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Abstract. In standard automatic speech recognition (ASR), hidden Markov models (HMMs) cal-
culate their emission probabilities by an artificial neural network (ANN) or a Gaussian distribution
conditioned only upon the hidden state variable. Recent work [12] showed the benefit of condition-
ing the emission distributions also upon a discrete auxiliary variable, which is observed in training
and hidden in recognition. Related work [3] has shown the utility of conditioning the emission
distributions on a continuous auxiliary variable. We apply mixed Bayesian networks (BNs) to
extend these works by introducing a continuous auxiliary variable that is observed in training but
is hidden in recognition. We find that an auxiliary pitch variable conditioned itself upon the hid-
den state can degrade performance unless the auxiliary variable is also hidden. The performance,
furthermore, can be improved by making the auxiliary pitch variable independent of the hidden
state.
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1 Introduction

Hidden Markov models [8] calculate at each time n the likelihood of the acoustic observation z,, being
produced, given that the hidden state variable ¢, has the discrete value of k,1 < k < K:

p(znlgn = k). (1)

This is typically computed using an ANN or a Gaussian distribution, with mean pj and covariance
Mua“

P(nlgn = k) ~ N (pr, Z).- (2)

There may be information not directly available in the acoustic observation x, that may be of use
in enhancing the models. Such auxiliary information a,, which can be continuous or discrete, may
be derived from the acoustic signal or may be obtained from a secondary source [11]. ¢, and a, can
then jointly condition the emission likelihoods, replacing (1) with:

p(nlgn =k, a, = 2). (3)

In [12], a,, was defined as a discrete variable. It took a codebook of four values, each representing
a pitch range. For this case, the performance was better when the pitch was hidden in recognition
than when it was observed. However, some auxiliary information is more naturally used as continuous
information than in reducing it to discrete values, as done above. In [3], an increase in recognition
performance was observed when a continuous a, was introduced. For this case, the means of the
Gaussian distributions (2) can then be shifted using the regression weights By and the value of a,,
producing conditional Gaussians:

ﬁAHS_an\?QﬁHNV ZzﬁtwlT.m\WN“Muwvv ANC

In this work we continue with these findings by using continuous a,, in the framework of mixed BNs
(BNs that have a mizture of continuous and discrete variables). The BN formalism has previously been
presented as a statistical pattern recognition framework that is more generic than that of HMMs [10].
That is, while they are in the same family of models [9], BNs are more general in that they provide
more flexibility in changing the topology of the model and, hence, the structure of the component
distributions. With this flexibility, we address two questions:

1. Should the distribution for a,, itself be conditioned upon ¢,: p(a,|g.), or be left independent:
play,)? That is, is a,, 1L ¢, (read, “a, is independent of ¢,”)?

2. Should the distribution of z, be conditioned upon ¢, and a,, as in (3), or only upon ¢,, as
in (1)? That is, is z,, 1L ay | g, (read, “z, is conditionally independent of a,, given ¢,”)?

The contributions of this work, hence, are threefold. First, we introduce mixed BNs to ASR.
To our knowledge, this has never been done before—at least not in the more complicated case where
continuous variables can be hidden. Second, we look at an additional way to model the auxiliary
information a,, itself-that is, conditioning it upon the state variable ¢,. Third, taking advantage of
this general framework provided by mixed BNs, we show the effects of hiding the auxiliary information
.-

We begin in Section 2 by introducing the emission probabilities of z, and a, that we will be
modeling. Section 3 introduces mixed BNs as well as distributions conditioned upon both continuous
and discrete variables. Section 4 then presents the incorporation of auxiliary information graphically
in a BN. Section 5 then presents the experimental results followed by the conclusion in Section 6.
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Figure 1: Bayesian network modeling P(vy,vs,vs) = P(vy) - P(ve2) - P(vs|vy,v2).

2 Introducing Auxiliary Information

Standard HMM-based pattern recognition models p(X, @), the evolution of the observed space X =

{z1,29,...,zx} and the hidden state space @ = {q1,¢2,... ,qn} for timen =1,... N as:
N
p(X,Q) ~ : ﬁﬁ.&.z_azv : Nu@:_@zlyv, (5)
n=1

assuming time-independence for z,, and a first-order Markov assumption for g, (specifically, that ¢,
is independent of all previous variables given ¢,_1).

For incorporating the auxiliary information A = {as,as, ... ,an} to the hidden or observed space,
the modeling of p(X, A4, Q) factors as:

N
ﬁﬁy\u A, Qv ~ Eﬁﬁ.&z_nﬁu sz .ﬁﬁnﬁ_@zv .wAQz_QSIHY Amv

t=1

assuming time-independence for z, and a, and the first-order Markov assumption for g,,.
In our experiments, we present two separate ways to further relax the distribution in (6):

1. ap, independent of ¢, (an 1L gn): p(an|gn) — p(ay). Similar to that done in [3], this assumes
that the current hidden state g, does not influence the value of a,. The only thing in common
between ¢, and a, is that they jointly emit the acoustics z,,:

N
mﬁﬁ.&.z_nﬁu qn) - plan) - NuAQ:_Qzlyv (7)

2. x,, independent of ay, (z, 1L ay |qn): p(Tn|an, @n) = P(Tn|gn). This assumes that z, and a, are
two independent processes that are jointly emitted by ¢,. This is equivalent to using a standard
HMM with a single feature vector comprised of the concatenation of x, and a, (assuming a
diagonal covariance matrix).

N
mﬁ@.:_ezv “plan|gqn) - P(gnldn—1) (8)

t=1

3 Mixed Bayesian Networks

A BN [1], or directed graphical model-see Figure 1, is a probabilistic model composed of three items:
1. aset of variables V = {vy,... ,0p,... ,ow}

2. a directed acyclic graph (DAG), with a one-to-one mapping between each of its vertices and
each v, €V

3. for each v,, € V, a local probability distribution which is conditioned upon the values of its
parents in the DAG: P (v, |parents(vy)).
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Figure 2: BN for ASR (probabilities omitted) with auxiliary information [13], with N = 3. In
System 3, ¢, and a, are not connected; in System 4, a, and z, are not connected. a, was not
included in System 1.

The joint distribution of V' is then defined as the product of all the local probability distributions:

w
PV)= : P(vy|parents(vy,)) 9)

w=1

The following are the forms that each local probabilities in (9) can take, depending on whether v,,
is continuous or discrete and on whether its parents are continuous, discrete, or mixed:

e Continuous v,

— Continuous parents Z - conditional Gaussian:
p(vw|Z = 2) ~ N (i + BL 2,5,,) (10)
— Discrete parents J - Set of Gaussians:
{p(vwl] =7) ~ N (pwj> Zwi) b (11)
— Mixed parents - Set of conditional Gaussians:
{pvolJ =5, Z=2)~N(tw;j + Byj 2, Buj) s (12)
e Discrete vy,

— Continuous or mixed parents - Not defined in [5]

— Discrete parents - table of probabilities

Thus, the distribution for a discrete variable is only defined if all of its parents are discrete. A
continuous variable can have continuous, discrete, or mixed parents.

We use the BN inference algorithm in [5] to compute P(v,,|0), the posterior marginal distribution
of v, given all of the observations O, as well as P(O|V'), the likelihood of the observations. Any
variable can be observed, hidden, or partially observed, regardless of whether it is continuous or
discrete valued. The computed posterior marginal distributions can be used for the expected counts
in expectation-maximization (EM) training [4] for learning the discrete probabilities P(-), the means
1, the regression weights B, and the covariances X.

4 Topologies

Figure 2 presents the BN, based on [13], for an isolated word recognition task. It contains the following
variables:
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e Deterministic variables

— Pos, - The position (sub-model index) in the word model.

— @n - The hidden phoneme state mapped to the given position.
e Random variables

— Trans, - The presence of a change of sub-models (transition) between two time frames.
— ay, - The auxiliary information.

— x, - The acoustics.

The upper three variables in Figure 2, Pos,,, Trans,, and ¢,, are referred to as the control layer as
they “control” the permitted sequences of sub-models.

5 Experiments

5.1 Systems

Using the PhoneBook speech corpus [7] with the small training set defined in [2], we train four mixed
BN systems to do speaker-independent, task-independent, isolated-word recognition.

System 1 z,, only, based on (5), as in a standard HMM
System 2 z, & a,, based on (6)
System 3 z, & a,, based on (7), with a, 1L g,

System 4 z, & a,, based on (8), with z,, 1L a, | ¢,, equivalent to a standard HMM with independent
features x,, and a,

There are 41 context-independent phones in these systems, each modeled by three hidden phoneme
states; with the initial silence model and end silence model, there are 41 * 3 + 2 = 125 hidden state
values for ¢,. Both z, and a,, are modeled using single (conditional) Gaussians for these initial tests;
future extensions of the models would use multiple (conditional) Gaussians.

5.2 Features

Similarly to [13], z,, is the mel-frequency cepstral coefficients (MFCCs), which are extracted from the
speech signal, sampled at 8 kHz, using a window of 25 ms with a shift of 8.3 ms for each successive
time frame. Cepstral mean subtraction and energy normalization are performed. Ten MFCCs plus Cy
(the energy coefficient) as well as the deltas (first-derivatives) of those eleven coefficients are computed
for each time frame.

ay, is defined only as pitch in this work and is estimated using the simple inverse filter tracking
(SIFT) algorithm [6], which is based on an inverse filter formulation. This method retains the advan-
tages of the autocorrelation and cepstral analysis techniques. The speech signal is prefiltered by a low
pass filter with a cut-off frequency of 800 Hz, and the output of the filter is sampled at 2 kHz before
computing the inverse filter coefficients using the Durbin algorithm.

5.3 Results

Training was done using expectation-maximization (EM) training, using a convergence criterion of
stopping one iteration after the log-likelihood of the training data increased by less than 0.1%. As
shown in Table 1, each system with auxiliary information was tested two times using the test set
defined in [2]: (1) with both X and A observed and (2) with X observed and A hidden.
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Observed A | Hidden A
System 1 19.0%
System 2 49.0% 21.0%
System 3 17.5% 17.6%
System 4 54.2% 19.1%

Table 1: Word error rate (WER) for small vocabulary (75 words) isolated word recognition using the
systems in Section 5.1. Those trained with A were tested twice: with observed and hidden A.

6 Conclusion

First, a,, such as the pitch used here, can be hurtful to the model when introduced with a dependency
upon ¢,. This is illustrated in Systems 2 & 4, which have very poor performance with observed
A. However, these same systems perform almost the same as the baseline System 1 (statistically
equivalent, in the case of System 4) when the A are hidden and, therefore, marginalized out. This can
potentially be extended to the actual elements within x,. That is, if particular elements within z,,
are actually hampering recognition, perhaps they should be marginalized out as well in recognition.

Second, a,,, such as the pitch used here, can be beneficial to the model when introduced independent,
of g,. This is illustrated in System 3, which performs significantly better than all of the other systems.
Furthermore, in contrast to Systems 2 & 4, the performance of System 3 does not degrade with
observed A. So, likewise, if an element of z,, is found to be hurting recognition, perhaps the recognition
would be better if the element were put into the conditional part of the emission distribution and made
independent of the state.

Finally, modeling the distributions with single (conditional) Gaussians provides insights into the
strengths and weaknesses of different ways to model auxiliary information. However, multiple (con-
ditional) Gaussians will need to be incorporated into future models to make them more comparable
to state-of-the-art ASR systems. Furthermore, although the performance improvement here is not
dramatic, more significant improvement should be expected for the case of spontaneous speech and
for other auxiliary variables.
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