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Abstract. Pitch and energy are two fundamental features describing speech, having importance
in human speech recognition. However, when incorporated as features in automatic speech recog-
nition (ASR), they usually result in a significant degradation on recognition performance due to
the noise inherent in estimating or modeling them. In this paper, we show experimentally how
this can be corrected by either conditioning the emission distributions upon these features or by
marginalizing out these features in recognition. Since this is not obvious to do with standard
hidden Markov models (HMMSs), this work has been performed in the framework of dynamic
Bayesian networks (DBNs), resulting in more flexibility in defining the topology of the emission
distributions and in specifying whether variables should be marginalized out.
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National Science Foundation under grants FN 2000-064172.00/1 and FN 2100-057245.99/1, respec-
tively. Andrew Morris provided useful insight into missing feature theory.
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1 Introduction

The choice of the acoustic features has a large impact on ASR performance. Mel-frequency cepstral
coefficients (MFCCs) are one type of acoustic feature that has proven to provide good recognition.
While also being strongly relevant to speech recognition, features for pitch and energy are not usually
included with these standard MFCCs in the acoustic feature vector as they have been found to often
degrade performance. This degradation could be explained by either difficulty in estimating them or
falsely assuming what their underlying distribution is. Traditionally, the remedy to the performance
degradations caused by using pitch and energy has been to not use them at all in any part of developing
the system.

Acoustic modeling in ASR, therefore, considers for time frames n = 1,... , N, the sequence of
acoustic vectors X = {z1,...,Zn,... ,TN}, associated with a sequence of hidden, discrete states,
Q={q,---,qn,--.,qn}, where each state g, can take one of K discrete values: {1,...,k,... , K},

each of these being associated with a specific probability distribution. Each distribution then models
the emission of each x, at time frame n:

P(Tnlgn) (1)

Usually, attempts to use pitch or energy information in ASR were associating with each z,, an addi-
tional variable a,, here referred to as an “auxiliary variable,” yielding the sequence
A={ay,...,an,... ,an}. ASR was then performed by incorporating a, in the emission distribution:

%AH:, QS_QSV. Amv

However, this usually degraded the recognition.

While a discrete valued a, is possible, we consider continuous valued a,, which can have value
an, = z and can be either pitch or energy values. We call a, an auxiliary variable as it contains
information that is not itself important for recognition but which has an impact on z,. With these
auxiliary variables, we investigate here two approaches to properly using them in ASR:

1. Conditioning the distribution of z,, upon a,, as done in [3]. That is, using emission distributions
of the form:

P(Tnlqn, an), (3)
where a,, appears as a continuous conditional variable.

2. Training with a, but marginalizing it out (i.e. hiding it) in recognition, for example, in the case
of (2) with continuous a:

p(xnlgn) = \@@fa:_ezv da, (4)

We note here that this is similar in spirit to work done in missing feature ASR [9], which
marginalizes out features that are assumed to be corrupted by noise. In the simplest case, it
ignores the noisy dimensions of the feature vector in calculating the emission likelihood.

These two approaches resemble what has already been done in the case of a discrete a,, representing
gender [4]. One method of using gender modeling involves conditioning the distribution of z;,, upon the
gender—having a distribution for males and a distribution for females, based on (3). The distribution
giving the highest likelihood when inserted into the ASR system is then used. Alternatively, the two
distributions can be summed for each time frame, in a parallel manner to the integration in (4).

In this paper, we use DBNs as our framework for research into auxiliary variables with ASR. They
are closely related to HMMs but are a more general framework that allows both the topology and the
distributions to be easily modified (e.g., using (3) instead of (2)). Additionally, they allow the data to
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be arbitrarily hidden, thus marginalizing it out, as in (4). This work builds upon that of [11], which
used the same training database and similar features but with single (conditional) Gaussians.

In Section 2 we will go into more detail about how a, can be incorporated using the approaches
proposed above. We do this work in the context of DBNs, which are explained in Section 3. Section 4
then gives more details of these pitch and energy auxiliary features, followed in Section 5 by the
experimental results. We conclude in Section 6.

2 Auxiliary Information

With both standard features z,, (MFCCs in this work) and auxiliary features a,, (either pitch or energy
in this work) for time frame n, different statistical independence assumptions can be made between
features. Here we propose that z, needs to be dependent upon a,; we then show how the resulting
distributions might be modeled. We also propose an assumption that a, needs to be marginalized out
in recognition for certain cases.

Conditional Auxiliary Information

In standard ASR, the distribution of z,, is dependent only on the discrete hidden state ¢,, using a
Gaussian distribution with mean vector pf and covariance matrix X% for each state g, = k:

P(@algn = k) ~ No (4, 55) (5)
% is normally assumed to be a diagonal covariance matrix, thus containing non-zero elements only
along the diagonal. This implies that there is no statistical correlation between the dimensions within
the Gaussian and, thus, reduces the complexity of the system. This Gaussian distribution, as well as
that of (6), (7), and (9) below, is based on Gaussian mixtures in our experiments, as is typically done
in ASR. The exception here is that we always model a,, with a single Gaussian.
In attempting to add a, to the ASR models, the simplest manner is to append it to the standard
feature vector x,, thus producing the Gaussian:

ﬁﬁ.&zu QS_QS = \av ~ zgqnﬁtmqnu Mbv Amv

With standard approaches, this would also assume a diagonal covariance in the expanded Gaussian,
thus suggesting that there is no correlation between a, and z,. This is indeed the assumption,
for example, between MFCCs and pitch/energy: the MFCCs are assumed to have pitch and energy
removed (assuming that the zeroth coefficient is not used). However, these auxiliary features are such
fundamental features of speech, that it may be a very erroneous to assume that they are uncorrelated
with z,. So, we propose that, conversely, there may be correlation between x, and an a,, of either
pitch or energy that needs to be modeled.

To model the correlation between x,, and a,, we therefore propose that a,, should not be appended
to x, as above. Rather, the distribution for z,, should be conditioned upon the continuous value of
an, as in (3). However, the modeling of p(zy|q, = k,a, = z) is not a straightforward task. Just as
there are many approaches to modeling (1), such as Gaussians and artificial neural networks (ANNs),
there may be many viable approaches to modeling (3). If we had been using a discrete valued a,,
with Z discrete values, a straightforward way would have been to have K - Z Gaussians for each
of the possible values of (¢, = k,a, = z), thus resembling the approach to gender modeling with
ANNs in [4]. However, with a continuous valued a,, we need a distribution for value ¢, = k& which
adapts itself to the continuous value a,, = z. This adaptation could involve linear methods (e.g.,
regression) or non-linear methods (e.g., ANN). Furthermore, in order to be incorporated into the full
DBN framework, it should have the necessary operators for distributions in DBNs: marginalization
to fewer dimensions, combination with other like distributions, etc.
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We have chosen to represent (3) as conditional Gaussians, which have already been incorporated
into the DBN framework [5] and have also been recently proposed by others in ASR research [3]:

ﬁﬁ.&.z_ﬂ: =k,an = Nv ~ .\/\.aﬁ\:\? MUMY Ad

where z,, is modeled by a Gaussian whose mean is itself a regression on the mean of z,, and the value
of an: u, = pf + BFz. The weight on puf itself is 1 while By, is the matrix containing the weights
upon z, the value of a,,. A drawback of this distribution is that X7 itself is not dependent upon z; so,
the same X7 will be used no matter what value of u; is computed using the regression. Using only
this distribution to calculate the emission likelihoods assumes that a,, itself is independent of g, that
is, p(an|gn) = p(ay). (In the implementation, (7) is actually multiplied by this value p(a,)).

However, with (7) we do have the further possibility of whether a,, itself should be conditioned
upon ¢, as was done in (6). This would be done if the evolution of A was assumed to be dependent
upon that of ). A simple way to model a,, would be to use a Gaussian for each ¢, = k:

ﬁﬁnﬁ_@z =k)~ .\/\.@Atmu Mumv. (8)

Thus, the product of (7) and (8) would be used to compute the joint emission likelihood of z, and
an:

P(Tnlgn =k, an) - plan|gn, = k) ~ \<‘HA:? ) ®.>\\sb:m“ ), 9)

where ® is the combination operator for (conditional) Gaussians, as defined in [7]. The difference
between (9) and (6) is that we have here accounted for the correlation between z,, and a,.

Marginalized Auxiliary Information

Missing feature theory in ASR [9] has proposed to marginalize out those features which are noisy
in recognition. Likewise, we propose a similar idea with auxiliary information. We still would want
to use the auxiliary information in training so as to extract useful statistical information from it in
order to better estimate the parameters in the models. While the data or its supposed model may
be noisy, the training has the advantage of having a large amount of data over which it can extract
relevant statistics. However, in recognition, there may be a lot of noise associated with the A presented
for a single utterance. Using the estimated A (the “observed” A) in the emission distributions may
produce a faulty likelihood. In such a case, it may be better to hide the A, which is accomplished by
marginalizing it out of the emission distribution. In the case of the emission distribution (6), where
ay, is appended to the feature vector, (4) illustrates this marginalization. After having been trained
with conditional Gaussians, the emission distributions (7) and (9) may as well have problems with
the noisy A. We can, therefore, obtain the distribution only for z, by hiding, and, thus, integrating
ovVer ap:

%AHS_QSV = \%AH»SQS_QQL da, = \%AHS_Qzunﬁv .ﬁﬁnﬁ_@sv da, AHOV

X

\%AHS_Qzunﬁv .ﬁﬁnﬁv day. AHHV

where (10) applies to (9), where a,, is dependent upon ¢, and (11) applies to the case of (7), where
we assume that p(a,) = p(an|qn)-

3 Dynamic Bayesian Networks
In our work, we incorporated auxiliary features in the DBN framework as it allows more flexibility

in structuring the topology of the distributions and in allowing variables to arbitrarily be observed
or hidden. HMMs can also model the same distributions and can have observed or hidden variables;
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(a) (c)

Figure 1: Portions of DBNs for time frame n (discrete variables having bold vertices), as initially
proposed in [13]: (a) for standard HMM-based ASR; (b) for standard HMM-based ASR with con-
catenated ay,; (c) for ASR with z,, conditioned on a,, and a,, conditioned on ¢,; (d) for ASR with x,
conditioned on a,. Based on (5), (6), (9), and (7), respectively.

however, they lack the generality in their algorithms that allows the topology of the distributions and
the specification of hidden versus observed variables to be changed easily. So, we here outline what
DBNSs are and how they are visualized when using auxiliary information in ASR.

As illustrated in Figure 1, a DBN (a type of graphical model [1]) is a probabilistic model composed
of three items:

1. A set of variables V. = {vi,... ,v¥, ..., oV, ... vk, ..., 0%, ... ,u}. That is, there are W

variables, each of which is modeled over the N time frames. The variables in the DBNs in
Figure 1 are {q1,a1,21,... ,qn,aN, TN}

2. A directed acyclic graph (DAG), with a one-to-one mapping between each of its vertices and
each v¥ € V.

3. For each v € V, a local probability distribution which is conditioned upon the values of its
parents in the DAG:

P(v¥ |parents(vy)). (12)

For example, the local probability distribution of z, in Figure 1 (c) is p(x,|parents(z,)) =
P(Zn|gn, an), which is the same as (7).

The joint distribution of V' is then defined as the product of all the local probability distributions:

P(V)= : P(v¥|parents(v?)) (13)
vw eV

For a discrete v} with zero or more discrete parents, its local probability distribution is defined by
a table of discrete probabilities (it is not allowed to have any continuous parents in this framework).
For a continuous vy, its local probability distribution is defined by a Gaussian if it has no continuous
parents or by a conditional Gaussian if it has continuous parents; if there are discrete parents, there
will be a (conditional) Gaussian for each possible instantiation of the discrete parents. In the case of
having continuous parents, the conditional Gaussian’s mean is a regression on the mean of v itself
and on the values of the continuous parents.

We use the inference algorithm in [7] to compute P(v¥|0), the posterior marginal distribution
of v¥ given all of the observations O, as well as P(O|V), the likelihood of the observations. For
example, if in the DBN in Figure 1 (¢), we have the observation a,, = 2.5, the inference algorithm
would give the posterior marginals of P(g,|a, = 2.5) and p(x,|a, = 2.5) as well as the likelihood
of the observation p(a, = 2.5). Any variable can be observed or hidden, regardless of whether it is
continuous or discrete valued. The computed posterior marginal distributions can be used for the
expected counts in expectation-maximization (EM) training [6] for learning the discrete probabilities
P(+), the means pu, the regression weights B, and the covariances X.
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DBN Eq | Mix | Obs. Pitch _ Hid. Pitch
Figure 1 (a) (Baseline) | (5) | 4 5.9% (21k)
Figure 1 (a) (Baseline) | (5) | 6 4.3% (32k)
Figure 1 (b) (6) | 4 | 60.5% (22k) | 19.2% (21k)
Figure 1 (c) ) | 4 | 48.9% (32k) | 6.2% (21k)
Figure 1 (d) (M| 4 5.3% (32k) | 6.0% (21k)

Table 1: Pitch. Word error rates (WERs) (and number of parameters) using Pitch as an auxiliary
variable. The labels of the underlying equations and the number of Gaussian mixtures for z,, (a,
has a single Gaussian) are also given. Equation (5) is equivalent to standard HMM-based ASR using
only z, while (6) is equivalent to standard HMM-based ASR using z,, and a, in a single feature
vector (except that a, has a single Gaussian). Equations (9) and (7) use conditional Gaussians, with
(7) treating a,, as independent of ¢,. With “hidden” a,, we are marginalizing it out of the emission
distribution. Systems with a similar number of parameters are to be grouped together for performance
comparisons against the respective baseline system.

DBN Eq | Mix | Obs. Energy _ Hid. Energy
Figure 1 (a) (Baseline) | (5) | 4 5.9% (21k)
Figure 1 (a) (Baseline) | (5) | 6 4.3% (32k)
Figure 1 (b) 6)| 4 28.9% (22k) | 6.3% (21k)
Figure 1 (c) ©) | 4 | 27.4% (32k) | 5.9% (21k)
Figure 1 (d) (M| 4 5.9% (32k) | 19.4% (21k)

Table 2: Energy. Word error rates (WERs) using short-term energy as an auxiliary variable, presented
as in Table 1.

4 Pitch and Energy as Auxiliary Variables

In a first set of experiments, the auxiliary variable a, was defined as the pitch value at time frame
n. In our case, this pitch value, which we defined here as being the fundamental frequency Fp, was
estimated using the simple inverse filter tracking (SIFT) algorithm [8], which is based on an inverse
filter formulation. This method retains the advantages of the autocorrelation and cepstral analysis
techniques. The speech signal is prefiltered by a low pass filter with a cut-off frequency of 800 Hz, and
the output of the filter is sampled at 2 kHz before computing the inverse filter coefficients using the
Durbin algorithm. While a fundamental property of the speech signal, it is a hard feature to estimate.
Thus, any estimation of pitch will have inherent noise in it.

In a second set of experiments, the auxiliary variable a,, was defined as the short-term energy and
was computed as follows:

1
an = & 0 s3] w?l] (14)
t=1
where {s,[1],...,sn[t],...,sn[T]} is the speech signal of T' samples associated with time frame n,
and {w[l],... ,w[t],... ,w[T]} is a Hamming window, and C is a normalizing constant used to give

manageable values for the short-term energy. It is straightforward to estimate in clean speech but
harder to estimate in noisy speech.
5 Experiments

Using the PhoneBook telephone speech corpus [10] with the small training set defined in [2], we train
four types of DBN systems to do speaker-independent, task-independent, small vocabulary (75 words)
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isolated-word recognition. There are 41 context-independent, three-state phones in these systems, as
well as initial silence and end silence models. Training was done using the EM algorithm, using a
convergence criterion of stopping one iteration after the log-likelihood of the training data increased
by less than 0.1% over that of the previous iteration. Each system with auxiliary information was
tested two times on the test utterances defined in [2].

Similarly to [13], mel-frequency cepstral coefficients (MFCCs) are extracted from the speech signal,
sampled at 8 kHz, using a window of 25 ms with a shift of 8.3 ms for each successive frame. z, is
composed of the following MFCC elements: C,...,Ci,ACq, ... ,AC1,ACy, where C; is the ith
MFCC and AC; is its approximate first derivative.

The recognition results where a,, is pitch and where a,, is short-term energy, as well as for the
baseline x,-only systems, are given in Tables 1 & 2, respectively. When marginalizing over a,, its
parameters are removed, having been merged into the parameters for z,, as shown in (4), (10),
and (11). Thus, the WERs with hidden (marginalized out) A show a lower effective number of
parameters than when A is observed. Therefore, with A marginalized out in an auxiliary system, it has
essentially the same structure and parameters as a baseline; the difference is that the parameters have
been trained using an auxiliary variable. This is the reason for two baseline systems: for comparing
against a baseline system, we use a system that has the same effective number of parameters. We note
that it was not our intention to find the number of mixtures which gives each system its optimum
performance. Rather, within each set of experiments, we wanted to have systems that were comparable
in the number of parameters.

These results confirm the difficulty in incorporating auxiliary information in the traditional way,
using (6), which provides a very poor recognition WER, of 60.5% for pitch and 28.9% for energy.
Furthermore, they show the great improvement we can achieve by letting a,, condition z,,’s emission
distribution. That is, by using a conditional Gaussian for z,,, as in (7), instead of (6), we decreased
the WER by a relative 91% (60.5% to 5.3%) for pitch and 80% (28.9% to 5.9%) for energy. It is
the system with (7) where observed pitch or energy auxiliary information provides its most promising
results.

Marginalization (i.e., using hidden auxiliary information) dramatically increases the performance
of the poorly performing systems, those using (6) or (9), with pitch or energy auxiliary information.
Moreover, marginalizing out a,, on the systems using (9) “recovers” the performance of the baseline
system with four mixtures. Marginalization of those using (7), however, has a negative effect on
performance. As this is done using (11), the prior p(a,) is used, which was not learned in training but
was just defined using the mean (and variance) of a, across all of the training data. Using a global
mean for a,, may have introduced problems in computing the marginals.

6 Conclusion

We have presented a new approach for properly including auxiliary variables in standard ASR. Al-
though it is not yet perfect, the results reported here demonstrate the validity of this approach. While
the results here do not improve over the baseline approach, earlier results showed how discretized pitch
auxiliary information does bring improvement [12]. So continuous auxiliary information, as was used
in the current work, still has the potential to improve over the baseline within the current framework.

More work is now required using continuous auxiliary variables. First, we need to improve the
estimation of the auxiliary variables. For example, with energy, this could involve using the logarithm
of the energy, using a longer-term energy, or in using the energy of a frequency sub-band (as done
in [3]). Second, better distributions (e.g. Gaussian mixtures) may be needed to better model a,
instead of just single Gaussians. Finally, equivalence classes (a form of parameter tying [13]) to model
a, conditioned upon ¢, may prove to be more robust; these could be used, for example, to have a,

conditioned on broad classes of ¢, such as vowels and consonants, thus having a hybrid between (9)
and (7).
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