TODE : A DECODER FOR
CONTINUOUS SPEECH
RECOGNITION

Darren C. Moore ?

IDIAP-CowMm 02-09

IDIAP COMMUNICATION

DECEMBER 2002

Dalle Molle Institute
for Perceptual Artificial
Intelligence o P.O.Box 592 e
Martigny e Valais @ Switzerland

phone +41 —27—721 77 11
fax +41 —27—-721 77 12

e-mail secretariat@idiap.ch

2 darren.moore@idiap.ch

internet http://www.idiap.ch

IDIAP-Cowm 02-09 1

1 Overview

This document describes a new continuous speech decoder, TODE, which is compatible with the
Torch machine learning software library. A brief theory of speech recognition is presented followed by
a detailed description of the architecture of TODE and the components used in its implementation.
Results are presented from experiments that assessed the performance of TODE and compared it with
two other commonly-used decoders.

2 Introduction

TODE (TOrch DEcoder) is a continuous speech recogniser based on a time-synchronous beam-search
algorithm that is compatible with the Torch machine learning library [1]. It’s purpose is to satisfy the
general speech decoding needs of researchers at IDIAP and in the wider speech community. TODE
has been designed to be a flexible recogniser with a straightforward implementation, that overcomes
some of the limitations of other popular decoders while maintaining an acceptable level of efficiency.
This document begins with a brief overview of the theory of decoding. The architecture and
implementation of TODE is then discussed in detail. Experimental results comparing the performance
of TODE to that of other decoders is then presented, followed by a discussion of future directions.

3 Speech Decoding Theory

The purpose of a speech recogniser is to find the most likely word sequence, Wopt = w1. . . Wy, . . War,
given a sequence of acoustic observations, X = zy...x;...xp. That is,

Wopy = arg max P(W].X) (1)

The solution to the above equation cannot be computed directly, so Bayes theorem of conditional
probabilities is applied to give,

PX|W)P(W)

Wopt = arg max PIX) (2)

The denominator in (2) does not affect the choice of word sequence, W, and can therefore be
ignored during decoding. Thus the solution requires two probability distributions, the acoustic model,
P(X|W), and the language model, P(W), along with an appropriate search strategy.

3.1 Acoustic Model

Typically, hidden Markov models (HMMs) are used to model the production of a sequence of acoustic
observations corresponding to a particular utterance. The HMM for a complete utterance is con-
structed as a concatenation of word-level HMM’s.

Using such a HMM framework, the production of a sequence of acoustic observations given a
particular string of words depends on the path, S = s;...ss...s7 that is taken through the states of
the HMM. The acoustic likelihood, P(X|WW), can then be written as

P(X|W) =3 P(X,5|W) (3)
s
Instead of summing over all possible sequences of states, the acoustic likelihood is often approxi-
mated by considering only the most probable state path (the Viterbi approzimation) [2] . Using the
approximated acoustic likelihood, Equation 2 can be reformulated as,

2 IDIAP-CoM 02-09

Wopt = arg HlV%X{P(W) - max P(X,S|W)} (4)

3.2 Language Model

The language model needs to estimate the (prior) probability of a given sequence of words, P(w1. . .wp,. -

This probability is independent of the acoustic observations and serves to restrict the ways in which
word models are concatenated to model entire utterances.

The number of possible word sequences grows exponentially with the length of the word sequence,
which makes the full computation of P(W) a formidable task even for small values of M. Therefore,
the language model probabilities are usually approximated using N-gram models, typically with NV = 2
(bigram model) or N = 3 (trigram model):

P(wp|wy.. wm—1) = p(Wm|Wn—Nt1-. Wn—1) (5)

3.3 Search

The search space associated with (4) can be viewed as a massive network consisting of the states of
all word-level HMM’s, with a transition from the final state of each word model to the initial states
of all word models.

The problem is to take a sequence of acoustic observations and the network of HMM states, and
then search for the most likely path through the network. From Equation 4, the search must be
performed at both state and word levels. Thus, the goal is to associate the acoustic observation at
each time step with the state-word pair that results in the globally most probable path.

A well-known algorithm for performing this search is the Viterbi or Dynamic Programming (DP)
algorithm [3, 4, 2]. At each time frame, (ie. for each acoustic observation), the algorithm examines
every state in the network, and hypothesises whether that state forms part of the most likely state path.
The algorithm is based on a recursion that exploits the Viterbi approximation in (4) and Bellman’s
Principle of Optimality (ie. that the global best path includes the best path to an intermediate state).
At each time step, the number of paths considered by the search is limited by recombining hypotheses
at both the state and word levels.

Each word-level HMM is assumed to consist of a number of emitting states as well as an initial
and final state that are both non-emitting. The notation (s;w) is used to denote any state, s, of the
HMM associated with word w. (s = 0;w) and (S;w) denote the initial and final states respectively.
If the assumption is made that a transition into an emitting state (s';w) occurred at time ¢ — 1, then
at time ¢, (s';w) will emit the acoustic observation z; with a certain probability, and a transition to
a state, s will occur according to the topology of the HMM.

Using the above notation and assumptions, the DP recurrence equation for word-interior states is,

Qt, (5;w)) = max{p(zs, (s;w)|(s';w))-Q(t = 1, (s";w))} (s'#0) (6)

where Q(t —1, (s';w)) an accumulated ‘score’ at the state, (s';w), at time t— 1. p(z¢, (s;w)|(s"; w))
is the joint probability of emitting the acoustic observation, z;, from state, (s’;w), and then making
a transition to the state (s;w).

The DP equation for transitions between words is,

Q(t, (s = 0;w)) = max{p(w|v)-Q(t, (S;v))} (7)

.wM).

IDIAP-Cowm 02-09 3

where p(w|v) is the language model probability of the word, w, following the word, v. Note that
the time index, ¢, is the same on both sides of the equation because transitions between non-emitting
states in a HMM occur instantaneously without producing an acoustic observation. The transition
from the initial state to successor emitting states within a word model occurs in a similar manner,

Q(t, (s;w)) = max(. Q(t, (s;w)) , p((s;w)|(s = 0;w))-Q(t, (s = O;w))) (8)

where p((s;w)|(s = 0;w)) is the probability associated with the transition from the initial state to
an emitting state in the same word model. It is assumed that the calculation of (6), (7) and (8) at
each time step occurs in the order presented.

The basic DP algorithm that uses (6), (7) and (8) is

e for each time step, ¢

— for all (s;w) (except initial states)
* calculate Q(t, (s;w)) using (6)
— for all initial states, (s = 0;w)
x calculate Q(t, (s = 0;w)) using (7)
x for all successors of (s = 0; w)
- evaluate (8) and update if necessary

The algorithm propagates hypotheses through the state network. Information about the path
each hypothesis takes through the state network is stored with the hypothesis, so that after the DP
algorithm has processed all input acoustic observations, the most probable word sequence (or state
sequence) can be recovered. This word sequence corresponds to the Wop, in (4).

4 Other Decoding Techniques

4.1 Beam Search Decoding

Beam search decoding is a variant of the DP algorithm that exploits its time synchronicity (ie. that
the hypotheses in all states are updated in parallel at each time instant). This allows the hypothesis
score at a particular state to be directly compared with the hypothesis scores in all other states at
a given time point in time [5]. In beam search decoding, a constant beam-width is specified and a
pruning threshold is calculated at each time step by subtracting the constant from the most promising
hypothesis score. Any hypotheses with scores outside of the beam are deactivated and removed from
further consideration.

With reasonable beam widths, this technique results in considerable computational savings with
a comparatively small reduction in recognition accuracy.

The HTK decoder, HVite [6], uses a beam search decoding approach.

4.2 Stack Decoding

The dynamic programming and beam search techniques are time-synchronous, because active hypothe-
ses are extended in parallel at each time instant, and comparisons are only made between hypotheses
of the same age. This constitutes a breadth-first search of the state space.

Stack (or A*) decoding techniques are time-asynchronous, depth-first methods in which the best
hypothesis (regardless of age) is selected and extended until it becomes unpromising. The extension
is then applied to next best hypothesis, and so on until a complete hypothesis spanning the entire
utterance is obtained [7, 8].

4 IDIAP-CoM 02-09

Hypotheses with different ages are compared by estimating their total likelihood (ie. the score
obtained by extending a partial hypothesis until it spans the entire utterance). The hypothesis with
the best total likelihood estimate is selected for extension. For a hypothesis, h, at time, ¢, the total
likelihood estimate is given by,

fu(t) = an(t) + by (t) (9)

where ay(t) is the score of the hypothesis at time, ¢, and b} () estimates the best possible score
obtained by extending the hypothesis over the remainder of the utterance. If b (¢) is an upper bound
on the exact likelihood, by (t), then the stack decoding process is admissible (ie. is guaranteed to find
the optimal complete hypothesis) [9].

A priority stack data structure is used during decoding to keep track of the most promising
hypotheses. The basic operation of the stack decoder is [7]:

1. initialise the stack with a null hypothesis
2. pop the hypothesis with the best total likelihood estimate from the stack
3. if hypothesis is not at end-of-utterance

(a) perform acoustic & LM fast matches to obtain a short list of possible extensions
(b) for each word in the short-list

i. perform acoustic and language model detailed matches to compute the total likelihood
estimate for the new hypothesis

ii. push the new hypothesis onto the stack
4. if hypothesis is at end-of-utterance, output recognised sentence and terminate
5. go to 2

The Noway decoder [8] uses a modified stack decoding algorithm and is designed to work within
a hybrid ANN/HMM framework.

5 TODE Architecture

5.1 Overview

The speech recognition theory presented in Section 3 implies the general system architecture in Figure
1. Note that the acoustic model has been divided into two parts, a sub-word models component and
a pronunciation lexicon component. In practical systems, it is infeasible to train separate HMM’s for
each word, so words are typically decomposed into sub-word units (eg. phonemes) and models are
trained for each unique sub-word unit. The pronunciation lexicon then defines how sub-word models
are combined to form complete word models.

The high-level architecture of TODE is based on Figure 1 and the main components (ie. C++
objects) used in its implementation are included in Figure 2. The following subsections describe each
component.

The Beam Search decoding technique was chosen for the initial decoder implementation because it
is well-suited to both small and medium vocabulary recognition tasks, and functions reasonably well
for large vocabulary tasks.

IDIAP-CowMm 02-09

Speech Input

Acoustic
Analysis

X

Sub-word Models

P(X|W)

Decoder
Pronunication Lexicon

arg maxyy P(X|[W)P(W)

P(W)

Language Model

Recognised Word Sequence

Figure 1: General speech recogniser architecture

Output Results Input Data Phonelnfo
3 Lexiconinfo -
DecoderBatchTest . !
i Vocabulary 3
DecoderSingleTest
PhoneModels
LinearLexicon
BeamSearchDecoder
LanguageM odel
Recognised Word Sequence

Figure 2: TODE high level architecture

6 IDIAP-CoM 02-09

5.2 Phonelnfo

The Phonelnfo object is a simple object containing a list of the names of the phonemes used within
the recogniser, as well as indices into the list for ’special’ phonemes such as silence or pause. Other
objects that access phonemes (eg. LexiconInfo) store indices into this list.

The Phonelnfo object can be initialised using either a HTK format model definition file, a Noway
format model definition file, or a file containing a straight list of phoneme names.

5.3 PhoneModels

The PhoneModels object contains all information about the (previously trained) sub-word models
that are used during decoding. The ordering of the list of models matches the order of the list of
phoneme names in the Phonelnfo object. The information stored for each model includes the HMM
topology, an emission probability distribution and a prior probability for the phoneme.

During decoding, the input vector at each time frame is passed to the PhoneModels instance.
The PhoneModels instance knows whether the input vector consists of features, or pre-computed
emission probabilities. Other objects can request the PhoneModels instance to return the emission
probability associated with a particular state in a sub-word model. If the input vectors are features,
the PhoneModels instance calculates the requested emission probability and then remembers the value,
to make repeated requests for the same emission probability efficient. If the input vectors are emission
probabilities, the PhoneModels instance knows the mapping between emitting states of the sub-word
models and elements of each input vector.

The DecodingHMM object is used to store all parameters and other data associated with each sub-
word HMM. Information about each state is stored in a DecodingHMMState structure, which contains
lists of successor states and associated transition probabilities. The DecodingHMMState structure
also contains a pointer to a generic Distribution object. The Distribution class is implemented within
Torch as a base class from which classes that implement specific distributions (GMM’s, ANN’s; etc)
are derived. The Distribution pointer within the DecodingHMMState structure allows the decoding to
be independent of the type of emission probability distribution used within the states of the sub-word
HMM’s.

A SpeechMLP class has been implemented (using many classes from Torch) in order to sup-
port hybrid ANN-HMM speech recognition systems. This class is initialised using MLP weights
read from a file. It then accepts input feature vectors and calculates the corresponding MLP out-
puts, which are then used as the emission probabilities for the states in the sub-word HMM’s. The
SpeechMLPDistr (derived from Distribution) provides the interface between the SpeechMLP and the
Distribution pointer in the DecodingHMMState structure.

The PhoneModels object can be initialised using either a HTK format model definition file or a
Noway format model definition file.

5.4 Vocabulary

The Vocabulary object contains a list of the names of all unique words that the system can recog-
nise, as well as a record of ’special’ words, such as sentence-markers or silence. Other objects (eg.
LanguageModel) use indices into the list of words during decoding. Methods are provided to map
between word strings and their indices in the list of names (eg. for displaying the result of decoding
to the user).

The Vocabulary object can be initialised using a Noway-format dictionary file.

5.5 LexiconInfo

The LexiconInfo object contains information about the pronunciations that can be recognised by the
system. The particular sub-word units that comprise each pronunciation are stored as lists of indices
into the Phonelnfo object. The Vocabulary entry associated with each pronunciation along with a

IDIAP-Cowm 02-09 7

prior probability are also stored. The LexiconInfo object also stores pointers to the Phonelnfo and
Vocabulary objects, and implements a mechanism for mapping unique Vocabulary entries to one or
more pronunciations.

The LexiconInfo object can be initialised using a Noway-format dictionary file.

5.6 LinearLexicon

The LinearLexicon object consists of a list of pronunciation-level models that are each constructed by
concatenating sub-word models from the PhoneModels object according to the pronunciation informa-
tion stored in the LexiconInfo object. The ordering of the list of models corresponds to the ordering
of the pronunciation entries in the LexiconInfo object. The emitting states of each pronunciation
model are mapped back to the correct emitting states in the PhoneModels sub-word models, so that
emission probabilities can be efficiently accessed and computed. The prior probability associated with
each pronunciation entry in the LexiconInfo object is applied to all transitions out of the initial state
of the corresponding pronunciation model.

The states of all pronunciation models forms the state-space that is searched using the DP approach
described above.

5.7 LanguageModel

The LanguageModel object implements a tree-like data structure for efficient storage and lookup of
probabilities for arbitrary N-gram language models, with full back-off capability. The data structures
that have been implemented offer the following advantages:

e A search for an N-gram probability (ie. P(w4|w:,ws,ws) for N = 4) entails N binary searches
(if the N-gram exists).

e All lesser order LM probabilities as well as weights required for back-off calculations are retrieved
as a side effect of the search for the main N-gram entry with negligible computational overhead.
If there is no N-gram entry for a particular sequence of words, then the back-off calculations can
be performed immediately without the need for further searches through the tree.

A rudimentary caching scheme has been implemented within the LanguageModel class. A small
list of the most recently accessed language model probabilities is maintained, and the first stage of
a language model query entails a linear search of the cache. If the desired probability is not in the
cache, then the tree structure is traversed and any required back-off calculations are performed.

The LanguageModel data structures are created by reading entries from an ARPA-format language
model file.

5.8 DecoderSingleTest

The DecoderSingleTest class manages the decoding of a single utterance. It performs the following
functions:

e Reads emission probability or feature input vectors (in a variety of formats) from a specified
single-utterance input file, or from an offset into an multi-utterance archive file.

e Packages the input vectors into a format ready to be passed to the decoder

e Invokes the decoder and records the resulting outputs (recognised words, segmentation informa-
tion, etc)

e Post-processes the decoder output (eg. transform indices into word strings, remove start and
end silence words)

8 IDIAP-CoM 02-09

e Output the decoding result in one of a variety of formats to a designated output file.

e Measures the CPU time used to decode the utterance.

5.9 DecoderBatchTest

The DecoderBatchTest class manages the decoding of a batch of utterances. A DecoderSingleTest
instance is configured for each utterance and after all DecoderSingleTest instances have finished de-
coding, the results from all utterances are analysed to determine the total number of substitutions,
insertions and deletions as well as the overall word recognition rate.

5.10 BeamSearchDecoder

The BeamSearchDecoder class implements the beam search decoding technique described in Section
4. Tt accepts input feature or emission probability vectors, uses the data stored in the PhoneMod-
els, Vocabulary, LinearLexicon, and LanguageModel objects, and then returns the recognised word
sequence along with word-level segmentation information.

At each time frame, the interior state hypothesis with the best (log) score is remembered. A
threshold is then calculated by subtracting a pruning constant (specified as an input parameter) from
the best score. Any interior state hypothesis with a score below this threshold is deactivated, and
removed from further consideration. The same hypothesis pruning technique process is performed on
hypotheses in word-end states.

The application of language model probabilities is delayed (ie. does not occur when a hypothesis
makes a transition between two words). Instead, language model probabilities are applied to hypothe-
ses when they reach the final state of a word model, which serves to tune the hypothesis to reflect the
language model constraints. The delayed application of LM probabilities combined with hypothesis
pruning significantly reduces the number of language model searches that are required. This is because
hypotheses in word models that do not reflect the acoustic observations get pruned before they can
be propagated to a final state.

The transition between words is performed according to the standard DP approach. The word-end
state hypothesis with the best score is selected, and this becomes the predecessor state for the initial
states of all words.

6 Results

6.1 TODE vs. HVite

The performance of TODE was compared to that of the HTK decoder, HVite, for the Numbers
corpus recognition task. A set of 80 triphone HMM’s were trained using Torch, and were saved in
HTK model definition format. Each triphone HMM consisted of 3 emitting states with 10 mixtures
per state. 39-element feature vectors were used, comprising 13 MFCCs (including the Oth cepstral
coefficient) with their first and second order derivatives. The test set used for the evaluations consisted
of 1206 utterances.

All evaluations were performed using a Pentium 4 2GHz PC running Linux.

The purpose of the first experiment was to compare the performance of the two decoders for the
simplest recognition task (ie. no language model, no pruning, no tuning of decoder parameters).
The results are displayed in Table 1, and verify that the TODE implementation of the dynamic
programming algorithm is correct, and executes faster than HVite.

The second experiment compared the performance of the two decoders for the same recognition
task when using a back-off bigram language model. The results are displayed in Table 2. The slight
difference in WER can be attributed to the delayed application of language model probabilities in

IDIAP-Cowm 02-09 9

Execution Time (s) | WER (%) | Ins | Del | Sub
HVite 351.36 6.23 96 | 43 | 152
TODE 330.18 6.23 96 | 43 | 152

Table 1: TODE vs. HVite results for straight recognition on Numbers.

Execution Time (s) | WER (%) | Ins | Del | Sub
HVite 361.68 6.19 90 | 45 | 154
TODE 320.31 6.17 89 | 45 | 154

Table 2: TODE vs. HVite Numbers recognition results using back-off bigram language model.

TODE, as opposed to the “correct” application of bigram LM probabilities by HVite. As with the
simple decoding experiments, TODE performs this recognition task faster than HVite.

No further comparative experiments were performed, because HTK does not support language
models of higher order than 2.

6.2 Effect of Pruning

The effect of varying the degree of hypothesis pruning within the TODE decoder was assessed. The
parameter used to control the amount of pruning is a constant positive log value that gets subtracted
from the most promising hypothesis score at each time step to give a pruning threshold. All hypotheses
with scores below the threshold are deactivated and removed from further consideration. A small
constant results in a narrow beam with all but the few most likely hypotheses being pruned at each
time step, and a large constant reduces the number of hypotheses that are pruned. The no-pruning
case corresponds to a pruning constant of infinity.

The two graphs in Figure 3 illustrate the effects of varying the pruning constant within TODE
for the simple Numbers recognition task described in Section 6.1. The upper plot displays the word
recognition accuracy as the pruning constant is increased. The lower plot shows the corresponding
execution times.

From Figure 3 it can be seen that applying a pruning constant of 80 has had negligible effect on
the recognition accuracy, and has decreased the execution time by a factor of 8 compared with the
no-pruning case (see Table 1). Decreasing the pruning constant below 80 results in faster execution
times, but has a increasingly negative effect on recognition accuracy.

6.3 TODE vs. Noway

The performance of TODE was compared to that of the Noway decoder for a large vocabulary decoding
task. The input to both decoders was emission probability vectors obtained from an ANN trained
on the BREF (french) corpus. Each emission probability vector contained 36 elements, representing
posterior probability estimates at each time step for each of the 36 phonemes used in the system.
A full back-off trigram language model containing approximately 1.2 million bigram entries and 1.8
million trigram entries was used. The test set used for the evaluations consisted of 242 utterances.

The many tuning parameters available within Noway (pruning, probability scaling, etc) were set
to values as per the example in the Noway man page. A moderate amount of hypothesis pruning was
employed within TODE. The results are displayed in Table 3.

The word error rate is high for both decoders because no effort has been made to tune parameters
such as word insertion penalties, language model probability scaling factors and acoustic probability
scaling factors in order to achieve optimal performance. It is noted, however, that when optimal

10

100

IDIAP-CoM 02-09

Recognition Accuracy (%)

20

0 20 40 60 80 100 120 140 160 180 200
Beam-width (log likelihood)
120
100 q
O
E 80 q
E
§ o1 1
5
o 40r R
X
n}
20+ q
0 L L L L L L L L L
0 20 40 60 80 100 120 140 160 180 200

Beam-width (log likelihood)

Figure 3: Effect of hypothesis pruning on word recognition accuracy and execution time

Execution Time | WER (%) | Ins | Del | Sub
Noway 473m 27s 72.7 991 | 89 | 1381
TODE 295m 59s 80.7 526 | 237 | 1970

Table 3: TODE vs. Noway BREF recognition results.

IDIAP-Cowm 02-09 11

parameters are used, Noway is by far the better decoder for large vocabulary recognition tasks within
a hybrid HMM/ANN framework.

The linear lexicon used by TODE severely limits the execution speed for large vocabulary tasks.
This is because the best word-end hypothesis has to be extended to the initial states of all pronunci-
ation models at each time step, regardless of the amount of pruning employed. A much more efficient
lexicon structure is a tree lexicon [10], where the arcs of the tree represent phonemes and the sequence
of arcs from the root to each leaf represents a valid pronunciation. This structure allows pronunci-
ations with common starting phonemes to be compactly represented in the lexicon, and results in a
significant improvement in computational efficiency [2].

7 TODE Feature Summary
The major features of TODE are :

o Efficient beam search decoder.

e Can be used with both ANN and GMM-based systems.

e Accepts features or emission probabilities as input.

e Arbitrary N-gram language modelling with full back-off and caching.

e Supports many commonly used file formats (model definition, ANN weights, features, language
model, etc).

e Uses a linear lexicon

e Implementation is straightforward, and can be readily modified /upgraded to meet the needs of
researchers.

e Easily adapted for use in non-speech decoding applications.

e Fully supported with development ongoing.

8 Future Work

Future work on TODE will focus largely on improving large vocabulary recognition performance.
Specific improvements planned are :

e Addition of a tree-based lexicon.

Stack decoding algorithm implementation.

N-best output, to allow multi-pass decoding techniques to be employed.

Implementation of a forced alignment feature, that can be used during training of speech recog-
nition systems.

It is envisaged that the proposed improvements will complement the existing features of TODE,
eventually providing users with a decoding toolkit containing efficient algorithms for different sized
recognition tasks.

12 IDIAP-Cowm 02-09

9 Conclusions

This report has described a flexible new decoder for continuous speech recognition called TODE
(TOrch DEcoder). The basic problem of speech recognition was outlined, followed by a brief de-
scription of the fundamental dynamic programming and beam search algorithms that are utilised in
TODE. The major software components of TODE were then discussed in detail and experimental
results were presented comparing the performance of TODE to that of two popular decoders, HTK’s
HVite and Noway.

10 Acknowledgements

The author wishes to thank the Swiss National Science Foundation for supporting this work through
the National Centre of Competence in Research (NCCR) on ”Interactive Multimodal Information
Management (IM2)”.

References

[1] R. Collobert, S. Bengio, and J. Mariethoz. Torch: a modular machine learning software library.
Technical Report IDTAP-RR-02-46, IDTAP, 2002.

[2] H. Ney and X. Aubert. Dynamic programming search strategies: from digit strings to large
vocabulary word graphs. In C. Lee, F. Soong, and K. Paliwal, editors, Automatic Speech and
Speaker Recognition, chapter 16, pages 385—411. Kluwer Academic Publishers, 1996.

[3] R. Bellman. Dynamic Programming. Princeton University Press, NJ, 1957.

[4] H. Bourlard, Y. Kamp, H. Ney, and C. Wellekens. Speaker dependent connected speech recog-
nition via dynamic programming and statistical methods. In M. Schroeder, editor, Speech and
Speaker Recognition, pages 115-148. Karger, Basel, 1985.

[5] H. Ney and S. Ortmanns. Dynamic programming search for continuous speech recognition. IEEE
Signal Processing Magazine, 16(5):64-83, 1999.

[6] S. Young, G. Evermann, D. Kershaw, G. Moore, J. Odell, D. Ollason, V. Valtchev, and P. Wood-
land. The HTK Book (for HTK Version 3.1). Cambridge University, 2001.

[7] D. Paul. An efficient A* stack decoder algorithm for continuous speech recognition with a stochas-
tic language model. In Proceedings of ICASSP °92, volume 1, pages 25-28, 1992.

[8] S. Renals and M. Hochberg. Decoder technology for connectionist large vocabulary speech recog-
nition. Technical Report CUED/F-INFENG/TR.186, Cambridge University, 1995.

[9] S. Renals and M. Hochberg. Start-synchronous search for large vocabulary continuous speech
recognition. IEEFE Transactions on Speech and Audio Processing, 7:542-553, 1999.

[10] H. Ney, R. Haeb-Umbach, B. Tran, and M. Oerder. Improvements in beam-search for 10000-word
continuous speech recognition. In Proceedings of ICASSP 92, volume 1, pages 9-12, 1992.

