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Abstract: This report investigates the HMM2 approach recently introduced in the framework of automatic speech
recognition. HMM2 can be seen as a mixture of HMMs, where a conventional primary HMM (processing a time
series of speech data) is supported on alower level by a secondary HMM, working along the frequency dimension of
atempora segment of speech. The application of HMM?2 to the speech signal is motivated by numerous potential
advantages. However, speech recognition results did not show the expected performance improvements. In this paper,
the HMM2 approach is pragmatically analyzed and evaluated on speech data, revealing some problems and suggest-
ing potential solutions.
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1 INTRODUCTION

In state-of-the-art automatic speech recognition (ASR), hidden Markov models (HMM) are widely used.
While there are many suitable alternatives and design options for some parts of the ASR systems such as fea-
ture extraction and phoneme probability estimation, HMMs are the uncontested model for the temporal decod-
ing part. The success of HMMs can (at least partly) be contributed to their ability to easily accommodate
temporal variations such as different durations of phonemes, e.g. due to varying speaking rate or speaker’'s
accents.

However, such variations do not only occur along the time axis, but they can also be observed in frequency,
as shown in Figure 1. In the spectograms depicting four different pronunciations of phoneme ‘ay’ (including
some context), inter- as well as intra-speaker variability becomes apparent (compare Figure 1(a) with (b), and
Figure 1(b) with (c) respectively). Furthermore, Figure 1(d) shows the same phoneme pronounced in a differ-
ent context, revealing the effects of coarticulation. In all sub-figures, it is demonstrated that the position of
spectral peaks may change significantly in the time-frequency plane during the pronunciation of a phoneme.

When using HMMs, we assume however that speech segments corresponding to one phoneme or sub-
phone units are (1) invariable enough to be modeled by the same (mixture) distribution and (2) stationary for
their duration, which obviously is not the case. In an attempt to relax these rather rigid assumptions, and
encouraged by many more practical motivations (as further elaborated in section 2), we recently introduced
the HMM?2 approach [11]. A similar approach has previously shown some success in computer vision [3, 6,
10]. HMM2 can be understood as an HMM mixture consisting of a primary HMM, modeling the temporal
properties of the speech signal, and a secondary HMM, modeling the speech signal’s frequency properties. A
secondary HMM isin fact inserted at the level of each state of the primary HMM, estimating local emission
probabilities of acoustic feature vectors (conventionally done by Gaussian mixture models (GMM) or artificial
neural networks (ANN)). Consequently, an acoustic feature vector is considered as a fixed length sequence of
its components, which has supposedly been generated by the secondary HMM.

In spite of its numerous potential advantages, HMM 2 has not yet shown competitive results in speech rec-
ognition. The purpose of this paper isto investigate in depth the HMM2 approach and its implications. In the
following section, the HMM 2 approach will be motivated. After having explained in more detail how HMM2
works and how such a system can practically be realized, we will give some speech recognition results. A
thorough analysis of the drawbacks of HMM?2 for this application is followed by abrief revision of aternative
modelsin the framework of HMM2.

— == = ==
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( (c) Speaker 2: “five’  (d) Speaker 2: ‘nine’
(1st occurrence) (2nd occurrence)

Figure 1. Spectograms of different pronunciations of the phoneme ‘ay’ by different speakers and in different
contexts. Dark regions correspond to high, light regions to low energy spectral components. The vertical axis
is the frequency, the horizontal one the time evolution.
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2 MOTIVATIONS

In the previous section, we motivated HMM?2 using real speech examples and explaining the problems
encountered when conventional HMMs are applied for speech recognition. In summary, HMMs assume piece-
wise stationarity of the speech signal and do not truly take into account the existing variability along the fea-
ture (frequency) dimension. Using a secondary HMM for the local likelihood estimation, these assumptions
arerelaxed (at least to some degree), as amore flexible modeling of the variability and dynamics inherent
in the speech signal is allowed. For instance, a spectral peak could be modeled by a single state of the fre-
guency HMM, even though its position on the frequency axis is quite variable (as seen in Figure 1). Such a
sparse frequency HMM topology aso alows for efficient parameter sharing. The number of parameters can
easily be controlled by the model topology and the probability density function associated with the frequency
HMM states.

Furthermore, correlation between feature vector components is not ignored, but supposed to be modeled
through the frequency HMM’s topology. In fact, HMM2 could allow a sophisticated modeling of the underly-
ing time-frequency structures of the speech signal and model complex constraints in both the temporal and the
frequency dimensions.

The secondary HMM performs automatically a non-linear spectral warping. While the conventional
HMM does time warping and time integration, the frequency HMM performs warping and integration along
the frequency axis. This frequency warping has the effect of automatic non-linear vocal tract normaliza-
tion, providing a kind of unsupervised and implicit speaker adaptation (therefore tackling the problem of
inter-speaker variations). With the same mechanism, also intra-speaker variations as well as coarticulation
effects are taken care of.

Furthermore, the HMM2 topology permits implicitly a dynamic formant trajectories tracking. As a
spectral peak (formant) can be modeled by an HMM state and a spectral valley by another, the segmentation
performed by the frequency HMM may be a good indicator for the position of a formant. Formants are
assumed to carry most discriminative information in the speech signal, moreover being quite robust in the case
of degraded speech. In [12] it was shown that the frequency HMM isindeed able to extract some meaningful
and even discriminative formant-like structural information.

In the same line of reasoning, HMM?2 can also be interpreted as a dynamic approach to multiband pro-
cessing, where each frequency band is modeled by one frequency HMM state. By that we mean that each such
state is supposed to emit a stationary sequence of spectral components belonging to a certain subband. The fre-
guency position of the subbands would then automatically be adapted to the data, following e.g. formant-like
structures.

We are now going to describe the HMM2 approach in some more detail, followed by an experimental and
an error analysis section.

3 HMM2

HMMs are quite powerful statistical models which are used to represent sequential data, e.g. a sequence of
acoustic vectors le in speech recognition1 (as shown in the upper part of Figure 2). As each acoustic vector
Y; can itself be considered as a fixed length sequence of its components” Y, = ytt' 15 , another HMM can be
used to model this feature dimension (displayed in the lower part of the figure).While the primary HMM mod-

1. All notations used in this report are explained in Appendix A.

2. By ‘component’ we mean a subvector of low dimension. For instance, atemporal feature vector of
dimension Sis split up into S 1-dimensional subvectors (i.e., a subvector is a coefficient). How-
ever, the extension of this approach to higher-dimensional subvectors (consisting, e.g., of a coeffi-
cient and itsfirst and second time derivatives) is straightforward.
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Figure 22 HMM2 system. In the upper part, a conventional HMM, working along the temporal axis, can be
seen. The local emission probability calculation is done with a secondary HMM, working along the frequency
axis (depicted in the lower part of the figure).

els temporal properties of the speech signal, the secondary, state-dependent HMM is working along the fre-
guency dimension. The secondary HMM isin fact acting as a likelihood estimator for the primary HMM, a
function which is accomplished by GMMs or ANNs in conventional systems. However, the state emission dis-
tributions of the secondary HMM are again modeled by GMMs. Conseguently, HMM2 is a generalization of
the standard HMM/GMM system (which it includes as a particular case).

HMM training istypically based on the expectation maximization (EM) algorithm. A generalization of the
standard EM algorithm for HMM2 has been introduced in [1]. In the framework of this paper, we will investi-
gate in more detail the estimation of p(Y;|a) inthe primary HMM states. Under the typical HMM assumptions
(i.e. piecewise stationarity and data independence assumptions), the likelihood of an acoustic feature vector
(i.e., asequence of its components) given the primary HMM state can be expressed as:

S
p(y;|a) = Z{P(roqt) |'| [P(Yy, o|Fs AP (rg|rs_1, qt)]} @

s=1

or, using the Viterbi approximation:
S
p(Y;|a) Darggwax{"(foqt) [ [P(Y: s|rs AP(rg|rs_a, qt)]} @
s=1

where P(ro|q,) istheinitial state probability of the secondary HMM, P(rg|r_,, q;) the state transition proba-
bilities of the secondary HMM, and p(y; offs ) the local likelihoods of the data. Naturally, every term of this
equation is conditioned on the state of the primary HMM. As we use GMMs with diagona covariance matri-
ces for the likelihood estimation in the states of the secondary HMM, the corresponding local probability den-

sity functions (PDF) are defined as follows:
l[yts Um@
ZD oy U

©)

p(ytvs‘rsz I) - z W

=1 u2ﬂ0l|k



IDIAP-RR 01-23 5

where K is the number of Gaussian mixtures.

After having described some practical realizations and experimental results of HMM2, we will come back
to these mathematical derivations and investigate in detail their impact on practical implementations of the
HMM2 approach.

4 PRACTICAL REALIZATION AND EXPERIMENTAL RESULTS

There are different ways to realize an HMM?2 systems. Figure 3 shows two possibilities. The first realization
(see Figure 3a) is based on the implementation of a generalized form of the standard EM algorithm, as
described in [1]. Thisis the straight-forward way of realizing HMM2, implementing eg. 1 for the local likeli-
hood estimation.

A second way is to unfold the HMM?2 (which, as previously stated, is a kind of HMM mixture) into one
large HMM (as described before in [10, 3], see Figure 3b). State likelihoods of the primary HMM are esti-
mated using eg. 2. For this implementation, synchronization constraints have to be introduced to insure that
exactly one feature vector is emitted between each two transitions in the primary HMM. This reguires (1)
additional synchronization states (grey in the figure) and (2) a re-arrangement of the data (as shown in the
lower part of Figure 3b). Out-of-range synchronization components (modeled exclusively by the synchroniza-
tion states) are introduced between the original feature vectors. The transitions between primary HMM states
correspond to transitions between the synchronization states. Standard EM training algorithms (and therefore
well-established tools such as HTK [14], which moreover offers sophisticated functionality especially adapted
to speech recognition problems) can easily be used.

We did preliminary tests with both of the HMM2 systems described above. It was found that they yield a
similar performance on small problems. For practical reasons, all further experiments used the implementation
shown in Figure 3b, realized with the HTK system.

I

(b)

Figure 3: HMM2 realizations; (a) direct implementation and (b) implementation with synchronization
constraints. While the model in (a) is emitting a sequence of feature vectors (as usual), the model in (b) is
emitting a sequence of (low-dimensional) components, intermitted by synchronization components at regular
intervals.
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Another major concern when working with HMM?2 is the choice of the features. We investigated different
representations such as filterbanks, Rasta, and MFCCs. Obviously, for the motivations outlined in section 2 to
hold, features in the spectral domain should be employed (although HMM2 might even show some advantages
with different features). For most of our experiments, we used so-called FF2 features [8], which are frequency
filtered filterbank coefficients. Compared to MFCCs, these features show only dlightly worse speech recogni-
tion results on our HTK-based system (this result applies to clean data; however, performance degrades signif-
icantly in noisy conditionst). In addition to staying in the spectral domain (which also offers some benefits not
further discussed here), FF2 features offer the advantage of being normalized to some degree (possibly large
signal level variations are in fact smoothed out through the differencing).

The goal of preliminary experiments was to evaluate the HMM?2 approach. To be able to directly compare
HMM2 with the conventional HMM/GMM system, the topology of the primary HMM was | eft constant
throughout the tests. Only the likelihood estimation in each primary HMM state was changed.

The Numbers95 database (a telephone-quality, small vocabulary, multi-speaker database containing con-
tinuously spoken digits, see [2]) was used throughout the tests. Each phoneme (triphone) present in this date-
base was modeled with a primary HMM containing 3 emitting states. In the baseline system, the local
likelihoods were estimated using a GMM with 10 Gaussian mixtures. For HMM?2, several topologies for the
secondary HMM were tested.

In all our experiments, a significant performance drop was observed when using HMM2 (with any second-
ary HMM topology). Speech recognition accuracy decreased significantly as compared to the conventional
HMM/GMM system. This result is consistent for the two different HMM2 realizations described above, and
holds for all kinds of features tested. In the following, we are investigating possible reasons for the observed
degradation.

5 DIAGNOSTICS

The performance drops encountered in HMM2 require some careful, step-
by-step error analysis. Consequently, we started from a simple secondary
Markov model topology simulating a Gaussian distribution (i.e., here the
Markov model is not hidden), gradually adding complexity. Again, the
primary model topology was left constant. Results are compared to the
conventional HMM/GMM baseline system. The experiments described in
the following give some important cues about drawbacks of the HMM2
approach. Representative results can be found in Appendix B.

* Experiment 1. Simulation of an HMM/GMM with a single Gaussian
distribution. The secondary Markov model (MM) has a strictly top-
down topology without loops. The number of states is equal to the
length of the sequence to be emitted (see Figure 4a). As there is only
one possible state sequence R, the Markov model is not hidden any-
more. The local likelihoods of the secondary MM states are estimated

(=)
(

with single Gaussian distributions. As expected, recognition results @ b) (©
are equivalent to those obtained with conventional HMMs employing
asingle Gaussian probability density function in each state. Figure 4: Different frequency

HMM topologies tested for

e Experiment 2: Introduction of Gaussian mixtures (instead of single .
error analysis.

Gaussians) for local likelihood estimation (see Figure 4b). Here, the
same not-hidden Markov model topology as in experiment 1 is used,

1. Unfortunately, in the framework of HMM/GMM, spectra features are usually not competitive
with cepstral features such as MFCCs.



IDIAP-RR 01-23 7

but at the level of the secondary HMM states, the single Gaussians are replaced by Gaussian mixtures.
Speech recognition results improve as compared to experiment 1. However, in comparison to HMM/GMM
incorporating an equivalent number of Gaussian mixtures, this model performs much worse.

» Experiment 3: Real secondary HMM. Compared to experiment 2, the number of states in the secondary
HMM isreduced and self-transitions (loops) are added at each state. Asthere are fewer states than emitted
components, the secondary Markov model becomes hidden (see Figure 4c). Speech recognition accuracy
decreases as compared to the other systems tested.

In the following, we will try to identify the reasons for the losses encountered in HMM2. As in these
experiments (and compared to the baseline system) we only changed the local likelihood estimation at the
level of the primary HMM, we will concentrate our theoretical investigation on this part of the system. After
having elaborated the general mathematical foundations, we will investigate the suitability of the model given
the (speech) data. Furthermore, some peculiarities of the speech signal plus implications on a successful dis-
criminative model are shown.

5.1 Effectsof independent modeling of components

Firstly, we will investigate the effects of independent modeling of components in the secondary HMM states,
as compared to the modeling of the entire vector in a GMM. For the case of frequency HMMs (a) and (b), eq.
1 simplifies drastically: asthere is only one possible state sequence R through the model, we here deal with a
‘normal’ Markov model and no longer with a hidden one. Therefore, P(ro|a) =1 and
P(rg=ljrs_y=mq) = 1for al transition (m, 1) defined through the model topology. For case (a), there is
even only a single Gaussian distribution, and so we obtain from egs. 1 and 3:

s 1[}’x,s—l‘i|mz
ZD Oj| o
p(y;|a =1) = P(yp RjG = 1) = |'|

lu2|_|0'||

The above equation is equivalent to the state likelihood estimation in conventional HMM systems where the
distribution is modeled by a single Gaussian. This fact was confirmed by our experimental results.

rs=| 4

For case (b) and Gaussian mixture distributions in the secondary HMM states, the simplified state likeli-
hood equation is:

s K 1Y s—Hig Hing?
1 20 gy O
p(yt‘qt i) = p(yt: R‘qt i) = I_l e

W,
s= 1kzl IIkuZI‘Icﬁk

This equation bears a significant difference as compared to the distribution obtained for a conventional GMM:
K 1 Vi, s~ Hisk ?
25 Oig U

p(yt‘qt ') - |k|_|

M2n0|sk

It can be seen that a sum of products (in the case of a GMM) has been replaced by a product of sums (in the
case of asecondary HMM). Figure 5 shows the implications of these two equations on exampletoy data. It can
be seen that the distribution obtained by the GMM (Figure 5b) is quite irregular. In fact, the shape of the distri-
bution obtained by a GMM is practically only limited by the number of mixtures used. For example, the result-
ing PDF can take an (almost) elliptical form, whose principal axes are not necessarily parallel to the
coordinate system (consider any two of the Gaussians in the figure, and approach their means). On the other
hand, when modeling each feature component independently in a secondary HMM state, each mixture compo-
nent in each state influences linearly all mixture componentsin all other states. Hence, the form of any result-
ing distribution is very restricted, asits principal axes inevitably follow the coordinate system’s orientation.
Thisisillustrated in Figure 5¢c. Therefore, correlation can not be modeled as well asin GMMsL.

re=1 6)

(6)
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Figure 5: Toy example: modeling power of GMM vs. HMM. In (&), a mixture of 3 2-dimensional Gaussians is
defined (i.e, Gaussian means, variances and mixture weights). This GMM is visualized in (b). In (c), a
distribution resulting from an HMM (also employing the parameters defined in (a)) is shown.

5.2 Effectsof theintroduction of hidden states

Does this drawback generalize when moving from Markov models to hidden Markov models, or can it be
compensated through some correlation modeling due to a suitable HMM topology? In the case of real HMMs
(see Figure 4c), each possible path through the model corresponds to one Gaussian distribution, hence the sum
over al possible paths corresponds to a Gaussian mixture (with as many mixture components as there are
paths in the model):

S
p(y;|a) = Z{P(roqt) [ [Py o[ s AP(rg|rs 1, qt)]}
s=1

< S ™
= Z{P(roqt) [ P(rs|rs—1a) O[] PO ofrs qt)}
s=1

s=1
s
where the respective products of initial and transition probabilities P(ro|ay) |‘| P(rg|rs_1. 0) represent the
mixture weights. s=
However, if one state emits several components (r, = r,; = ... = |), the underlying PDF for their data

likelihood estimation is constant (i.e., the Gaussian parameters are shared for the likelihood calculation of all
those components). Hence, the distributions which can be modeled by such a secondary HMM are again very
restricted. Thisfact is depicted graphically on atoy examplein Figure 6. It can be seen that the resulting distri-
bution obeys the same restrictions as the one shown in Figure 5: it is not possible to model distributions whose
principal axes do not follow the coordinate system’s orientation. For the kind of secondary HMM we are
investigating here (i.e. top-down topology with fewer states than emitted components), this conclusion gener-
alizes to higher-dimensional data and a higher number of Gaussian mixes.

In conclusion, Figures 5 and 6 both show that feature correlation can be modeled quite well by Gaussian
mixture distributions, because they allow any orientation of the principal axes of the data distributionsin a
given coordinate system. Thisis hot possible with our secondary HMM, because (1) the independent modeling
of components in individual HMM states and (2) the parameter sharing (allowed by the stationarity assump-
tion and enforced through looped HMM states) both constrain the resulting distribution to follow the orienta-
tion of the coordinate system. However, if the data were conform with both the independence and the

1. Infact, the traditional multiband approach suffers from a similar handicap, for which the full-com-
bination approach [7] offers aremedy.
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Figure 6: Toy example: demonstration of the modeling capacity of a GMM (left part of the figure) and a
secondary HMM (right part) for the case of 3-dimensional data. The GMM consists of a mixture of 2
Gaussians with diagonal covariance matrices. The secondary HMM has 2 states as shown in (d), thus there
are 2 possible paths through the model (see (e), which comparesto (a) for the GMM case). In (f), the Gaussian
components contributing to the resulting distribution are depicted (compare to (b) for GMM). It can be seen
that, for the case of the secondary HMM, only one dimension is expanded, resulting in the distribution
depicted in (g). The principal axes of this distribution are constrained to follow the axes of the coordinate
system, which is not the case for the distribution resulting from the GMM (depicted in (c)).

stationarity assumptions, HMM 2 could still be an appropriate model. In the next section, we will adopt amore
data-driven point of view towards HMM2 and investigate the peculiarities of the speech data in respect to the
above assumptions.

6 EVALUATION ON SPEECH DATA

6.1 Datarepresentation by HMM 2

In the previous section, we have collected theoretical evidence of the problems encountered in HMM2. In the
following, we will investigate the implications of our findings on the application of HMM?2 to speech data.
Naturally, the HMM?2 topology imposes similar assumptions on the data as HMMs conventionally used for
time series. As described above, the data used in an HMM2 system is assumed to be conditionally independent
(i.e., each data component is independent of al other components, given the primary and secondary HMM
states) as well as piecewise stationary along both the time and the frequency axes (i.e., afew subsequent com-
ponents are supposed to have been generated by the same probability density function). We now investigate
whether these two assumptions are satisfied and their significance for the speech data representation in
HMM2.

In Figure 7, correlation coefficients of FF2 features are visualized. It can be seen that the data are corre-
lated, especially neighboring components in a feature vector (indicated in the figure by darker colors near the
diagonal). Figure 8 shows how these correlated data are represented by a GMM and by a secondary HMM.
The models are both trained on real FF2 speech data, and their respective parameters are visualized (in the
sameway asfor the toy examplein Figure 5). In the left part of the figure, it can be seen how the GMM param-
eters represent the existing data correlation. However, the HMM, shown in the right part, is not able to repro-
duce an appropriate data distribution. Although there are many suitable methods which orthogonalize data to
some extent, completely uncorrelated features do not (yet) exist in the domain of ASR. This fact alone does
not favor HMM2 in the domain of speech.
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Figure 7: Correlation coefficients
of FF2 features. Dark colors
correspond to high correlation
coefficients.
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Figure 8: Illustration of the modeling power of GMM and Markov
model using real FF2 speech data. Figure (a) shows a part of a
trained GMM, (b) the equivalent trained Markov model (only two
dimensions are displayed). In either case, there are mixtures of 3
Gaussians. While in (a) data correlation becomes obvious, it cannot

be seenin (b).

The validity of the stationarity assumption is harder to fully prove or reject. Figure 9 shows an example
pronunciation of phoneme *ay’. It can be seen that the piecewise stationary assumption is not entirely satisfied.
Nevertheless, it isintuitively (and practically, using a clustering algorithm) possible to segment this represen-
tation along the (horizontal) frequency axisin afew quasi-stationary sectors, which could subsequently be rep-

resented by the same PDF.

Even if the assumption of piecewise stationarity is to some
degree satisfied, there is another implication of this assumption. Up
to this point, we have investigated the ability of HMM2 to represent
speech data, and we have stated some deficiencies of this approach
in this respect. However, the goal in speech recognition is discrimi-
nation between phonetical units. In the following, we will examine
the ability of HMM2 for discrimination.

6.2 Datadiscrimination by HMM?2

It is widely acknowledged that spectral peaks (formants) contain
important discriminant information [4, 13]. On the other hand,
HMMs have already been applied to formant tracking [5]. If, as
elaborated in section 2, the secondary HMM's frequency segmenta-
tion somehow reflects formant positions, this segmentation alone
might represent rather discriminative information.

We conducted some experiments in order to find out the signifi-
cance of the frequency HMM'’s segmentation, using a variant of the
HMM?2 approach: the secondary HMM is not used as a state likeli-
hood estimator for the primary HMM, but instead as a feature
extractor [12]. One secondary HMM with top-down topology and
four looped stateswas trained on all the training data of our database

Figure 9: A pronunciation of
phoneme ‘ay’. Each linein the figure
corresponds to one time step, and
thus to one feature vector (the thick
black line is the mean). The
horizontal axis shows freguency
evolution, and the vertical axis
shows the feature value (delta-
energiesin the case of FF2 features).

(regardless of their labeling). Then, the Viterbi algorithm was used to segment each original feature vector
along the frequency axis. The resulting segmentation consisted ssimply of 3 values, indicating the index of the
feature component (in the original acoustic vector) after which a transition from one state of the secondary

1. Even the correlation coefficients of (the supposedly decorrelated) MFCC are quite comparable to
those of FF2 (shown in Figure 7), with the difference of alower correlation near the diagonal.
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HMM to the next took place. In Figure 10, the means of 2 of these segmentation values (the ones correspond-
ing to spectral peaks) are displayed for anumber of voiced phonemes from our database. Thisfigure isrelated
to the F1-F2 plane, where vowels are positioned according to their formant frequencies (as, e.g., described in
[9]). It was shown that the segmentation val ues indeed contain discriminative information: a conventional
HMM was trained on low-dimensional vectors obtained from these rather crude ‘formant features’, and word
recognition rates of over 56% were reached.

This remarkable result proves that the ... Figure 10: Average segmen-
secondary HMM’s segmentation has a cer- . tation values of the secondary
tain potential for discrimination. On the HMM for different phonemes.
other hand, the results obtained with the ' T These values correspond to
original HMM2 system (where the second- | spectral peaks (formants) in
ary HMM was used as alikelihood estima- - | . the signal. The figure is related
tor) show that in this approach, we cannot |- B " to the formant-space represen-
make use of this discriminative property, - tation of phonemes in the F1-
and important information seemstobelost. | - . = 5 plane.

In that respect, HMM2 seems to suffer

from the same problem as encountered in conventional HMMs: an imbalance between the contributions of
HMM state likelihoods and transition probabilities to the estimation of the overall likelihood® (even though
this effect is somewhat diminished due to the lower feature dimension in the secondary HMM). Consequently,
the primary HMM state likelihoods do only insignificantly (if at al) reflect the segmentation produced by the
secondary HMM. Theimproved flexibility of the model due to the high number of paths through the frequency
HMM leads to aloss of discriminability (because of the loss of information concerning formant positions),
which may rule out the potential gain through the frequency warping.

7 ALTERNATIVE MODELS

Given the problems identified in the previous sections, is there still hope for the HMM2 approach? Concluding
from our findings, a successful HMM 2 system would have to

» better consider data dependencies (as long as truly decorrelated features are not available) and

» assure that discriminability is maintained, e.g. that information about the position of spectral peaksin the
speech signal is not lost.

In the following, we briefly propose some alternatives in the framework of HMM2, offering partial solutions
regarding the requirements outlined above.

Remembering that the conventional HMM/GMM systems are a special case of HMM2, we could redlize
the following scenario: a GMM is modeled with a frequency HMM, as shown in Figure 11a. Then, additional
transitions can be added (see Figure 11b). Thiswould increase the model flexibility, but at the same time main-
tain some information about formant positions. Furthermore, asin a GMM, some data correlation could be
modeled (the model should be at least as ‘good’ as a GMM, because, in the case that the newly added transi-
tions do not help, their assigned probabilities after training should be 0). Experiments with such a‘trellis’
model have however shown worse performances as compared to GMM. Thisis likely to be the effect of a

1. Together with the effects of the HMM'sinherent exponential duration probability distribution, this
leads in conventional HMMs (aswell asin our primary HMM) to a poor duration modeling. How-
ever, these problems play in the conventional case only a subordinate role. On the one hand, the
poor duration modeling can be compensated for, e.g. through lexical and grammatical restrictions
in combination with word entrance penalties. On the other hand, the duration of a phoneme might
not be an essential cue for discrimination, as this parameter varies considerably (depending on
non-discriminant features such as the speaking rate).
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TR

Figure 11: In (a), a frequency HMM simulating a GMM is shown.
%E )} %E )} Each vertical branch corresponds to one Gaussian mixture. (b)
) ; ; .

shows the extension of this model to a trellis topol ogy.

reduced discrimination capacity (in spite of the potentially increased descripitve power of the model) due to
the improved model flexibility: not only the phonemes might be better represented by their respective models,
but also (possibly to a greater extent) all other data. Here, discriminant training may offer a solution. However,
most of the motivations given in section 2 do not hold for these systems. Having many states does not allow
for an efficient parameter sharing. Frequency warping (and therefore non-linear vocal tract normalization and
dynamic formant trajectory tracking) would only indirectly, if at al, be realized. Furthermore, the high number
of states leads to an increased model complexity, and thus computation time quickly becomes an issue. This
reasoning also appliesto asimilar system incorporating alot of statesin an ergodic secondary HMM topol ogy.

If staying with the top-down and |ooped frequency HMM topology as originally introduced (and depicted
in Figure 2), alternative design options which possibly improve the performance of an HMM2 system include

< Emitting frequency context. Instead of emitting just one coefficient at each frequency step, the secondary
HMM could emit a vector consisting of this coefficient and its neighbors. Thereby, some correlation (near
the diagonal) could be model through the GMMs in the secondary HMM states. Such a system has already
been tested without much success.

e Improve the influence of transition probabilities. This could be done by reducing the influence of the
secondary HMM state likelihoods during the estimation of the likelihood of a feature vector. One could
even go as far as to, once a ‘best path’ through the secondary HMM is calculated using the Viterbi algo-
rithm, discard these local likelihoods, just using the transition probabilities in the further computation. This
approach is likely to ameliorate recognition results, as the position of formant regions would have some-
what more influence on the primary state likelihood, possibly resulting in an improved discrimination.
However, the problem of the insufficient correlation modeling persists and is likely to limit the perfor-
mance of the model.

e Emit additional frequency information. This is another way to make the frequency HMM model the
positions of the spectral peaks. Each vector emitted by the secondary HMM is augmented by a coefficient
indicating the position of this vector on the frequency axis. Asin the previous option, correlation is still not
thoroughly considered. Recognition performance was improved but is still limited by this deficiency.

All of the alternative models proposed above offer a partia rectification to the HMM2 problems stated in
the previous sections. Even so, their effectiveness has yet to be shown. The possibly most promising variant of
HMM?2 is however the one aready introduced in section 6.2, where the frequency HMM is used as a feature
extractor. The resulting features represent formant-like structures, and when they are combined with state-of -
the-art features such as MFCCs, speech recognition robustness has shown to improve significantly [12].

8 CONCLUSION

This paper was concerned with the HMM2 approach, where a secondary HMM is used to estimate local state
likelihoods of a primary HMM, hence replacing Gaussian mixture models used in conventional HMMSs. In
spite of numerous strong motivations in favour of HMM2, experiments (using two different HMM?2 realiza-
tions) did not show the expected results. The purpose of this paper was to outline theoretical and practical
problems occurring when using HMM2 for speech recognition. Two major handicaps could be stated, con-



IDIAP-RR 01-23 13

cerning the representative and discriminative abilities of the model respectively. It was found that the HMM2
approach suffers notably from

» the mismatch between the model capacity and the real distribution of the data, due to the unsatisfied inde-
pendence assumption and

» areduction of discriminability dueto its (in some respect) higher flexibility and the ignorance of important
information such as formant positions.

Consequently, present data correlation cannot be modeled, and possibly important information about positions
of spectral peaksis basically lost. Some variants of the HMM2 approach offer partial solutions to the above
problems, but non of them has as yet shown to be really successful in speech recognition. Although the sec-
ondary HMM'’s topology (and the values of the transition probabilities) might reflect some correlation as well
as formant structure information, GMMs seem to be the more suitable model for phoneme discrimination
(compared to our present HMM2 system).
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Appendix A: Notations and Abbreviations

General Notations

i, designate atemporal HMM state

K number of Gaussian mixtures

k -th mixture component

designate afrequency HMM state

Number of temporal states

Number of frequency states in temporal state i

probability

probability density function

set of al possible pathsin primary HMM

tempora HMM state at time step t

set of al possible paths in secondary HMM

frequency HMM state at frequency step s

feature vector dimension (or number of componentsin each feature vector respectively)
frequency step

length of acoustic feature vector sequence

time step

weight of k-th Gaussian mixture

observed feature vector at time step t

observed feature vector sequence fromtimestep 1 to T

observed feature component at frequency step s of time step t

Hijk mean of k-th Gaussian mixture of the i -th temporal and the | -th frequency HMM state
Oik variance of k-th Gaussian mixture of the i -th temporal and the | -th frequency HMM state

— =
3

~ 40 NS VL O0T V=ZZ

R
w

Abbreviations

ANN artificial neural network

ASR automatic speech recognition

FF2 second order frequency filtered filterbanks
GMM Gaussian mixture model

HMM hidden Markov model

HMM/GMM HMM employing GMM for local likelihood estimation

HMM/ANN  HMM employing ANN for phoneme emission probability estimation
MFCC mel frequency cepstral coefficient

MM Markov model

PDF probability density function
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Appendix B: Experimental Results

In the following, some representative experimental results are given. They were obtained using an HMM2
realization with synchronization states, implemented in the HTK system. As database, Numbers95 was used
throughout. Spectral features with 11 FF2 (delta-frequency) coefficients and one filterbank energy, plus their
first and second order time derivatives, were used. The experimental settings were such as to keep a maximum
conformance to the baseline system, in order to directly compare performances. Each primary HMM had 3
emitting states and a |eft-right topology. For the benefit of higher recognition rates, the energy coefficient and
time derivatives have been kept, although they caused some practical inconvenience in the HMM2 system.
Each coefficient was grouped with its time derivatives into a 3-dimensional feature vector, supposedly emitted
by a secondary HMM state. The energy subvector was treated separately in an independent state without
loops.

The table below shows word error rates (and in brackets the number of parameters used to model the data
distribution in each primary HMM state) of the different systems, for different training steps. Training was
started on 27 monophone models with single Gaussian distributions (first line in the table below). These were
subsequently split up to mixtures of 10 Gaussians (second line), and finally 80 triphone models were created
(last ling). In the first column of the table, the FF2 baseline performance is shown. The overall word error rate
on an independent test set is 6.7% (which compares to 5.7% on MFCC features). The second column shows
the results for systems such as described in section 5, experiments 1 and 2: the secondary Markov model
(MM) is not hidden. Comparing lines 1 and 2 of the first two columns, it can be seen that the relative improve-
ment when introducing Gaussian mixtures is not as significant asin the HMM/GMM case. The third column
shows the HMM 2 performance. In this case, the secondary HMM is composed of 4 emitting statesin alooped
top-down topology, one additional state exclusively for the energy subvector, and 2 synchronization states.
Emitting additional frequency information (as suggested in section 7) yields aword error rate of 15.9%. It can
be stated that HMM 2 generally has the highest word error rates.

HMM/GMM | HMM/MM HMM2
1 Gaussian, monophones 22.2 (66) 21.8 (66) 41.9 (30)
10 Gaussians, monophones 12.5 (670) 18.3 (760) 31.6 (358)
10 Gaussians, triphones 6.7 114 20.5

Table 1: Word error rates (and number of parameters in a primary HMM

state) on baseline HMM/GMM, HMM/MM and HMM2 systems.




