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Abstract. In previous work, we presented a case study using an estimated pitch value as the
conditioning variable in conditional Gaussians that showed the utility of hiding the pitch values in
certain situations or in modeling it independently of the hidden state in others. Since only single
conditional Gaussians were used in that work, we extend that work here to using conditional
Gaussian mixtures in the emission distributions to make this work more comparable to state-of-
the-art automatic speech recognition. We also introduce a rate-of-speech (ROS) variable within
the conditional Gaussian mixtures. We find that, under the current methods, using observed
pitch or ROS in the recognition phase does not provide improvement. However, systems trained
on pitch or ROS may provide improvement in the recognition phase over the baseline when the
pitch or ROS is marginalized out.
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1 Introduction

Hidden Markov models (HMMs) calculate at each time n the likelihood of the acoustic observation z,,
being produced, given that the hidden state variable ¢, has the discrete value of k (with K possible
discrete values):

ﬁAHz_QSH\aV. (1)

This is typically computed using an ANN or a Gaussian mixture distribution, with mean pyg ., co-
variance Xy, ,, and mixtures m=1,... ,M:

M
P(znlgn=F) ZMUWQ:_Q:HS N (ko> Zkym)- (2)

m=1

There may be information not directly available in the acoustic observation x, that may be of use
in enhancing the models. Such auxiliary information a,, which can be continuous or discrete, may
be derived from the acoustic signal or may be obtained from a secondary source. ¢, and a,, can then
jointly condition the emission likelihoods, replacing (1) with:

P(Tn|gn=Fk,an=2). (3)
For the case of discrete a,, a, = 1,...,L, Gaussian mixture models are also used to estimate the
emission likelihoods:
M
P(ealdn =k, an=1) ~3 Pmlgn=k) - Nttt et (4)
m=l1

resulting in L times as many Gaussians over that of (2). For the case of continuous a,, it is more
difficult to model the emission distributions of (3). We have chosen the framework of conditional
Gaussians, as also done in [1], though this is not the definitive way. In conditional Gaussians the
means of the emission probabilities for the Gaussian distributions (2) can then be shifted using the
regression weights By, upon the value of a,,:

M
P(@algn=F,an=2) ~3 P(mlgu=k) - N (., Sm), 5
m=l

T
Uk,m = Hk,m + .m\?zs Z

So, instead of having L Gaussians for a given mixture of a state, one conditional Gaussian is defined
whose mean changes dynamically according to a,. The variance within the conditional Gaussian,
however, does not itself depend upon a,; doing this is itself a topic of future research.

We proceed as follows: we begin in Section 2 by specifying, in the framework of (conditional)
Gaussian mixtures, how auxiliary information can be incorporated into the acoustic modeling. This
is then transfered to the dynamic Bayesian network (DBN) framework in Section 3. These DBNs are
then used in experimental testing in Section 4, followed by discussion in Section 5.

2 Introducing Auxiliary Information with Mixtures

ASR with auxiliary information involves modeling p(X, A, @), the evolution of the observed space
XN ={z,29,... o5} and the observed or hidden auxiliary space AY = {a1,as,... ,an} and the
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hidden state space QY ={qi1,q2,-.. ,qn} for time n=1,... N as'

N
m P(Tn; anlgn) - P(qnlgn—1) (6)

2

p(XT, AT, Q)
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where we assume time-independence of z, and a, and a first-order Markov assumption (that is,
¢n 1L Q7 ?|qn_1).? Furthermore, (8) assumes that a, is not modeled by mixtures (that is, it has a
single Gaussian).

We are then interested in whether different assumptions related to a, can be incorporated into (8).
One is whether a,, even needs to be treated as a conditioning variable to x,—that is, having the
assumption z,, 1L a,|qn, as in (9). A separate assumption involves whether the modeling of the
auxiliary variable a,, can be done independently of the states g, (that is, a,, 1L ¢,)® as in (10).

N M

EMUMBAHS_Suﬂzv .%Agz_ﬁzv ’ NuAS_QSV .wAQz_Qzlwv va
qu \\>§\~HH
E Mﬁﬁ.&.z_@zusu sz .ﬁﬁnﬁv ’ NuAS_QSV .wAQz_Qzlwv AHOV

Standard HMM ASR estimates p(X, Q) using (8) with references to AY marginalized out:

N M
p(XY, QM) ~ [ 32 plealm, aa) - P(mlaa) - P(aaln-1), (11)

n=l m=1

In summary, (11),(8),(9),(10) are used in our experimental section to test, respectively, a baseline
system, an auxiliary baseline system, an auxiliary system with z,, 1l a,, | ¢,, and an auxiliary system
with a, 1L ¢,. The systems using (11) are equivalent to standard multi-Gaussian HMM-based ASR.
The systems using (9) are equivalent to standard multi-Gaussian HMM-based ASR with a,, appended
to the standard feature vector (though a,, itself is modeled by a single Gaussian).

3 Auxiliary Information with Dynamic Bayesian Networks

Dynamic Bayesian networks (DBNs), which are an extension of Bayesian networks (BNs)? [2], have
been proposed as an alternative to HMMSs that allows more flexibility in modeling the topology of
the probability distributions within ASR [3]. For example, consider the four distributions that we
proposed in Section 2: (11),(8),(9),(10). While they can be modeled with an HMM framework, a
different, version of the HMM programs used may need to be developed to handle each assumption.
The DBN framework, however, is flexible enough to handle a wide range of assumptions, while using
the same programs.
A BN, from which a DBN is built, is defined by three sets:

1. variables V (discrete or continuous)

L Assume throughout this paper that P(q1|qo0)=P(q1).

2read, “gn is conditionally independent of @wlw given ¢np—1.”
Sread, “a, is conditionally independent of g;.”

4also known as directed graphical models
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2. directed acyclic graph (DAG), consisting of a node for each variable as well as directed arcs
between nodes. These arcs indicate probabilistic dependencies between the underlying variables.

3. local probability distributions for each variable v € V, whose topology is p(v|parents(v)).
parents(v) are the variables whose nodes have an arc going to v’s node.

For continuous parent variables instantiated as C' = C" and for discrete parent variables instanti-
ated as D = D', the local probability distributions are defined as:

o v discrete:

— P(v|D = D'): a table of probabilities.

— P(w|C =C") or P(v|C =C",D = D'): undefined in this framework.
e v continuous:

— p(v): Gaussian-N (p,,0?2)

— p(v|D = D'): Gaussians— {N (iy,p', 05 p/)}pr

— p(v|C = C"): conditional Gaussian— N (u,, 02), where u, = p,+BL C’ and B, are regression
weights on C’.

— p(v|C = C',D = D'): conditional Gaussians— {N (uy,pr, 05 p/)}pr-

Figures 1,2,3,4 present how the DAG of a DBN looks for isolated word recognition [3, 4] according
to (11),(8),(9),(10), respectively. The variables are defined as follows:

e Deterministic variables

— Index (discrete): the index of the phoneme state (sub-model) within the word model.

— ¢y (discrete): the phoneme state mapped to each index.

e Random variables

Trans (discrete): the exit transition from a sub-model.

% (continuous): the acoustics.
— m (discrete): the (conditional) Gaussian mixture of z,.

— a, (continuous): the auxiliary information, in this case, pitch or ROS.

We use the BN inference algorithm in [5] to compute P(v|O), the posterior marginal distribution
of v given all of the observations O, as well as P(O|V), the likelihood of the observations. Any
variable can be observed, hidden, or partially observed, regardless of whether it is continuous or
discrete valued. The computed posterior marginal distributions can be used for the expected counts
in expectation-maximization (EM) training [6] for learning the discrete probabilities P(-), the means
1, the regression weights B, and the covariances X.

4 Experimental Testing

4.1 General Setup

Using the PhoneBook speech corpus [7] with the small training set defined in [8], we train four
mixed BN systems to do speaker-independent, task-independent, isolated-word recognition. There
are 41 context-independent, three-state phones in these systems, as well as initial silence and end
silence models.

Training was done using the EM algorithm, using a convergence criterion of stopping one iteration
after the log-likelihood of the training data increased by less than 0.1%. Each system with auxiliary
information was tested two times on the test utterances defined in [8], using lexicons of 75 words:
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Figure 2: Auxiliary Baseline Dynamic Bayesian network for isolated word recognition, corresponding
to (8)

Figure 3: Auxiliary Dynamic Bayesian network for isolated word recognition with z,, 1l a, | gy, corre-
sponding to (9)
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Figure 4: Auxiliary Dynamic Bayesian network for isolated word recognition with a, 1L g,, corre-
sponding to (10)

1. with both X and A observed.

2. with X observed and A hidden; this marginalizes out A and, hence, converts an auxiliary DBN
to a baseline DBN (Figure 1), though with different parameter values than the regular baseline
DBN.

As the DBNs with auxiliary information have different numbers of free parameters depending
both upon the assumptions used in Section 2 and upon whether A is observed or hidden, two baseline
acoustics-only DBNs, each with a different number of free parameters, are presented with the DBNs
with auxiliary information.

Similarly to [3], mel-frequency cepstral coefficients (MFCCs) are extracted from the speech signal,
sampled at 8 kHz, using a window of 25 ms with a shift of 8.3 ms for each successive frame. Ten
MFCCs with mean subtraction as well as the deltas (first-derivatives) of those ten coefficients and of
Cy are computed for each frame.

4.2 Auxiliary Features

Two different sets of experiments were performed: one with pitch and another with ROS.

4.2.1 Pitch

Pitch is estimated using the simple inverse filter tracking (SIFT) algorithm [9], which is based on
an inverse filter formulation. This method retains the advantages of the autocorrelation and cepstral
analysis techniques. The speech signal is prefiltered by a low pass filter with a cut-off frequency of
800 Hz, and the output of the filter is sampled at 2 kHz before computing the inverse filter coefficients
using the Durbin algorithm. Results are shown in Table 1.

4.2.2 Rate of Speech (ROS)

Different units for ROS include word rate, syllable rate, phone rate, and normalized phone rate. While
a word ROS has been utilized in ASR, work such as [10] has chosen a phone ROS as the phone’s length
is more stable than that of a word, which can range between containing a single phone or as many as
a dozen or more phones. As different phones have different average lengths, the deviation from the
normalized length of a phone has been used in [11] as part of the measure of ROS. A syllable ROS
measure arose during the development of an estimator of ROS directly from the speech signal [12].
Our work continues in the tradition of [12] of investigating the use of an ROS estimate computed
by their mrate program directly from the signal and, hence using a syllable ROS measure. mrate
works best if it has one to two seconds of speech, which typically cover an entire word. Since we
are dealing with isolated words, we have computed one ROS value, ros, per isolated word utterance.
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Mix. | Obs. Pitch | Hid. Pitch
5.9% (21K)
43% (32k)
48.9% (32k) | 6.2% (21k)
60.5% (22k) | 19.2% (21k)
5.3% (32k) | 6.0% (21k)

Baseline

Baseline

Pitch Baseline
Pitch (2, L ay | qpn)
Pitch (a, L gy)

B ]| O]

Table 1: Word error rate for the two Baseline (non-Pitch) DBNs and the three Pitch DBNs. Results
for the Pitch DBNs are given with observed and hidden Pitch. For each result, the effective number
of parameters is given (i.e., parameters for A subtracted if A is marginalized out). The number of
mixtures is given as well.

Mix. | Obs. ROS | Hid. ROS
5.9% (21k)
4.3% (32Kk)

6.0% (32K) | 5.8% (21K)

6.0% (22k) | 5.9% (21k)

5.8% (32k) | 5.7% (21k)

Baseline

Baseline

ROS Baseline
ROS (zp, WL ay|gn)
ROS (a, 1L g,)

]| O >

Table 2: Word error rate for the two Baseline (non-ROS) DBNs and the three ROS DBNs. Results
are presented as in Table 1.

Therefore, a, =10s,Vn. Future work would entail using other ROS units. The literature on ROS in
ASR looks at incorporating it into the state transition probabilities, the language and pronunciation
models, and the acoustic models. It is the incorporation of ROS into the acoustic models that we
investigate here. Results are shown in Table 2.

We have used the silence markers provided with PhoneBook so as to run mrate only upon the
speech segment of the utterance but with the ROS value being assigned to both the speech and non-
speech portions of the utterance. We also used these silence markers in the testing, which is unrealistic
for real applications.

5 Discussion

With both pitch and ROS DBNs, the performance with the auxiliary variables observed does not
improve over that of the baseline systems. The auxiliary DBNs perform approximately the same
whether they have their auxiliary variables A observed in recognition or whether they are hidden
and, thus, marginalized out in recognition; the notable exceptions are the two Pitch DBNs whose
performance rises dramatically once the A are marginalized out. However, when the A are marginalized
out of the auxiliary DBN, its number of parameters and complexity is reduced while maintaining or
improving over the performance achieved with the A observed. In most of these cases with a reduced
number of parameters, the performance of the auxiliary DBNs statistically equals the baseline DBN
of four mixtures, which has a similar number of parameters. In past work [13], a Pitch DBN (a,, 1L ¢p)
with a single conditional Gaussian and its A marginalized actually performed better than a baseline
DBN with a single Gaussian.

Regarding Pitch, the DBN with z,, 1L a,, | ¢,, does very poorly. As mentioned in Section 2, this DBN
is nearly the same as standard HMM-based ASR with a,, appended to the standard feature vector.
This confirms past difficulty in ASR research in incorporating pitch into ASR. However, the Pitch
DBN with a, L g, in which a,, conditions the distribution of x,,, shows a better way to incorporate
pitch into ASR, as also proposed by [1].

Regarding ROS, it may be an error to condition every element in the acoustic vector upon the
speaking rate as this may have introduced too much noise. Assuming that MFCC derivatives are
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different in fast speech, we would like to make only the MFCC derivatives be dependent upon a,,.
Furthermore, our system assumes a linear relationship between z, and a, within the conditional
Gaussian. Perhaps this relationship is better modeled non-linearly. If this is so and could be incorpo-
rated within future systems, this may help to improve the performance in fast speech. Finally, other
units for ROS, specifically phone ROS, should be looked at in this framework. These can be estimated
using a forced alignment of the data.
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