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Abstract

Motivated by the human ability to maintain a high level of speech recognition when large parts of

the spectrogram are masked (i.e. dominated) by noise, the original “missing data” (MD) approach

to noise robust speech recognition was based on the paradigm whereby models are trained on

clean speech and during recognition parts of the spectrogram identified as being dominated by

noise are ignored by marginalisation over the clean data pdf. However, the implied rule that each

spectral data value should be treated as either as 100% clean or completely missing is inaccurate.

The performance of MD based recognition has been steadily improving over the last few years

with each increase in the accuracy of the modelling of clean-data uncertainty. Another assumption

of the MD approach, which is more reasonable, is that it is often relatively easy to obtain an

accurate estimate of the local noise spectrum. In this report we present an analysis of the way in

which uncertainty in the noise spectrum is transformed into uncertainty in the clean speech

spectrum. The take up of this approach will depend on the existence of closed form and

computationally feasible solutions to the equations here presented. This is a preliminary study and

no empirical tests are included. It is intended as a theoretical foundation from which practical

solutions may be developed in future.

Keywords: noise robust ASR, noise masking, missing data, data uncertainty, pdf transformation
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1. Introduction
Humans are able to maintain a high level of speech recognition when large parts of the spectrogram are mas

dominated) by noise [9]. In the original “missing data” (MD) approach to noise robust speech recognition [6

based on the paradigm whereby models are trained on clean speech and during recognition parts of the spe

identified as being dominated by noise are ignored by marginalisation over the clean data pdf. However, the

rule that each spectral data value should be treated as either as 100% clean or completely missing is inaccu

performance of MD based recognition has been steadily improving over the last few years with each increas

accuracy of the modelling of clean-data uncertainty (See Fig. 1). The first main improvement was to take into a

the fact that (on the assumption that speech and noise energy are simply additive) the unknown clean speech

bounded above by its observed value, and below by zero. This model [12] has been referred to as “b

marginalisation”. The second main improvement was to aknowledge that the choice of labelling each s

coefficient as either clean or noisy was itself probabilistic. In this “soft missing data” model [2] the solutions fo

“clean” and “missing” cases are combined in a weighted sum, where the weight applied to the clean cas

estimated probability that the coefficient is clean (the other weight is ).

In [11] it was shown that the “soft missing data” model can be viewed as principled implementation of the B

decision rule for MAP decoding in the presence of data uncertainty, where the data uncertainty is express

separate pdf for each spectral data coefficient, and this pdf is modelled as a mixture pdf comprising a dirac pdf

clean data, and a uniform pdf (over the interval [0,observed value]) for the masked data. Both the “soft missing

model, and related models for “uncertainty decoding” introduced around the same date [3], exploit the fact th

often relatively easy to obtain an accurate, albeit probabilistic, estimate of the local noise spectrum. From this o

obtain an accurate estimate of the underlying clean data pdf. In this representation data coefficients estimated

have highly peaked pdfs, while data values deemed uncertain have very flat pdfs.
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Figure 1. Comparison of WER vs. SNR for baseline HMM system and four missing data based systems (last
priori missing-data masks). Task is Aurora 2.0 connected digits, test (a). Results averaged over all 4 noise 
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For observed noisy channel output Y, let S denote the clean input signal, and N denote additive noise. For th

noise model Y = A.S + N, with N Gaussian, there are a number of established “blind deconvolution and equalisa

techniques which permit s to be recovered from x [13]. The accuracy with which s can be recovered depends

noise process and the estimation technique used, as well as the number, type and position of microphones u

the sampling frequency. In the absence of a better noise variance estimate, the variance in the noise power

can often be taken as proportional to the square of the estimated noise power [13]. While the details of the pa

noise pdf estimation technique used are beyond the scope of this report, it is therefore not difficult to obtain th

and variance for the additive noise power associated with each noisy observed spectral power coefficient.

report we assume additive distortion only (convolutional distortion converted if necessary to additive dist

through transformation of the channel output into the log spectral domain).

In Section 2 we recollect the equations for MAP decoding with uncertain data from [11]. In Section 3 we pres

analysis of the way in which uncertainty in the noise spectrum is transformed into uncertainty in the clean s

spectrum. In Section 5 we discuss various implementation issues.

2. Theoretical basis for recognition with uncertain data
We do not address the issue of classifier training with uncertain data. It is assumed here that models are train

clean speech data. This assumption can be inaccurate and an analysis of optimal training with uncertain data w

a natural counterpart to the present study. Let the clean spectral power data for a given utterance (after binnin

Mel scale) be denoted by . Let the compressed clean spectral data, as is commonly used in model training

recognition, be denoted by (e.g. logarithm or cube root compression). Let the noise spectral powe

be denoted and the noisy spectral data, assuming additive noise, be denoted . Let the compress

spectral data be denoted .

In the original “missing data” (MD) approach to noise robust ASR [6], each spectral coefficient was assumed

either dominated by speech = “clean”, or dominated by noise = “missing”. Having partitioned the noisy obser

sequence into “present” and noisy components , the noisy data was then treat

“missing” by marginalising the original objective  over  to obtain .

While the term “clean data” in the context of MD ASR originally referred to speech data in the absence of noise

we mean here by “clean data” is any data which is from the same data population as that used for model t

However, while models trained with noisy data can provide considerable increases in noise robustness, in this

“clean” (i.e. matched) data pdf could not be inferred directly from an estimated noise data pdf, because matchi

should itself be noisy.

Note also that what we refer to as “ ” here is really , where is the word sequence to be recognise

is the associated HMM state sequence. However, to simplify notation we just write . The same equation

through with  if  is everywhere replaced by , or .

2.1 Evolution of models for classification with uncertain data

A parametric classifier using model  is usually trained on clean data  to have parameters  using

(1)

S

X C S( )=

N Y S N+=

Z C Y( )=

Z Xp Zp= Xm Zm≠ Zm
P Q X( ) Xm P Q Xp( )

Q W Q,( ) W

Q Q

W Q,( ) P Q( ) P W Q,( ) P W( )P Q W( )

M Ztr Θ

Θ argmaxθP Ztr Qtr Z, tr M θ;,( )=
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Although ML parameter estimation is theoretically suboptimal, we are not concerned in this report about ho

model parameters  were obtained.

In general the Bayes optimal class decision depends on what is known about the value of the clea

sequence when we are given the noisy observed data sequence . If tells us that (i.e. if we k

priori that  is clean), then we have the usual MAP rule (see Fig.1 “HMM baseline”),

(2)

It is shown in [12] that in general, if our knowledge of the clean model data  is incomplete or uncertain, then1

(3)

In the first MD model (1995) [6] tells us that is clean and is completely uninformative (viz. t

 for each coefficient of  is 1 or 0). In this case (see Fig.1 “hard missing data”)

(4)

This situation could occur in reality in the case of visual masking by opaque objects. In this case the appro

recognition with visual missing data described in [1] gives the same solution. However, that approach do

generalise to the case of uncertain rather than missing data, which instead must be based on Eq.3 from [12]

If are still 1 or 0, but we assume that noise is additive , then (on the assumption of si

additivity of speech and noise energy)uncertain data is bounded below by zero and above by the observed n

spectral value(1998) [12], then, assuming2 ,

(5)

(See Fig.1 “hard MD with bounds”). If uncertain data are still bounded but is anywhere in , th

was shown in [2, 11] that, providing the prior pdf is approximately flat, then (see Fig.1 “soft MD

bounds”)

(6)

In the case of Eq.6, during standard HMM/GMM Viterbi decoding each is replaced

. Equation 6 forms the basis for Bayes optimal decoding when the clean data va

uncertain and is represented by a pdf. In the next section we look at new ways in which the clean-data pdf

evaluated from a given noise pdf for each spectral component.

1. Any technique for classification with clean models and uncertain data which differs in any way from this
including the general class of data imputation techniques, , is therefore
priori sub-optimal.

2. This assumption has dubious validity. An alternative model is presented below.

Θ

QMAP κX
X Z κX X Z=

Z

QMAP argmaxQP Q Z M Z, tr,( ) argmaxQP Q Z Θ;( )≅=

X

Qbest argmaxQP Q X̂ Θ,( )=

QMAP argmaxQE P Q Z Θ;( ) κX Θ,[ ]=

κX Zp Zm
P clean( ) Z

QMAP argmaxQP Q Zp Θ,( )=

P clean( ) Y S N+=( )

p Xm κX( ) U Xm 0; Zm,( )=

QMAP argmaxQP Q Zp Θ,( ) p Xm Zp Q Θ, ,( ) Xmd
0

Zm∫=

P clean( ) 0 1,[ ]
p X( )

QMAP argmax= QP Q Θ( ) p X Q Θ,( ) p X κX( ) Xd
0

Z∫
p xi mj q,

k
Θ,( )

p xi mj q,
k

Θ,( ) p xi κi( ) xid
0

zi∫
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3. Inferring clean data pdf from estimated noise pdf
In this section we present two different approaches to this problem. The first approach is an incremental a

building on the success of the 2-mix representation of the clean data pdf introduced in [2], where it is assum

speech and noise energies are strictly additive. The second approach is more ambitious in that it is assumed

the speech and noise signals are additive, so that their energies may add together or cancel out, according to

difference between them (assuming a constant phase difference over each speech sample).

3.1 From 2-mix to 3-mix clean-data pdf, assuming additivity of speech/noise energy

In [2] the clean data pdf  was approximated by a mixture pdf,

(7)

It was also assumed that tells us that is dominated by speech [on the basis that under log comp

], so that

(8)

i.e. the probability density is approximately zero everywhere except at the observed value. It was also assum

tells us that is dominated by noise, so that we know nothing about the clean value except tha

bounded below by  and above by the observed noise data value, i.e. that

(9)

The mixture pdf in Eq.7 makes a number of modelling assumptions which can easily be seen to be highly ina

1. Eq.8 assumes that when , the observed compressed (i.e. log or cube root) spectral value is

nated by speech”, i.e. that . While it is true that the observed value will be dominated by speec

some , this assumption would be considerably more accurate if .

2. Eq.9 assumes that when the SNR is negative, the only information the observed value gives about the

value is an upper bound. This assumption would be more accurate for some  if .

3. Even when  is dominated by noise, the assumption that the pdf for the compressed data  should b

form is at least debatable. In this case it would seem more reasonable that the pdf for  is uniform, in 

case the pdf for  will be far from uniform, with most of the probability mass concentrated near to .

4. The point estimate of the local noise power is used in the calculation of the mix weight  in E

but the shape and spread of the noise power pdf is not used, though this extra information is often ava

Assuming that an estimate for the spectral noise power pdf as available (here assuming that noise is unco

across frequency so that we can model a separate univariate pdf for each spectral coefficient) we now show

noise pdf can be used to estimate a pdf for each clean spectral coefficient. This clean data pdf can then be

overcome the modelling inaccuracies described in points 1-4 above1.

1. If only a point estimate of the noise is available, the noise power variance can often be approximated
square of the noise power estimate [13].

p xi κi( )

p xi κ i( ) P snri 0>( ) p xi snri 0>( ) P snri 0≤( ) p xi snri 0≤( )+=

snri 0>( ) xi
a( )log b( )log>( ) a b»( )⇒

xi snri 0>( ) xi slog i nlog i>( ) xi si ni»( )= = δ xi zi–( )∼

snri 0≤( ) xi
0

xi snri 0≤( ) U xi 0; zi,( )∼

snri 0> zi
si ni»

snri snrhi> snrhi 0>( )

snri snrlo< snrlo 0<( )

zi xi
si

zi zi

P snri 0>( )
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In repeating here the MD tests using the 2-mix pdf given by Eqns.7-9 we noted that a number of minor adjustm

these equations which we tested resulted in a dramatic loss in performance. In what follows we are going to

alternative derivation for the clean data pdf which does not require a mixture pdf. However, rather than abol

mix pdf in favour of a single function, we are going to stay with the idea of a mix pdf (which seem to work very w

but change the pdf details as follows:

1. replace the two mix conditions and by the three conditions

 and .

2. for  we will assume not that the noisy compressed data has a uniform pdf, but that the un

pressed clean spectral power has a uniform pdf.

3. for  we will assume not that the noisy compressed data has a uniform pdf, but that

uncompressed clean spectral power has a uniform pdf.

We now consider appropriate pdf mix components for each of these three conditions.

For the conditions and we can make use of the Dirac and Uniform pdfs used before

the conditions  and  respectively, though now with more attention to detail.

For the condition , clean data is bounded by the interval . For any given th

bounds are determined by given snr limits  and the observed noisy value  as follows:

, so that (10)

and  and , so  and (11)

Assuming that an estimated pdf is available for the spectral noise power as , over , the

data pdf can be obtained as follows. For assume . Otherwise we will need to m

use of the following identity (where the function  is the inverse of ) (see Appendix B for derivation).

(12)

For  assume that .

For ,  for

For ,  for

Note here that whichever compression function is used, the effect of this compression of the clean data pdf is

clean-speech power values closer to the observed noisy value much more probable than lower values, even

noise power pdf is uniform.

If we have obtained only a mean and variance for the noise, then a candidate noise pdf for a continuous

variable bounded by , is the following form of beta pdf1 [5],

1. Although this pdf is quite complicated, both it and its product with a Gaussian pdf can be integrated in c
form - which is vital for implementation purposes. However, for practical purposes it may be sufficie
approximate  by a Gaussian.

snr 0<( ) 0 snr<( ) snr snrlo<( )
snrlo snr snrhi< <( ) snrhi snr<( )

snr snrlo<( )

snrlo snr snrhi< <( )

snrhi snr<( ) snr snrlo<( )
0 snr<( ) snr 0<( )

snrlo snr snrhi< <( ) x xlo xhi,[ ] xi
snrlo snrhi,( ) zi

snr
s
n
--- 

 log
s

y s–
----------- 

 log= = s y 1 e
snr–

+( )⁄=

x C s( )= z C y( )= xlo C C
1–

zi( ) 1 e
snrlo–

+( )⁄[ ]= xhi C C
1–

zi( ) 1 e
snrhi–

+( )⁄[ ]=

n pN n( ) 0 C
1–

z( ),[ ]
pX x( ) x xhi> x δ x C

1–
z( )–( )∼

B C

pX x( ) pN B z( ) B x( )–( )B′ x( )=

x xlo< pN n( ) U n 0 y,;( )∼

C s( ) s
1 3⁄

= pX x( ) 3x
2

z⁄= x C
1–

0( ) z,[ ]∈ 0 z,[ ]=

C s( ) s( )log= pX x( ) e
x

z 1–( )⁄= x C
1–

0( ) z,[ ]∈ ∞– z,[ ]=

0 y,[ ]

f N n( )
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4. Generic clean-data pdf, assuming only additivity of speech/noise signal
In this section we assume only that the speech and noise signal, not their separate energies, are additive. T

reinforce or cancel, depending on the phase difference between them (which we will assume constant). In th

the energy of the combined speech and noise signal, at each centre frequency , is the average value of the

the sum of the speech and noise signals. If we can assume that the signal sample contains several pitch peri

this average energy rate is given in terms of the speech signal (with energy rate

noise signal  (with energy rate ) by

(15)

(16)

The clean speech power is now a function of the observed noisy observed power and the noise powe

follows:

(17)

We can now use Eq.12 together with Eq.17 to obtain the clean-speech power pdf directly from a given the

power pdf .

First case: assume , so that . In this case we have

 => (18)

Then we have , ,

=> (19)

Two commonly used compression functions are  and .

 for , else

When  =  and ,

then  for

For given noise pdf , and compression function C, with inverse B, the pdf for clean compressed dat

general given by

 for (20)

e.g. for estimated noise pdf uniform, with cube root compression, the clean compressed data pdf is

f N n v w,;( ) nv 1– y n–( )w 1–

yv w 1+ + β v w,( )
----------------------------------=

u µn 1 µn–( ) σn
2⁄ 1–= v µnu= w 1 µn–( )u=

f

x
2

s t( ) as t( )sin= s
2

as
2

2⁄=

n t( ) an t φ+( )sin= n
2

an
2

2⁄=

x2 ax
2 2⁄ f s t( ) n t( )+( )2 td

0

1 f⁄∫ f as t( )sin an t φ+( )sin+( )2 td
0

1 f⁄∫= = =

as
2 an

2 2asanCos φ( )+ +( ) 2⁄= s2 n2 2snCosφ( )+ +=

s
2

x
2

n
2

s2 nCos φ( )– x2 n2Sin φ( )–( )1 2⁄
+( )2

=

p
N

2 n
2( )

φ 0= x s n+=

s A n( ) x n–= = pS s( ) pN B s( )( )B′ s( ) pN x s–( )= =

y A s( ) C s( )= = z C x( )= x B z( )=

pY y( ) pS B y( )( )B′ y( ) pN x B y( )–( )B′ y( ) pN B z( ) B y( )–( )B′ y( )= = =

z x( )log= z x
1 3⁄

=

pX x( ) pN B z( ) B x( )–( )B′ x( )= x C 0( ) z,[ ]∈ pX x( ) 0=

pN n( ) U n 0 B z( ),;( ) B z( ) z3=

pX x( ) 3x2 z3⁄= x 0 z,[ ]∈

pN n( )

pX x( ) pN B z( ) B x( )–( )B′ x( )= x C 0( ) z,[ ]∈
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5. Discussion and conclusion
We have described the steps by which the original paradigm of recognition with missing spectral data led to

accurate model for recognition with uncertain data. On the understanding that it is not difficult to obtain an ac

estimate of the noise pdf for each spectral data coefficient, we then described a number of ways in which the

data pdf can be modelled in terms of the noise pdf. The first and simplest of these models extends the 2-mix

previously used in the “soft missing data” model, to a 3-mixture pdf. The second more ambitious model a

increase the accuracy of the clean-data pdf model still further by taking into account the speech/noise

difference. While the framework for the necessary calculations was introduced, this calculation was

implemented so far for the relatively trivial case in which ###. It would be instructive in future to follow through

necessary calculations for a number of further cases, according to whether

1. noise power is a given exact value or a pdf

2. logarithm or cube-root compression is in use

3. phase difference is zero, a fixed known value, or has a uniform pdf over

In the most general case, the noise power will be represented by a pdf and the phase difference will be unkn

having a uniform pdf).

The take up of this approach will depend on the existence of closed form and computationally feasible solution

equations here presented. This is a preliminary study and no empirical tests are included. It is intended as a th

foundation from which practical solutions may be developed in future.

pX x( ) 3x2 z3⁄=

π– π,[ ]
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Appendix A: Nomenclature and commonly used abbreviations

ASR Automatic Speech Recognition

SNR Signal to Noise Ratio

WER Word Error Rate

probability of “event x” occurring

probability density at  of a continuous value

function with given model  (not indicated) with parameters  used to estimate

function (model and parameters unspecified) used to estimate

speech unit whose presence is being estimated, or event that data  is from this class

, data window vector at time step

number of spectral sub-bands

 clean  is from data population used in model training (i.e.  has no data mismatch)

any knowledge which can be used to fix or constrain the value of

cumulative density function for the standard Gaussian pdf

the Dirac delta pdf, centred at .  for , and integrates to

the Uniform pdf over the interval

unknown uncompressed clean speech

unknown compressed clean speech

uncompressed noisy speech,

observed compressed noisy speech

given (estimated) noise pdf

required compressed clean data pdf

P x( )

p x( ) x

P x Θ;( ) M Θ P x( )

P̂ x( ) P x( )

qk x

x x
n

n

d

x x x

κx x

Φ x( )

δ x a–( ) a( ) δ x( ) 0= x 0≠ 1

U x a b,;( ) a b,[ ]

s

x C s( )=

y s n+= n 0 y,[ ]∈

z C y( )= y C 1– z( )= B z( )=( )

pN n( )

pX x( )
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Appendix B: Results used

If  is a 1-1 increasing function  of variable , with , and , then1

(1)

If  is a 1-1 decreasing function of , then

(2)

so in general, if  is a 1-1 function of , then

(3)

If  is increasing then  is increasing, so  =>

=> (4)

If  is decreasing then  is decreasing, so  =>

=> . (5)

Equation relating

(6)

Solving (6) for , with ,  real and  when , gives  and

(7)

1. This can be shown easily as follows. . If is increasing, then applying (

inverse of ) to both sides of the inequality gives . Differentiating bo

sides with respect to  then gives .

y A x( ) x B x( ) A 1– x( )= x pX x( )∼

FY y( ) P Y y<( )= y A x( )= B

A FY y( ) P X B y( )<( ) FX B y( )( )= =

y f Y y( ) f X B y( )( ) B′ y( )=

pY y( ) pX B y( )( )B′ y( )=

y x

pY y( ) p– XB y( )B′ y( )=

y x

pY y( ) p– XB y( ) B′ y( )=

A x( ) B y( ) x x1 x2,[ ]∈ B y( ) x1 x2,[ ]∈

y A x1( ) A x2( ),[ ]∈

A x( ) B y( ) x x1 x2,[ ]∈ B y( ) x1 x2,[ ]∈

y A x2( ) A x1( ),[ ]∈

x s n, ,( )

x2 s2 n2 2ns θcos+ +=

s x
2

a
2
n

2
= s x s n+= θ 0= a

2
1≥

s nCosθ( )– n a2 Sin2 θ( )–( )1 2⁄
+=



IDIAP-RR 02-2914

eural

s for

ech

ept.

eech

P95 ,

bust

bust

all

t &

data
References
[1] Ahmed, S. & Tresp, V. (1993) “Some solutions to the missing feature problem in vision”, in Advances in N

Information Processing Systems 5, Morgan Kauffman, San Mateo, pp. 393-400.

[2] Barker, J., Josifovski, L., Cooke, M.P. & Green, P.D. (2000) “Soft decisions in missing data technique
robust automatic speech recognition”, Proc. ICSLP-2000, pp.373-376.

[3] Droppo, J., Acero, A. & Deng, L. (2002) “Uncertainty decoding with SPLICE for noise robust spe
recognition”, Proc. ICASSP’02, Vol.1, pp. 57-60.

[4] El-Maliki, M. (2000) “Speaker verification with missing features in noisy environments”, PhD thesis, D
d’Electricité, Ecole Polytechnique Fédérate de Lausanne.

[5] Evans, M., Hastings, N. & Peacock, B. (2000)Statistical Distributions, Wiley series in probability and
statistics.

[6] Green, P.D., Cooke, M.P. & Crawford, M.D. (1995), “Auditory scene analysis and HMM recognition of sp
in noise”, Proc. ICASSP’95, pp.401-404.

[7] Hirsch, H. G. and C. Ehrlicher (1995) “Noise estimation techniques for robust speech recognition”, ICASS
1995, pp. 153-156.

[8] Kristjansson, T.T. & Frey, B.J. (2002) “Accounting for uncertainty in observations: a new paradigm for ro
automatic speech recognition”, Proc. ICASSP’02, Vol.1, pp.61-64.

[9] Lippmann, R. P. & Carlson, B. A. (1997) “Using missing feature theory to actively select features for ro
speech recognition with interruptions, filtering and noise”, Proc. Eurospeech’97, pp. 37-40

[10] McCowan, I.A., Morris, A.C. & Bourlard, B. (2002) “Improving speech recognition performance of sm
microsphone arrays using missing data techniques”, Proc ICSLP’02 (in press).

[11] Morris, A. C. (2001) “Data utility modelling for mismatch reduction”, Proc. CRAC workshop on Consisten
Reliable Acoustic Cues for sound analysis.

[12] Morris, A. C., Cooke, M. & Green, P. (1998) “Some solutions to the missing feature problem in
classification, with application to noise robust ASR”, Proc. ICASSP'98, pp.737-740.

[13] Vasegi, S. (1998) Advanced signal processing and digital noise reduction”, Wily Neubner.


	1. Introduction
	Figure 1. Comparison of WER vs. SNR for baseline HMM system and four missing data based systems (...

	2. Theoretical basis for recognition with uncertain data
	2.1 Evolution of models for classification with uncertain data
	(1)
	(2)
	(3)
	(4)
	(5)
	(6)


	3. Inferring clean data pdf from estimated noise pdf
	3.1 From 2-mix to 3-mix clean-data pdf, assuming additivity of speech/noise energy
	(7)
	(8)
	(9)
	1. Eq.8 assumes that when , the observed compressed (i.e. log or cube root) spectral value is “do...
	2. Eq.9 assumes that when the SNR is negative, the only information the observed value gives abou...
	3. Even when is dominated by noise, the assumption that the pdf for the compressed data should be...
	4. The point estimate of the local noise power is used in the calculation of the mix weight in Eq...
	1. replace the two mix conditions and by the three conditions , and .
	2. for we will assume not that the noisy compressed data has a uniform pdf, but that the uncompre...
	3. for we will assume not that the noisy compressed data has a uniform pdf, but that the uncompre...

	, so that (10)
	and and , so and (11)
	(12)
	(13)
	where , , . (14)


	4. Generic clean-data pdf, assuming only additivity of speech/noise signal
	(15)
	(16)
	(17)
	=> (18)
	=> (19)
	for (20)
	(21)

	5. Discussion and conclusion
	1. noise power is a given exact value or a pdf
	2. logarithm or cube-root compression is in use
	3. phase difference is zero, a fixed known value, or has a uniform pdf over

	Appendix A: Nomenclature and commonly used abbreviations
	Appendix B: Results used
	(1)
	(2)
	(3)
	=> (4)
	=> . (5)
	(6)
	(7)
	References
	[1] Ahmed, S. & Tresp, V. (1993) “Some solutions to the missing feature problem in vision”, in Ad...
	[2] Barker, J., Josifovski, L., Cooke, M.P. & Green, P.D. (2000) “Soft decisions in missing data ...
	[3] Droppo, J., Acero, A. & Deng, L. (2002) “Uncertainty decoding with SPLICE for noise robust sp...
	[4] El-Maliki, M. (2000) “Speaker verification with missing features in noisy environments”, PhD ...
	[5] Evans, M., Hastings, N. & Peacock, B. (2000) Statistical Distributions, Wiley series in proba...
	[6] Green, P.D., Cooke, M.P. & Crawford, M.D. (1995), “Auditory scene analysis and HMM recognitio...
	[7] Hirsch, H. G. and C. Ehrlicher (1995) “Noise estimation techniques for robust speech recognit...
	[8] Kristjansson, T.T. & Frey, B.J. (2002) “Accounting for uncertainty in observations: a new par...
	[9] Lippmann, R. P. & Carlson, B. A. (1997) “Using missing feature theory to actively select feat...
	[10] McCowan, I.A., Morris, A.C. & Bourlard, B. (2002) “Improving speech recognition performance ...
	[11] Morris, A. C. (2001) “Data utility modelling for mismatch reduction”, Proc. CRAC workshop on...
	[12] Morris, A. C., Cooke, M. & Green, P. (1998) “Some solutions to the missing feature problem i...
	[13] Vasegi, S. (1998) Advanced signal processing and digital noise reduction”, Wily Neubner.



