
 
 

E
S

E
A

R
C

H
R

E
P

R
O

R
T

I
D

I
A

P

D a l l e M o l l e I n s t i t u t e

fo r Pe rcep tua l A r t i f i c i a l

Intelligence � P.O.Box 592 �

Martigny �Valais �Switzerland

phone ���� �� � ��� �� ��

fax ���� �� � ��� �� ��

e-mail secre-

tariat@idiap.ch

internet

http://www.idiap.ch

 IDIAP 
Martigny - Valais - Suisse

CONFIDENCE MEASURES FOR

MULTIMODAL IDENTITY

VERIFICATION

Samy Bengio1 Christine Marcel2

Sebastien Marcel3 Johnny Mariéthoz4

IDIAP–RR 01-38

JANUARY 3, 2002

1 IDIAP, CP 592, 1920 Martigny, Switzerland,bengio@idiap.ch
2 IDIAP, CP 592, 1920 Martigny, Switzerland,christine.marcel@idiap.ch
3 IDIAP, CP 592, 1920 Martigny, Switzerland,sebastien.marcel@idiap.ch
4 IDIAP, CP 592, 1920 Martigny, Switzerland,marietho@idiap.ch





IDIAP Research Report 01-38

CONFIDENCEMEASURES FORMULTIMODAL IDENTITY

VERIFICATION

Samy Bengio Christine Marcel Sebastien Marcel Johnny Mariéthoz

JANUARY 3, 2002

Abstract. Multimodal fusion for identity verification has already shown great improvement compared to
unimodal algorithms. In this paper, we propose to integrate confidence measures during the fusion process.
We present a comparison of three different methods to generate such confidence information from unimodal
identity verification systems. These methods can be used either to enhance the performance of a multimodal
fusion algorithm or to obtain a confidence level on the decisions taken by the system. All the algorithms are
compared on the same benchmark database, namely XM2VTS, containing both speech and face information.
Results show that some confidence measures did improve statistically significantly the performance, while
other measures produced reliable confidence levels over the fusion decisions.
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1 Introduction

Identity verification is a general task that has many real-life applications such as access control or transaction
authentication. Biometric identity verification systems are based on the characteristics of a person, such as
its face, fingerprint or signature. While a lot a research is devoted to the development of unimodal biometric
verification systems, using for instance the voice or the face image of a person, recent papers have shown
that combining such unimodal verification systems can enhance the overall performance of the system. The
combination is then performed usingfusion algorithms often based on machine learning tools such as Multi-
Layer Perceptrons or Support Vector Machines.

While these fusion algorithms simply use the scores obtained by the unimodal algorithms in order to take
a global decision, we propose in this paper to provide other useful information to the fusion algorithms, based
on an estimation of the confidence one has on the unimodal algorithm scores. This paper thus proposes three
different methods to estimate such confidence on the scores. The first two methods are based on the scores
obtained by the unimodal verification systems, while the last one is based on the average gradient amplitude of
the criterion used to optimize the unimodal verification systems, with respect to all the parameters. This last
method appears to convey complementary information to the scores themselves, which when added as input to
the fusion algorithms, generates statistically significantly better performance on new data.

On the other hand, for some identity verification applications, it might be desirable not to take a decision
when the score given by the verification system (either unimodal or multimodal) is uncertain. Confidence
information could then be used to select a threshold under which no decision is taken (the decision is then
delayed or put into the hands of a human decider). The second method proposed in this paper, which estimates
the confidence on the decision using a non-parametric algorithm, has been used for this purpose and results
show that overall performances are indeed enhanced when only a small fraction of the accesses are referred to
a human decider.

In the next section we first introduce the reader to the problem of identity verification, based either on
voice (hence, speaker verification) or face image (face verification). Afterward, in section 3 we explain how
fusion algorithms could be used to enhance the decision of unimodal identity verification systems. In section 4,
we propose three different methods that estimate a confidence measure based either on the decisions of the
unimodal systems or on their structure. In section 5, we propose an experimental comparison of the use of
these confidence measures to enhance the quality of the decisions taken by the fusion algorithms or simply
to provide a confidence measure on the decisions taken. We compare three different confidence measures, as
well as three different fusion algorithms, on the well-known benchmark database XM2VTS using its associated
Lausanne protocol. Finally, we analyze the results and conclude.

2 Identity Verification

The goal of anautomatic identity verification system is to either accept or reject the identity claim made by a
given person. Such systems have many important applications, such as access control, transaction authentica-
tion (in telephone banking or remote credit card purchases for instance), voice mail, or secure teleworking. A
good introduction to identity verification, and more specifically to biometric verification can be found in [20].

An identity verification system has to deal with two kinds of events: either the person claiming a given
identity is the one who he claims to be (in which case, he is called aclient), or he is not (in which case, he is
called animpostor). Moreover, the system may generally take two decisions: eitheraccept theclient or reject
him and decide he is animpostor.

Thus, the system may make two types of errors:false acceptances (FA), when the system accepts an
impostor, andfalse rejections (FR), when the system rejects aclient. In order to be independent on the specific
dataset distribution, the performance of the system is often measured in terms of these two different errors, as
follows:

FAR �
number of FAs

number of impostor accesses
� (1)
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FRR�
number of FRs

number of client accesses
� (2)

A unique measure often used combines these two ratios into the so-calledHalf Total Error Rate (HTER) as
follows:

HTER�
FAR� FRR

�
� (3)

Most verification systems output a score for each access. Selecting a threshold over which scores are
considered genuine clients instead of impostors can greatly modify the relative performance of FAR and FRR.
A typical threshold chosen is the one that reaches theEqual Error Rate (EER) where FAR=FRR on a separate
validation set.

Another method to evaluate the performance of a system is through the use of the so-calledReceiver Op-
erating Characteristic (ROC) curve, which represents the FAR as a function of the FRR. A more interesting
version of the plot is the DET curve, which is a non-linear transformation of the ROC curve in order to make
results easier to compare. The non-linearity is in fact a normal deviate, coming from the hypothesis that the
scores of client accesses and impostor accesses follow a Gaussian distribution. If this hypothesis is true, the
DET curve should be a line. Figure 3 shows examples of DET curves.

In the following subsections, we briefly introduce the two unimodal identity verification systems used in
the present study.

2.1 Baseline Speaker Verification System

Classical speaker verification systems are based on statistical models. We are interested in� �� ���� the prob-
ability that a speaker�� has pronounced the sentence�. Using Bayes theorem, we can write it as follows:

� ������ �
�������� ����

����
� (4)

To decide whether or not a speaker� � has pronounced a given sentence�, we compare� �� ���� to the
probability that any other speaker has pronounced�, which we write� � ������. When� � ������ is the same
for all clients��, which is the case in this paper, we replace it by a speaker independent model� ����� where
� represents theworld of all the speakers. The decision rule is then:

if � ������ � � ����� then� was generated by��� (5)

Using equation (4), inequality (5) can then be rewritten as:

�������
������ �

� ���

� ����
� Æ� (6)

where the ratio of the prior probabilities is usually replaced by a thresholdÆ � since it does not depend on�.
Taking the logarithm of (6) leads to thelog likelihood ratio:

��	 �������� ��	 ������ � ��	 Æ� � 
�� (7)

To implement this, we need to create a model of����� �� for every potential speaker��, as well as aworld
model ������, and then we need to estimate the threshold
 � for each client��. In fact, this threshold is often
forced to be the same for each client due to the lack of data to estimate it adequately. In this paper, the decision
function (and thus the threshold) is replaced by the fusion process described in section 3.

The most used model, in the context of text-independent speaker verification, is the Gaussian Mixture
Model (GMM) with diagonal covariance matrix. In order to use such a model, we make the (often false)
assumptions that the frames of the speech utterance are independent from each other and the features in each
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frame are uncorrelated: the probability of a sequence� � �� ����� � � � ��� � given a GMM with� Gaussians
is computed as follows

���� �

��

���

����� �

��

���

��

���

�� � � ���������� (8)

where�� is the weight of Gaussian� ���������� with mean�� � � �
where� is the number of features and

with standard deviation�� � � �
. GMMs are usually trained with the EM algorithm [7] in order to maximize

the likelihood of the data. Moreover, as the number of client accesses if often too small to train adequately
client GMMs from scratch, adaptation methods are often used [8], taking the world model parameters as prior
over the client parameters.

In the experiments reported in this paper, the sentences	 were preprocessed using 16Mel Frequency
Cepstrum Coefficients (MFCC) as well as their first derivative; moreover the client models were trained using
the Bayesian MAP adaptation approach, starting from the world model.

2.2 Baseline Face Verification System

The classical face verification process can be decomposed into several steps, namelyimage acquisition (grab
the images, from a camera or a VCR, in color or gray levels),image processing (apply filtering algorithms in
order to enhance important features and to reduce the noise),face detection (detect and localize an eventual face
in a given image) and finallyface verification itself, which consists in verifying if the given face corresponds
to the claimed identity of the client.

In this paper, we assume (as it is often done in comparable studies, but nonetheless incorrectly) that the first
three steps have been performed perfectly and we thus concentrate on the last step, namely the face verification
step. A good survey on the different methods used in face verification can be found in [6, 21].

Our face verification method is based on Multi-Layer Perceptrons (MLPs) [4, 9]. For each client, an MLP
is trained to classify an image to be either the given client or not. The input of the MLP is a feature vector
with 396 dimensions corresponding to the downsized gray level face image and to the RGB (Red-Green-Blue)
skin color distribution of the face (Figure 1): first, the located face is cropped, downsized to a�x�� image
and enhanced usingimage processing algorithms; second, skin color pixels are filtered, from the sub-image
corresponding to the located face, using a fast look-up indexing table of skin color pixels; then, for each color
channel, a histogram is built using�� samples.

Figure 1: An MLP for face verification using the image of the face and the distribution of the skin color.

The output of the MLP is either 1 (if the input corresponds to a client) or -1 (if the input corresponds to
an impostor). The MLP is trained using both client images and impostor images, often taken to be the images
corresponding to other available clients (in the present study, we used the other 199 clients of the XM2VTS
database, described in section 5.1).
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Finally, the decision to accept or reject a client access depends on the score obtained by the corresponding
MLP which could be either above (accept) or under (reject) a given threshold, chosen on a separate validation
set to optimize a criterion such as the EER.

3 Fusion Algorithms

Fusion algorithms are methods which goal is to merge the prediction of many algorithms in order to hope for a
better average performance than any of the combined methods alone.

It has already been shown in many research papers that combining biometric verification systems enables
to achieve better performance than techniques based on only one biometric modality [1, 5, 14, 13]. More
specifically, audio-visual biometric verification systems (based on the face and the voice of an individual) have
also been extensively studied [2, 3].

Most classification machine learning algorithms can be used for fusion purposes. A good introduction to
machine learning algorithms can be found in [4, 9, 19]. In this study, we selected the following fusion algo-
rithms: Multi-Layer Perceptrons (MLPs) [4, 9], Support Vector Machines (SVMs) [19], and Bayes Classifiers
using Gaussian Mixture Models (GMMs) as density estimators [4]1.

For each of these methods, we assume that we have access to a training dataset of pairs�� �� 
�� where�� is a
vector containing the scores or decisions of the basic modalities (such as speaker and face verification modules)
as well as eventual confidence informations over these scores, while
 � is the class of the corresponding accesses
(for instance,client or impostor, often coded respectively as 1 and -1).

MLPs are trained to minimize the mean squared error between the obtained output and the desired output
(-1 or 1); SVMs are trained to maximize the minimum margin between the correct decision and the no-decision
hyperplane; Finally, Bayes Classifiers are trained by separately maximizing the likelihood of the client accesses
on one GMM and the impostor accesses on a second GMM.

Each of these methods require to select one or morehyper-parameters in order to give its optimal perfor-
mance. These hyper-parameters often control thecapacity [19] of the model, which is related to the size of the
function space spanned by the model. These hyper-parameters should be selected according to the number of
training examples and the complexity of the training problem. For MLPs, this amounts to selecting the number
of hidden units and/or the number of training iterations; for SVMs, it means selecting the parameter of the ker-
nel chosen, such as the variance of the Gaussian kernel; for Bayes Classifiers using GMMs, it means selecting
the number of Gaussians in the mixtures corresponding respectively to client and impostor models.

As there is only one training set available in general, the same data should be used to select the hyper-
parameters of the models, to train them, and finally to select a decision threshold that optimizes a given criterion
(in this paper, we used the EER). In order to do all this with the same dataset without risks of optimistic bias, a
cross-validation method had to be used. The method used in this paper was the following:

1. For each value of the hyper-parameter of the fusion model,

(a) perform a K-fold cross-validation in order to obtain unbiased scores for each train examples (in our
case,� � , hence we train a model with the first�

�
of the dataset, and save the scores of the last

�

�
, then we do the same for each of the 4 other partitions� �

�
� �
�
�, in order to finally obtain scores for

the whole dataset that were taken by a model that was not trained on the corresponding examples);

(b) after a random shuffling of the data, perform a K-fold cross-validation (� � ) on the obtained
scores in order to compute for each partition the HTER corresponding to the threshold that opti-
mized the EER on the other partitions;

(c) the performance of the hyper-parameter corresponds to the average of these HTER, which are
unbiased.

2. Select the value of the hyper-parameter that has the best average HTER performance.

1In this paper, we will assume that the reader is familiar with these models. More information could be found in the already cited
references [4, 9, 19].
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3. Using the unbiased scores corresponding to the best model, select the threshold that optimizes EER on
the whole training set.

4. Train the best model over the whole training set.

5. Apply the best model (found is step 4) on the test set and use the best threshold (found in step 3) to take
the decisions.

As the database used for the experiments (XM2VTS) is highly unbalanced (the number of impostor ac-
cesses is more than one hundred times higher than the number of client accesses), special care should be taken
during cross-validation in order to maintain the original class distribution in each fold of the K-fold procedure.
Moreover, as some of the fusion algorithms strongly depend on random initialization (such as MLPs), it is
advisable to run each training experiment more than once during the selection and the estimation process. In
this study, we set the repeat factor to 5 during the selection process and all the results reported are averaged
over 10 experiments.

4 Confidence Estimation

One can think of the fusion algorithms as a way to somehowweight the scores of different unimodal verification
systems, eventually in a nonlinear way, in order to give a better estimation of the overall score. If one had access
not only to the scores but also to a confidence measure on these scores, this measure could probably help in the
fusion process. Indeed, if for some reason one unimodal verification system was able to say that its score for
a given access was not very precise and should not be taken for granted, while a second unimodal verification
system was more confident on its own score, the fusion algorithm should be able to provide a better decision
than without this knowledge.

Hence, in this section, we propose three methods that can be used to estimate a measure of confidence over
a score. In the experimental section, these three methods will be compared to see if they are indeed providing
useful information that enhances the overall performance of the fusion algorithms.

Moreover, these methods could also be used to measure the confidence of the fusion algorithm decisions
themselves. For some applications, it might be important to take decisions only when a high level of confidence
is provided. At least one of the methods presented in this section could be used for this purpose.

4.1 Gaussian Hypothesis

One of the simplest method to estimate a confidence over a score is to do a Gaussian hypothesis on the score
distribution. More specifically, suppose that all the scores� from genuine clients have been generated by the
same Gaussian distribution� ����� ��� and all the scores� from impostors have been generated by another
Gaussian distribution� ����� ���. Then, a good measure of confidence for a given score could be related to
the distance between the probability that the score is from a client and the probability that the score is from an
impostor. For instance, one could simply compute the following measure� ��	

:

���	

��� � �� ����� ����� ����� ���� � (9)

In order to estimate the parameters��� ��� �� ��� we simply use a training set of scores with their associ-
ated tag (client or impostor).

The first step, however, should be to verify whether the client scores and the impostor scores could have
indeed been generated by two separate Gaussians. In order to verify whether a given set of data have been
generated by a given distribution, one can use one of the many statistical tests available. In this study, we used
the Kolmogorov-Smirnov statistics��:

�� �
�
� ���




�� ���� �� � ������ (10)
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where� is the number of examples,����� is the empirical distribution of the scores and� ���� �� is the hy-
pothesized Gaussian. Under the null hypothesis of Gaussian data, the asymptotic distribution of�� [15] is

���
���

���� � �� � �� �

��

���

������� ������������ (11)

The sum can be closely approximated with its first few terms, because of its exponential convergence.
Unfortunately but as expected, the distribution of scores coming from the modalities do not appear to be

always Gaussian. In Figure 2, we show the cumulative distribution of the scores obtained by clients from
configuration I of the XM2VTS database (described in section 5.1) using the face verification modality as well
as the nearest potential Gaussian cumulative distribution. Indeed, the Kolmogorov-Smirnov statistics gives a
�� probability of the data to be Gaussian.
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Figure 2: Cumulative distribution of the face verification client accesses (XM2VTS database, configuration I,
evaluation set) compared to the nearest Gaussian cumulative distribution.

4.2 Non Parametric Estimation

In the (probable) event of non Gaussian scores, one can try to estimate the confidence using a non parametric
model. In the following we propose a simple idea that makes no hypothesis on the distribution of the scores.

Using a training set of scores and their associated tag (client or impostor), partition the space of the scores
into� distinct subspaces. The partition process could be uniform over the score space (each partition has the
same size) or over the score distribution (each partition contains the same number of training scores; in the
experiments reported here, we have chosen this method). In both cases, simply compute for each subspace
��� the statistics of interest. In our case, we could compute��, the number of errors that were made in the
subspace (false acceptances and false rejections), divided by the total number of scores in the subspace:

������� �
number of FAs� number of FRs in���

number of accesses in���
� (12)

This number gives indeed a simple confidence on the quality of the scores in�� �. Turning to the test set,
when one wants to compute the confidence of a given score�with unknown tag (client or impostor), one simply
finds the subspace��� corresponding to the given score and returns the associated value� ���������.
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4.3 Model Adequacy

Taking into account that most unimodal verification systems (at least those we are indeed using) are based on
some kind of gradient method optimizing a given criterion (for instance, GMMs used in speaker verification
are trained to maximize the likelihood and MLPs used in face verification are trained to minimize the mean
squared error), we propose to compute the gradient of a simple measure of confidence of the decision of the
model given an access with respect to every parameters of the model. The average amplitude of such gradient
gives an idea of theadequacy of the parameters to explain the confidence of the model on the access. Hence, a
global measure�� could be

������ �
�

�

��

���

����
�����

���

���� (13)

where�� is one the� parameters of the model and���� is a simple measure of confidence of the model given
access�.

For our speaker verification system based on GMMs, we chose

������ �
�

��

���

���

����
� ��	 �������

���

�����
�

��

���

���

����
� ��	 ������

���

���� (14)

where�� is the number of parameters in the claimed client model� � and�� is the number of parameters in
the world model�. Note that in this case, the measure is strongly related to theFisher score [12].

For our face verification system based on MLPs, the best measure we found was

������ �
�

�

��

���

����
���� ����

���

���� (15)

where� is the number of parameters of the model and��� ��� is the output obtained on access�.

5 Experimental Evaluation

In this section, we present an experimental comparison between different fusion algorithms, with and without
confidence information, in order to assess the quality of such information. This comparison has been done
using the multimodal XM2VTS database [17], using its associated experimental protocol, theLausanne Proto-
col [16].

5.1 Database and Protocol

The XM2VTS database contains synchronized image and speech data recorded on 295 subjects during four
sessions taken at one month intervals. On each session, two recordings were made, each consisting of a speech
shot and a head rotation shot.

The database was divided into three sets: a training set, an evaluation set, and a test set. The training set
was used to build client models, while the evaluation set was used to compute the decision (by estimating
thresholds for instance, or parameters of a fusion algorithm). Finally, the test set was used only to estimate the
performance of different verification algorithms.

The 295 subjects were divided into a set of 200 clients, 25 evaluation impostors, and 70 test impostors.
Two different evaluation configurations were defined. They differ in the distribution of client training and client
evaluation data. Both the training client and evaluation client data were drawn from the same recording sessions
for Configuration I which might lead to biased estimation on the evaluation set and hence poor performance
on the test set. For Configuration II on the other hand, the evaluation client and test client sets are drawn from
different recording sessions which might lead to more realistic results. This led to the following statistics:
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� training client accesses: Conf. I: 3 per client, Conf. II: 4 per client

� evaluation client accesses: Conf. I - 600, Conf. II - 400

� evaluation impostor accesses: 40’000 (25 * 8 * 200)

� test client accesses: 400 (200 * 2)

� test impostor accesses: 112’000 (70 * 8 * 200)

Finally, note that in order to train a world model for the speaker verification system, we used additional data
from a separate speech database, POLYCOST [10], which was already used in previous published experiments
on XM2VTS.

5.2 Baseline Results

In this section, we present two different baseline results. First in Table 1, we show the performance of each
modality alone, namely speaker verification (Voice) and face verification (Face). For both, we give results for
configurations I and II, and for each configuration, FAR represents thefalse acceptance rate, FRR is thefalse
rejection rate, while HTER is thehalf total error rate. Note that the performance of the speaker verification
system was statistically significantly better than the face verification system (with more than 99% confidence)
for both configurations. Note also that these results are competitive with recent results (using global thresholds)
published on the same database (see for instance [18, 2] where the best face HTER was 5.9 on configuration I
and 3.65 on configuration II, while the best voice HTER was 3.3 on configuration I and 4.89 on configuration
II) 2.

Configuration I Configuration II
Modalities FAR FRR HTER FAR FRR HTER

Face 2.70 3.75 3.22 1.98 3.25 2.61
Voice 2.31 1.50 1.91 2.00 1.50 1.75

Table 1: Performance on the test set of different unimodal verification systems

Then in Table 2 we present the results of three different fusion algorithms, namely SVMs using Gaussian
kernel, MLPs and Bayes Classifiers using GMMs. This table should convince the reader that fusion is a very
important process since all three methods performed statistically significantly better than each modality alone,
for both configurations (with more than 99% confidence). On the other hand, all three methods gave similar
performance with a slight overall advantage to SVMs. Note also that these results are better, at least for
configuration II, than those published in [2] (where the best HTER obtained was 1.63).

Fusion Configuration I Configuration II
Method FAR FRR HTER FAR FRR HTER

SVMs 0.63 0.75 0.69 0.09 0.50 0.30
MLPs 0.61 1.13 0.87 0.20 0.35 0.27
Bayes 0.66 0.78 0.72 0.15 0.45 0.30

Table 2: Average performance on the test set of different fusion classifiers

2Note that, using a special combination algorithm, ECOC [11], normally designed for robust multiclass classification tasks, researchers
were able to obtain HTER as low as 0.80 on the face verification task using configuration I; no comparable results were published for
configuration II.
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5.3 Adding Confidence to Enhance Decisions

In this section, we present a comparative study between the three confidence estimation methods presented
in section 4 when the estimates are computed for each modality alone, then added to the input vector of the
fusion algorithms. Table 3 shows the various results, for each confidence estimation method and each fusion
algorithm, on both configurations.

Confidence Fusion Configuration I Configuration II
Method Method FAR FRR HTER FAR FRR HTER

Gaussian SVMs 0.62 0.75 0.69 0.10 0.50 0.30
Hypothesis MLPs 0.67 0.90 0.78 0.20 0.33 0.26

Method Bayes 0.69 1.30 0.99 0.24 0.53 0.38

Non SVMs 0.49 1.08 0.78 0.10 0.53 0.31
Parametric MLPs 0.58 1.05 0.81 0.29 0.40 0.35

Method Bayes 0.87 0.75 0.81 0.38 0.33 0.35

Model
SVMs 0.60 0.75 0.67 0.27 0.25 0.26

Adequacy MLPs 0.49 1.00 0.79 0.18 0.25 0.22Method
Bayes 0.78 1.25 0.99 0.28 0.38 0.34

Table 3: Average performance on the test set of different fusion classifiers using various confidence measure
estimations

All three methods were able to enhance some of the results, either in configuration I or configuration II,
but none of the methods were systematically better than the baseline system. For instance, the model adequacy
method provide a very good performance improvement on configuration II when using either SVMs or MLPs,
while it was only slightly better on configuration I.
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Figure 3: Comparison of DET curves on the test set of XM2VTS configuration II. MLP+MA represents the
DET curve obtained with a fusion algorithm using the model adequacy confidence measure.
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In order to graphically see the improvement between the two unimodal verification systems, the best fusion
algorithm (MLP) and the best confidence measure method (MLP using the Model Adequacy measure), Figure 3
shows the corresponding DET curves for the test set of configuration II. Note that as all the fusion results
presented in the previous tables were averaged over 10 experiments, the DET curves presented in Figure 3
represent only one of these experiments for each method (the one which corresponded the most to the average).

5.4 Measuring Confidence of the Decisions

Another way to use confidence information is to compute a confidence measure of the fusion algorithm itself
and verifya posteriori if this confidence measure wasreliable. For this, we need a confidence measure that is
both intuitive for the human decider (such as a probability to take the right decision) and easy to verify. The non
parametric estimation method (section 4.2) seamed the most appropriate as it gives for each score a probability
that the associated decision is false.

Hence, we computed these probabilities for the test fusion decisions (using the baseline fusion algorithms,
without any confidence measure used as input) and then computed the average absolute distance between the
hypothesized probability and the real probability, as computed on the test set using the same idea of subspaces.
Results are given in Table 4.

Fusion Average Probability Error
Method Configuration I Configuration II
SVMs 0.0021 0.0005
MLPs 0.0023 0.0009
Bayes 0.0021 0.0010

Table 4: Average distance between the predicted and obtained confidence estimation on the test set

These results show that the confidence measures produced by the non parametric method were on average
different from thereal confidence (as estimateda posteriori on the test set) by less than 0.25%, which let us
think that they are indeed reliable. Hence, while this method did not always produce useful information to
enhance the fusion algorithm performances, it can still be used to produce precise confidence measures on the
fusion decisions.

An interesting application of this measure consists in setting aside all scores having an unreliable confidence
measure and perform authentication only on the other ones (the unreliable scores could then be referred to a
human decider). Figure 4 shows how the HTER on configuration I could be enhanced by using various values
of such a threshold, as well as the percentage of accesses that were set aside. This means that, for instance, we
could enhance the HTER from 0.70 to less than 0.45 (a significant improvement) by setting aside 0.64% of the
accesses (which represent in fact 719 accesses).

6 Conclusion

In this paper we have presented three different approaches to estimate a confidence value over identity verifica-
tion decisions. These approaches could either be used as additional inputs to a fusion algorithm or directly to
measure the confidence of the final decisions. Experimental comparisons of fusion algorithms as well as con-
fidence measures have been carried out using the XM2VTS benchmark database. Results showed that some
confidence measures were able to enhance the fusion performance, but not systematically. On the other hand,
a simple non parametric estimation of the confidence provided useful and reliable estimate of the confidence
over the fusion decisions.
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Figure 4: HTER as a function of the probability of error, as given by the non-parametric confidence measure,
and used to set aside a portion of the accesses. Results are on the test set of XM2VTS database (configuration
I, test set). The numbers in the graph represent the percentage of accesses that were set aside.
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