represents the final customer model, which will be used to perform speaker verification.

2. A world HMM model M, defined as an ergodic HMM, with each phoneme represented by a single
state with a minimum duration constraint or with transition probabilities reflecting this duration
constraint. this world model will be used to (1) infer the HMM model associated with the
customer specific password, and (2) to normalize the utterance likelihood (score normalisation)
for comparison with the decision threshold.
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In the following, and as illustrated by Figure 1, we briefly summarize the main steps of the approach
that has been implemented and tested so far.

1. A new customer S; pronounces L times his/her password X{, £ =1, ..., L where X! represents
the sequence of acoustic vectors associated with the ¢¢* utterance.

2. Match each of the enrolment utterance X f with an ergodic HMM model M using the SI-MLP
parameters O, to extract the most likely phonetic transcription for each enrolment utterance,
together with its associated likelihood.

3. From each of the enrolment utterances, choose the phonetic transcription yielding the highest
likelihood, and use it to build a reference user-customized HMM model M; representing the
password of client S; (see Section 3).

4. Match each of the enrolment utterances X J‘-Z on the speaker specific model M; using the SI-MLP
parameters © to yield the phonetic segmentation of all the enrolment utterances. Indeed, the
adaptation of the SI-MLP parameters to the targeted speaker requires this segmentation (in
order to provide target phonetic outputs).

5. Adapt the SI-MLP parameters © by using the above segmentation to provide the target output
and by minimizing the square error between the observed output vector generated by each
input vector of the enrolment utterances and the target output vector. The result is a Speaker-
Dependent MLP (SD-MLP) ©; (see Section 4).

More precisely, the main blocks of Figure 1 can be described as follows:

1. Feature Extraction:
The preprocessing of the speech signal consisted of a RASTA-PLP feature calculation, resulting
in 12 RASTA-PLP coefficients, complemented by their first temporal derivatives (12 A-RASTA-
PLP), as well as the first and second temporal derivatives of the log energy (A — log —F and
AN —log —E, thus resulting in a total of 26 features (calculated every 10ms over 30ms windows).

2. SI-MLP (0):
A good Speaker-Independent Multi-Layer Perceptron (SI-MLP) was previously trained
on a subset of the PolyPhone database (described in Section 2.1), using the 10 phonetically rich
sentences read by 400 speakers (200 male and 200 female speakers).

This SI-MLP consisted of 234 input units (containing 9 consecutive acoustic frames of 26 features
each), 600 hidden units and 36 outputs (associated with the 36 phones defined for PolyPhone).
The output nonlinearity was the “softmax” function, ensuring that the class posterior probability
outputs always sum up to one. During the experiments, different kinds of irregularities (i.e. noise
in the recording, strange utterances) were discovered, and the training set was finally reduced to
3,272 sentences, corresponding to approximately 5 hours of speech. The SI-MLP training was
performed using the standard error back-propagation method. The resulting SI-MLP achieved
a frame-based phonetic recognition rate higher than 85% on the PolyPhone test data, which is
particularly high and shows its good potential at performing HMM inference.

3. Posterior Probabilities Estimation:
Using the above SI-MLP (of parameters ©), we generate for each acoustic vector x, of the
enrolment data a set of 36 posterior probabilities p(qg|zy), for k =1,... , K = 36, g; being one
of the possible phones.

4. HMM inference:
The above posterior probabilities p(gx |z, ) are then used as emission probabilities of the ergodic
HMM model M to extract the best phonetic transcription associated with each enrolment utter-
ance X*. This inference, yielding the client-specific model M; will be discussed in more detail
in Section 3.
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Figure 1: Block-diagram of the SV-UCP enrolment process: 5 utterances are used to infer the topology
of the user-customized password HMM (M;), using a good speaker independent MLP (SI-MLP) pre-
viously trained on a large, speaker-independent, continuous speech, database. The resulting HMM is
used to segment the enrolment utterances and to adapt the SI-MLP parameters to the targeted speaker,
yielding SD-MLP (of parameters ©;).
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5. Phonetic segmentation using the client-specific HMM:
Still using the SI-MLP parameters, all the enrolment utterance are aligned (by forced Viterbi)
on model Mj to provide a phonetic segmentation.

6. The resulting segmentation is then used as target to adapt the SI-MLP parameters. As usually
done in training hybrid HMM/MLP recognition systems, these last two steps (segmentation
through forced Viterbi and MLP adaptation) could also be iterated to improve the quality of
the resulting model. This adaptation, involving different MLP architectures, will be discussed
in Section 4.

3 HMM Inference

The first enrolment step of a user-customized speaker verification system (SV-UCP) is to automatically
infer the best HMM topology (model) from a few (five in our case) repetitions of the password and a
good speaker independent set of phonetics parameters. The inferred model should be representative
of the lexical content of the password. This was already discussed in [10] and consists in finding the
HMM model matching best the enrolment utterances. Typically this is done by matching each of the
enrolment utterance on an ergodic phonetic model, which provides us with a phonetic segmentation
of each utterance. We could then merge all the resulting models into a single HMM, or simply choose
the one yielding the highest likelihood as the reference model.In more detail

We took from PolyVar five (different) repetitions of the same word of the same speaker. For each
acoustic sequence X = {z,xs,...,x N} associated with a pronunciation of the user-specific password,
the speaker-independent (world) MLP of parameters © provides, for each acoustic frame z,, the
posterior probabilities p(qx|zy), for k = 1,..., K of the different phones ¢, associated with the MLP
outputs. Using these phone posterior probabilities, and an ergodic HMM world model M (containing
the set of fully connected phonetic states, each of them being associated with a particular SI-MLP
output) with minimum state duration constraints! and phone transition probability?, a simple dynamic
programing algorithm [1] is applied to estimate the underlying phonetic sequence.

At this point, the problem is to infer from these different phonetic transcriptions the best model
M; for the password of customer S;. There are several ways to do this, the simplest one, which was
used in this work, consisting in choosing the phonetic transcription yielding the highest global log-
posterior probability log P(M|X,©), and to use it to build a reference HMM model M representing
the password of the user S;. This HMM model then is simply built up by concatenating strictly
left-to-right (with only loops and skips to the next state) HMM states corresponding to each of the
phone in the phonetic sequence.

4 Speaker-Independent MLP Adaptation

4.1 Motivation

It is clear that the best way to cope with the individual speaker characteristics is to train a new MLP
for each speaker (i.e., starting from a random initialization of the weights), but this method requires
a large amount of training data, which is not always available. In these cases, speaker-adaptation
techniques have been proposed (including for hybrid HMM /ANN systems) and will be used here. The
main idea of these approaches is to start from a Speaker-Independent system and to use a limited
amount of training data from a new target speaker to move the parameters of the system towards the
characteristics of the speaker.

ISeveral values of minimum duration have been tested on a few words and it was observed that the “optimal” minimum
duration was 3, which is consistent with what is usually observed with hybrid HMM/MLP recognition systems.

2Also, several values have been tested. We have observed that this probability have no effect on the topology of the
model. We thus chose 0.5 as a uniform value for transition probability.
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In our case, this step consisted of adapting the Speaker Independent MLP parameters © to the
characteristics of each user (speaker) S;, using -only- the enrolment utterances (five repetitions). The
result is a Speaker Dependent MLP (SD-MLP) ©; for each user. Precisely, we want to be able to
calculate P(M;|X, ©;) from P(M;|X,0).

To adapt the SI-MLP, we took the same five repetitions which are used to infer the user-specific
model. The first three of them were used to adapt the SI-MLP, while the last two were used to test the
generalization properties of the resulting SD-MLP. In order to perform this adaptation, it is necessary
to have the phonetic segmentation associated with each utterance. In our case, it means that each
frame in the acoustic utterance must be assigned to one of the phones in the infered customer HMM
M;. To yield this segmentation, we match each of the enrolment utterances on the inferred customer
specific model M; using a forced Viterbi alignment.

During MLP adaptation, the standard error back-propagation algorithm was used to minimize a
least mean square error (LMSE)

N
B(X10,0) = + 3 lg(rn,0;) — d(zs, O)| (1)

where

e X ={z;,x9,...,zn} is the acoustic vector sequence, associated with the adaptation utterances
(three in our case), x,, representing the acoustic vector at time n and N the total number of
training vectors.

e d(x,,0) represents the target output vector associated with each input vector z,, and corre-
sponding to the phonetic segmentation obtained from the SI-MLP 6.

e g(xy,,0;) represents the observed MLP output vector given the current values of the parameters
G)j:

g(mn,G)J) = {gl(xn)(a])) )gk(xrn(a]): )gK(xn)(a])} (2)

At the end of the training, the MLP should estimate speaker-dependent phone posterior proba-
bilities, i.e., for speaker S;:

9(xn,0;) = {p(qilzn), - -, p(gk|Tn), - -, P(gxr|Tn)} (3)

4.2 Adaptation approaches tested here

Two adaptation approaches, training different sets (or subsets) of ANN parameters have been com-
pared:

1. Retrained Speaker Independent (RSI):
In this case, we attempted to completely retrain the SI-MLP with the speaker data, adapting
all the parameters to the new speaker. The advantage of this approach is that we start from
a well trained SI-MLP (i.e., the weights are initialized to a good values) which is an important
criterion in the adapting procedure. The inconvenience is the large number of parameters that
we are attempting to adapt (162,636) compared to the small size of the adapting data.

2. Linear Input Network (LIN):
This approach [11] introduces a new (trainable) Linear Input Network (LIN) to map the Speaker-
Dependent (customer) input vectors to the SI-MLP. The parameters of additional linear layer
were trained by minimizing the LMS error (as described above) at the output of the SI-MLP
whose parameters have been frozen. The major advantage of this technique is the important
reduction of the parameters to be adapted, going from 162,636 in the case of RSI down to 54,756
(or less).

As the amount of adaptation data is very limited, different LIN architectures were tested, using
different connectivities between the additional linear layer and the input layer nodes of the SI-MLP.
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4.3 Type of connections

In the present work, we thus used an additional input layer (LIN) to perform a (linear) mapping from
the targeted speaker acoustic features to the already trained speaker-independent ANN. To update
the LIN weights, we used the gradient descent Error Back-Propagation (EBP) approach, resulting in
the following update equation:

wg_l)

() _

w)] + Aw]) (4)

with

Aw]) = —aVE |0 (5)

where w;; represents the weight between node i of the input layer and node j of the additional linear
layer, VE |, the partial derivative of the cost function ( 1) with respect to that weight, and « the
learning rate. The type of connections used in this work are :

1. LIN1-Fully Connected LIN:
As shown in Section 2, we used an MLP with 9 frames of acoustic context, with 26 nodes for
each frame, thus resulting in an additional LIN layer of 234 nodes. In the LIN1 architecture,
as illustrated in Figure 2(a), all possible connections of the LIN network are used, i.e., all the
nodes in the LIN are connected to all nodes in the input layer of SI-MLP. Consequently, in our
case, the number of weights (parameters) to be adapted is equal to (234 x 234=54756).

2. LIN2 and LIN3—Frame-To-Frame connections:
As illustrated in Figure 2(b), connections between the LIN input and the SI-MLP are limited
to the 26 nodes of the associated frames, without inter-frame connections. This thus results in
a significant reduction of the number of parameters to be adapted, now equal to ((26 x 26) x
9=6084). In this type of connections, we distinguish between two kinds of architectures:
LIN2: where each frame in the additional layer has its own transformation matrix, and
LIN3: where all frame transformation matrices are forced to be the same.

3. LIN4: Node-To-Node connections:
As illustrated in Figure 2(c), the LIN4 architecture limits the parameters to node-to-node
connections where each node in the LIN is only connected to its corresponding node in the input
layer of SI-MLP, resulting in a further reduction of the number of parameters. In this case, the
number of parameters to be adapted is simply equal to 234.

4.4 Adaptation and Generalization Properties
During adaptation of the SI-MLP, several points have to be taken into account, including:

1. Generalization properties:

To test the generalization properties of the different architectures, we used a cross-validation
technique, where the adaptation set is split into a training set on which the parameters are
adapted and a cross-validation set on which the generalization properties are evaluated and
which can be used as stopping criterion to avoid overtraining. So the five repetitions were divided
into two parts, the first three repetitions for adaptation process and the last two repetitions for
testing the generalization properties. As described in [2], after each iteration (presentation of
three adapting repetitions) we test the performance of the resulting SD-MLP on the cross-
validation set (containing two repetitions of the password) and continue the adaptation only
when the performance on the cross-validation set improves. These generalization properties
were also compared to other speaker pronouncing the same customer password, to the same user
pronouncing a different word and to another speaker pronouncing a different word.
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Figure 2: Different types of LIN connections: (a) fully connected LIN, (b) frame-to-frame connections,
and (¢) node-to-node connections.

2. Learning rate:
As in [2], we started with a learning rate a equal to 0.1. Each time the performance on the
cross-validation data degraded, we divided this learning rate by a factor 2 for the next iteration.
This process was iterated until the learning rate was below 0.0001, at which point adaptation
process was then considered as complete.

3. Input Normalization:
This process normalizes each SI-MLP input to have zero mean and unit variance. It has been
found [11] that the speaker-adaptation performance can be greatly enhanced by estimating a
new input normalization transformation from the speaker-adaptation data and using that same
transformation for testing. In our case, we used the normalization transformation of the SI-MLP.

4. LIN initialization:
To train the LIN for a new speaker, the weights of the linear input layer are initialized to an
identity matrix [11], which guarantees that the initial performance of the adapted MLP is at
least equivalent to the SI-MLP.

5 Experimental Results

Our experiments were conducted on the PolyVar database. This database is split into three subsets,
the client subset, the pseudo-impostors subset and the world subset. Our tests were performed on
the client subset, which contains data from 38 speakers (24 male and 14 female speakers), all the
speakers using the same password (in our case, the word “annulation”). This choice guarantees
that we are working in the most difficult conditions, since we cannot discriminate among speakers
using the lexical information contained in the password. Each speaker (in the client subset) recorded
between 26 and 229 sessions. The first five sessions were used to infer the user HMM model and to
adapt the SI-MLP. For each customer, all the other speakers were then used as impostors. For each
speaker, the true accesses were between 15 and 26, and the impostors accesses were 36, amounting to
761 true speaker accesses and 1368 impostor accesses.

5.1 “Optimal” MLP architecture

In a first set of experiments, we compared the possible architectures used in the SI-MLP adaptation
in order to chose the one which had the best generalization propreties. In this respect, we plotted
in Figure 3 the least mean square error variations, normalized per frame, on the adaptation and
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different test data, as a function of the number of MLP adapting iterations. It is better to believe
here that (for each speaker) the adapting data contains 3 utterances and the cross-validation data
contains 2 utterances. Figure 3 represents only the LMS error in the case of LIN1, because the
performance of the resulting SD-MLP was better. It has been found that the difference between the
average LMS error on the cross-validation data and the test data of a different speaker with the true
password “annulation” is greater in the case of LIN1 architecture than others architectures. For this,
we decided -in the first time- to perform our experiments with this architecture (LIN1).

LMSE for MLP-SI adaptation using LIN1 (#54,756)
0.3

ann_xval_mO00_error
ann_test_m04_error

0.25 - N mani_test_mO01_error

0.2 Ak

0.15

0.1

LMS error for adapting and X-val data

0.05 |-

0 10 20 30 40 50 60
Number of iterations

Figure 3: LMS error normalized per frame for training and different test data with LIN1

From Figure 3, we can see that the resulting average LMS error on the cross-validation data for
the true speaker MOO (red curve) is better (lower) than the average LMS error on the test data for
a different speaker (M04) with the same word “annulation” ( blue curve). This difference is greater
in the case of the true speaker (M00) with a different word “manifestation” (green curve). Moreover,
the difference is even greater in the case of a different speaker (M01) with a different utterance of the
word “manifestation” (magenta curve).

5.2 Speaker Verification Evaluation

The goal of this experiment is to evaluate the performance of the system when we use the LIN1
architecture. In speaker verification, an identity claim is made by an unknown speaker, and an
utterance of the unknown speaker is compared with the model for the speaker whose identity is
claimed; if the calculated score is above a certain threshold, the identity claim is verified.

In our approach , the Verification of a speaker S, pronouncing X and claiming to be S; consists
of the following steps:

1. Load the HMM model M; associated with the password of S;, the speaker specific MLP model
of parameters 0, the world HMM model M with its associated MLP parameters ©.
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2. Perform Viterbi matching of X on model M; and parameters ©; to compute P(X|M;,0,),
representing the likelihood that X was actually produced by S; (since using ©;) pronouncing
M;.

3. Perform Viterbi matching of X on model M and parameters © to compute P(X|M,©), repre-
senting the probability that X was generated by another speaker (which, as for text-independent
speaker verification, is estimated here from a speaker independent model) pronouncing any
word (whence the looped world model). Another possibility, underestimating the likelihood of
the world model, would be to use P(X|M;,®), thus estimating the probability that the right
password has been produced by a speaker different than S;.

4. Compute the likelihood ratio and check whether or not it is above a speaker-specific threshold.

5.2.1 Scoring Criterion

In [9] a new similarity measure based on a posteriori probability has been proposed. The experiment
showed that the a posteriori probability and the likelihood ratio measures perform equally the speaker
separability. As our proposed method is based on the hybrid HMM/ANN system in which the ANN
is used to estimate the local posterior probabilities, we want to take advantage of this and use the a
posteriori probability as a similarity measure.

The decision to validate a speaker S claiming to be Si, should be based on:

P(§ =5;) A P(Mj;|X,0;) (6)
resulting in the hypothesis test:
§=25; it P(M;]X,0;)>d; (7)

Where P(M;|X,6;) representing the accumulated posterior probability that the correct word M; was
pronounced by the true (correct) speaker (because we use the SD-MLP ©; to compute the local
posterior probabilities).

It is also known (see, e.g., [8]) that, assuming equal class priors, this criteria is also equivalent to
the likelihood ratio test:

_ PIX|M;,0))
4= e 2 ®

usually used in speaker verification, and where the denominator is often referred to as the likelihood
of the “world model”.

Since different utterances will have different lengths (T"), we cannot compare the score against a
given (length independent) threshold directly. In the spirit of [7], the score was normalized by the
duration of the test utterance, thus becoming:

N 1
Pl(Mj|X,0j) = E lOg P(M]|X, @]) Z 6]' (9)

where T'x represents the number of frames in the test utterance X. This creterion, will be referred
to normalized accumulated log-posteriors (TIN).

The final accept/reject decision was then taken by comparing these resulting scores to a pre-defined
threshold.
In speaker verification systems, two types of errors have to be considered:

e False rejection error, when an authorized customer is classified as an impostor and reject.

e False acceptance error, when an impostor is accepted as a valid customer.



14 IDIAP-RR 01-13

Consequently, the performance of the system is measured in terms of equal error rate (EER), corre-
sponding to the decision threshold where the false rejection rate is equal to the false acceptance rate.
However, in real life applications, we are often more interested in the (threshold) point, where the
system has the highest performance rate. For this point, we first compute the rate of the two types
of errors (the false acceptance rate and the false rejection rate). Then we compute another type of
error which is called HTER (Half Total Error Rate) corresponding to the mean of the false acceptance
and false rejection rates. HTER = (FA+ FR)/2. In the table 1 we present the performance of the
system in term of EER and HTER, with speaker-dependent threshold (i.e., having a specific thresh-
old associated with each speaker) and speaker-independent threshold (i.e., comparing the score of a
test utterance to a global threshold common for all speakers). The first two columns (FA and FR)
represent the false acceptance rate and false rejection rate only in the case of a speaker-independent
threshold.

[ scoring criterion | FA' | FR [ HTER_SI | EER_SI | HTER_SD [ EER_SD |
| Se [22.0% [ 268% | 244% [ 25.0% | 147% [ 17.9% |

Table 1: Performance of the system using LIN1

From Table 1, we can draw the following conclusions:

1. As opposed to the result obtained in the first experiment where the adapted SD-MLP discrim-
inates well between the true speaker and the impostors, the performance of the system is not
as good as expected. To better improve the performance, we used two others scoring criteria as
explained below (Section 5.2.2).

2. From columns 4 and 6, we clearly see that the SV performance based on SD thresholds is better
than that based on SI threshold.

5.2.2 Alternative scoring criteria
Removing the contribution of non-informative silence frames: TNS

Since silence frames do not contain any specific information about the user, but often contribute a lot
to the matching score, we tried to remove the silence frames present at the beginning and the end of
the test utterance. To do this, we first perform a Viterbi matching on the user-specific model M; and
parameters ©;, in order to yield the phonetic segmentation of the test utterance. Then we removed
the frames which are considered as silence phones. Then we re-estimate the score as follows:

e

P(M;1X,6,) = {ﬁ; 1ogP<qz|mn>} (10)

where ¢}’ represents the particular phone associated with z,,, and b, and e, represent the beginning
and the end of the test utterance respectively, after having removed the silence frames.
Performance of the resulting system is given in Table 2, line 2.

Scoring based on confidence measure: DN

In all previous approaches, all frames contribute in the same way to the matching score, and conse-
quently different phones will have different contributions depending on their respective length. How-
ever, in the framework of recent developments in confidence levels 7], it was shown that the confidence
of a model (quantifying how well a model matches some speech data), is better approximated by using
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a double normalisation of the score. This involves a normalisation over each phonetic segment (average
score over each phonetic segment), followed by a normalisation over the number of phones. In our
case, this yields the following scoring:

Ni ek
. 1 1
P (M;|X,0;) = | — _ log P(q7 11
WGIX0) = | 2 3 ey 3 ToaPlaklen) (11)
- Tk

where by, and ey respectively represent the beginning and the end of phone g, and Ny, is the number
of phones in the test utterance.

This method thus takes into account the number of frames in each phone, as well as the number of
phones in the test utterance. This method, introduced in [7] to estimate confidence levels, is usually
referred to as “double normalization”.

Performance of the resulting system is given in Table 2. line 3.

| scoring criterion | FA | FR | HTER | EER | HTER_ SD |
TNS 15.9% | 27.0% | 21.5% | 22.0% 12.4%
DN 16.6% | 38.5% | 27.5% | 28.0% 14.0%

Table 2: System performance using LIN1 (TNS: Time normalized without silence; DN: double nor-
malization).

From the results presented in the above tables, we can draw the following conclusions:
1. The TNS scoring criterion perform better the others scoring criteria.

2. Remarkably, the false rejection rate is also much higher (38.5%) in the case of double normaliza-
tion (i.e., many valid accesses from the correct user were considered as impostors’accesses). It
has been found [13], that double normalization is a useful measure for rejecting utterances that
are out of domain, or that contain out-of-vocabulary words or speech disfluencies. If we use this
result with the definition® of the measure confidence given in [15], we can conclude that many
user’s model much worse the user data. To verify if this conclusion is true or false , we chose the
speaker which gave the worst HTER, (39.0%), and we found that the inferred HMM contains
-only- the last five phones ([sil][l][aa][ss][yy][on][sil]). So this model did not represent correctly
the lexical content of the user’s password which made several user accesses considered as impos-
tors accesses. It is better to remember here, that the HMM inference algorithm was based on
the choice of the phonetic transcription yielding the highest global log-posterior probability. To
show the importance of the HMM inference step. we took the same speaker,and we chose (from
the inferred five transcriptions) another phonetic transcription (different to the best one used in
the above experiment) ) and we found that the HTER -for this speaker- was greatly improved
(14.0%). Furthermore, we observed that minimizing the Least Mean Square error in the output
layer of the SD-MLP did not automatically imply the maximization of the global log-posterior
probability on the user HMM model.

5.3 SV performance with different MLP architectures

All the results so far have been obtained by using the LIN1 architecture. In this section, we test
our conclusion on the other types of architectures discussed in Section 4.3. Of course, the same
training/testing databases and protocol were used. The tables below present the results obtained
with these different architectures.

From these tables, we can draw the following conclusions:

3A confidence measure may be defined as a statistic which quantifies how well a model matches the data.
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Table 3: Performance of the system using RSI architecture with different scoring criteria

Table 4: Performance of the system using LIN2 architecture with different scoring criteria

IDIAP-RR 01-13

| scoring criterion | FA | FR | HTER SI | HTER_ SD |
TN 17.8% | 28.5% 23.2% 15.6%
RSI TNS 19.5% | 22.5% 21.0% 13.7%
DN 21.8% | 28.0% 24.9% 15.0%

| scoring criterion | FA | FR [ HTER_SI | HTER_SD |
TN 23.2% | 22.6% 22.9% 14.9%
LIN2 TNS 19.8% | 22.3% 21.1% 12.3%
DN 17.6% | 35.9% 26.7% 14.6%

[ Scoring Criterion | FA | FR | HTER_SI [ HTER_SD |
TN 20.6% | 27.1% | 23.8% 15.1%
LIN3 TNS 20.1% | 23.2% | 21.6% 13.2%
DN 18.6% | 32.2% | 254% 15.1%

Table 5: Performance of the system using LINS architecture with different scoring criteria

Table 6: performance of the system using LIN4 architecture with different scoring criteria

| scoring criterion | FA | FR | HTER SI | HTER SD |
TN 22.6% | 31.4% 27.0% 18.1%
LIN4 TNS 29.3% | 28.1% 28.7% 18.1%
DN 30.2% | 27.3% 28.8% 18.0%
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1. The LIN techniques (except LIN4) perform better the RSI technique. but there is no significant
difference between them.

2. The best results are often achieved by LIN2, independently of the scoring criterion used to
calculate the score. This is in contradiction with the good discrimination properties of LIN1
exhibited in Section 5.1, Figure 3.

3. Usually, it is better to remove non-informative silence frames of the test utterance in the score
computation. This is in agreement with [12] where it was shown that for text-independent
speaker recognition, it is important to remove silence frames from both the training and the
testing signal.

5.4 SV performance with other HMM inference criteria

As we have seen, one problem in the SV-UCP is to infer the phonetic tanscription (from the enrolment
utterances) of the user password, which is then used to build the user HMM model. In the previous
experiments, we chose the phonetic transcription yielding the highest accumulated posterior proba-
bility as a user model, and we found that the infered model match worse the user test data.

Many approaches were proposed to solve the pronunciation modeling problem. In this section we
tested one of them based on the choice of the phonetic transcription which better match all the en-
rolment utterances.

As we have done in previous experiments, we chose the best phonetic transcription to build the user
HMM model. The difference lies in the criteria used to evaluate this best phonetic transcription.
The inferred procedure is as follows:

1. Find the most probable phonetic transcription of each utterance, as we did in the HMM inference,
(section 3).

2. Let i=1.
3. Choose the phonetic transcription P;.

4. Force align each of the utterances X* on P, to estimate [—log P(X*|P;,0)]. 1 < ¢ < L, where
L is the number of the enrolment utterances. Two criteria were tested (see below).

5. Compute the average posterior probability (APP) of all the utterances X*, aligned on P;.

L
APP(P) = % > —log P(X"|P;,0) (12)
=1

6. i=i+1.
7. Go to 3, until i equal to the number of the enrollemnt utterances L.

8. Choose the phonetic transcription P, with the smallest APP(FP;) as the best phonetic transcrip-
tion and use it to build the user HMM model as we have already seen in the HMM inference
(section 3).

To estimate [—log P(X*|P;,0)] (step 4), we used two criteria which have been already used as a
confidence measures in the hybrid ANN/HMM framework [7]. Those two criteria are based on nor-
malized posterior confidence measure (NPCM) and defined at the word level, but they used
two different kinds of duration normalization.
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o frame-basedNPCM(w) : which can be defined as follow

frame — basedNPCM(w) =

logP ¢t (13)
J

Z]:l( b + 1 ] 1 n=b; !
e phone-basedNPCM (w): or double normalization and defined as follow:

J

_ 1 S n|,L

Jj=1

phone — basedNPCM(w) =

Sl

where J is the number of phone segments, and b; and e; are respectively the first and the last frame
of phone segment g;.

The results are presented in table 7. The test utterance score was calculated using the TINS
scoring criterion (after removing the silence frames). The first criterion (max. posterior prob), is the
one used in the previous experiments.

| HMM inference criterion | FA | FR | HTER _SI | HTER _SD |

max. posterior prob. 19.8% | 22.5% 21.1% 12.6%
frame-basedNPCM(w) | 14.8% | 30.2% 22.5% 13.8%
phone-basedNPCM (w) | 16.1% | 24.9% 20.5% 13.6%

Table 7: Performance of the system using different criteria to infer the user HMM model and with
TNS scoring creterion

From the results, we can conclude that

e Depending on the threshold, the max. posterior probability criterion performed better the two
other criteria when we used a speaker dependent threshold. However the phone-basedNPCM (w)
criterion is the best one when we used a speaker independent threshold.

e The results show that no one of these criteria gives a significant improvement. It was observed
that when we use one of these criteria (e.x. phone-basedNPCM(w)) the test utterance was
rejected, while the same test utterance was accepted when we use another criterion (e.x. frame-
basedNPCM(w)). A solution consisted of merging all the phonetic transcriptions should be
represent, better the user password.

6 Conclusion and Future work

In this report, we presented a method based on a hybrid ANN/HMM system for SV-UCP, where
the user can choose his/her password from an unconstrained vocabulary. So, there is not any prior
knowledge about the phonetic transcription of the password. Then we described a set of experiments
which are performed on a subset of the PolyVar database. For a difficult task (where all the users have
the same password “annulation”, and all the accesses have been done with the same word “annulation”,
the system show reasonable performance, although not competitive yet with state-of-the-art text-
independent speaker verification systems. The results show that it is better to remove the non-
informative silence frames from the test utterance before doing the score computation and that double
normalization is a useful measure to evaluate an acoustic model in the hybrid HMM/ANN system
framework.

In the future, we mainly intend to improve the baseline system described in the present report
by further improving the HMM inference and the SI-MLP adaptation process. The possible research
directions are the following:
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1. System design:

To adapt the SI-MLP to the characteristics of the user, the target output vector (segmentation)
were computed using Viterbi alignment on the user specific HMM model. So, during the adap-
tation process, the neural network outputs were biased toward phones which constitute the user
model M;. Due to the variation in the signal, the speaker can not repeat an utterance precisely
the same way from trial to trial, and, in this case, the system is not able to recognize some cor-
rect (pronounced by the true user) utterances (perhaps this is one reason that the false rejection
rate is high). It is better to adapt the SI-MLP to recognize all phones in the user enrolment
utterances. One way to do this, is to compute the segmentation (which is then used to adapt
the SI-MLP as described in Section 4) by using Viterbi alignment on the ergodic model. We
then use the resulting SD-MLP to compute the posterior probabilities which are further used
to infer the speaker specific HMM (as described in Section 3). It is expected that the resulting
SD-MLP will exhibit a strong bias toward phones frequently used by the targeted speaker.

HMM inference:

As we have seen, the HMM inference is an important step in the process of the construction of the
user model. The goal of this step (as mentioned in Section 3) is to automatically infer the best
HMM topology. However, the definition of the best topology is not clear, depending whether
the goal is to find the model with the highest likelihood or the model that corresponds best to
the correct phonetic transcription of the word. In reality, the user cannot pronounce the same
word several time in the same way, thus, the inferred model is a good model if it can properly
model the pronunciation variations of the same word by the same speaker. Various approaches,
ingpired from current work in pronunciation modeling for speech recognition systems will have
to be investigated here. One solution consists in merging several phonetic transcriptions using
a dynamic programming algorithm as in [14].

SI-MLP adaptation:

In the adaptation procedures tested so far, all the output units were used for training the weights
to be adapted (i-e., back-propagation and gradients were computed using the error between the
target and observed output over all possible ANN phonetic outputs. However, in the enrolment
data, only a few phones are present (those constituting the customer password HMM model).
In [3], a method was presented and consisted in adapting only the parameters (weights) from
the hidden units to the targeted outputs (phones) (the outputs which correspond to phones in
the user HMM model).
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