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Abstract

Motivated by the human ability to maintain a high level of speech recognition when large parts of
the spectrogram are masked (i.e. dominated) by noise, the original “missing data” (MD) approach
to noise robust speech recognition was based on the paradigm whereby models are trained on
clean speech and during recognition parts of the spectrogram identified as being dominated by
noise are ignored by marginalisation over the clean data pdf. However, the implied rule that each
spectral data value should be treated as either as 100% clean or completely missing is inaccurate.
The performance of MD based recognition has been steadily improving over the last few years
with each increase in the accuracy of the modelling of clean-data uncertainty. Another assumption
of the MD approach, which is more reasonable, is that it is often relatively easy to obtain an
accurate estimate of the local noise spectrum. In this report we present an analysis of the way in
which uncertainty in the noise spectrum is transformed into uncertainty in the clean speech
spectrum. The take up of this approach will depend on the existence of closed form and
computationally feasible solutions to the equations here presented. This is a preliminary study and
no empirical tests are included. It is intended as a theoretical foundation from which practical
solutions may be developed in future.

Keywords: noise robust ASR, noise masking, missing data, data uncertainty, pdf transformation
Acknowledgements:Some of the ideas presented arose from discussions with Nestor Becerra
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Figure 1. Comparison of WER vs. SNR for baseline HMM system and four missing data based systems (last using a-
priori missing-data masks). Task is Aurora 2.0 connected digits, test (a). Results averaged over all 4 noise types.

1. Introduction

Humans are able to maintain a high level of speech recognition when large parts of the spectrogram are masked (i.e.
dominated) by noise [9]. In the original “missing data” (MD) approach to noise robust speech recognition [6] was
based on the paradigm whereby models are trained on clean speech and during recognition parts of the spectrogram
identified as being dominated by noise are ignored by marginalisation over the clean data pdf. However, the implied
rule that each spectral data value should be treated as either as 100% clean or completely missing is inaccurate. The
performance of MD based recognition has been steadily improving over the last few years with each increase in the
accuracy of the modelling of clean-data uncertainty (See Fig. 1). The first main improvement was to take into account
the fact that (on the assumption that speech and noise energy are simply additive) the unknown clean speech value is
bounded above by its observed value, and below by zero. This model [12] has been referred to as “bounded
marginalisation”. The second main improvement was to aknowledge that the choice of labelling each spectral
coefficient as either clean or noisy was itself probabilistic. In this “soft missing data” model [2] the solutions for the
“clean” and “missing” cases are combined in a weighted sum, where the weight  applied to the clean case is the
estimated probability that the coefficient is clean (the other weight-iav) ).

In [11] it was shown that the “soft missing data” model can be viewed as principled implementation of the Bayes
decision rule for MAP decoding in the presence of data uncertainty, where the data uncertainty is expressed as a
separate pdf for each spectral data coefficient, and this pdf is modelled as a mixture pdf comprising a dirac pdf for the
clean data, and a uniform pdf (over the interval [0,0bserved value]) for the masked data. Both the “soft missing data”
model, and related models for “uncertainty decoding” introduced around the same date [3], exploit the fact that it is
often relatively easy to obtain an accurate, albeit probabilistic, estimate of the local noise spectrum. From this one can
obtain an accurate estimate of the underlying clean data pdf. In this representation data coefficients estimated as clean
have highly peaked pdfs, while data values deemed uncertain have very flat pdfs.
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For observed noisy channel output Y, let S denote the clean input signal, and N denote additive noise. For the linear
noise modeY = A.S + N, with N Gaussian, there are a number of established “blind deconvolution and equalisation”
techniques which permit s to be recovered from x [13]. The accuracy with which s can be recovered depends on the
noise process and the estimation technique used, as well as the number, type and position of microphones used, and
the sampling frequency. In the absence of a better noise variance estimate, the variance in the noise power estimate
can often be taken as proportional to the square of the estimated noise power [13]. While the details of the particular
noise pdf estimation technique used are beyond the scope of this report, it is therefore not difficult to obtain the mean
and variance for the additive noise power associated with each noisy observed spectral power coefficient. In this
report we assume additive distortion only (convolutional distortion converted if necessary to additive distortion
through transformation of the channel output into the log spectral domain).

In Section 2 we recollect the equations for MAP decoding with uncertain data from [11]. In Section 3 we present an
analysis of the way in which uncertainty in the noise spectrum is transformed into uncertainty in the clean speech
spectrum. In Section 5 we discuss various implementation issues.

2. Theoretical basis for recognition with uncertain data

We do not address the issue of classifier training with uncertain data. It is assumed here that models are trained with
clean speech data. This assumption can be inaccurate and an analysis of optimal training with uncertain data would be
a natural counterpart to the present study. Let the clean spectral power data for a given utterance (after binning on the
Mel scale) be denoted b . Let the compressed clean spectral data, as is commonly used in model training and in
recognition, be denoted b = C(S (e.g. logarithm or cube root compression). Let the noise spectral power data
be denotedN and the noisy spectral data, assuming additive noise, be d¥énotest N . Let the compressed noisy
spectral data be denot&d= C(Y)

In the original “missing data” (MD) approach to noise robust ASR [6], each spectral coefficient was assumed to be
either dominated by speech = “clean”, or dominated by noise = “missing”. Having partitioned the noisy observation
sequenceZ into “presentXp = ZIO and noisy componeK{s# Z, , the noisy dgta was then treated as
“missing” by marginalising the original object\®(Q| X)  ov&f,  to obtRi(Q)| Xp)

While the term “clean data” in the context of MD ASR originally referred to speech data in the absence of noise, what
we mean here by “clean data” is any data which is from the same data population as that used for model training.
However, while models trained with noisy data can provide considerable increases in noise robustness, in this case the
“clean” (i.e. matched) data pdf could not be inferred directly from an estimated noise data pdf, because matching data
should itself be noisy.

Note also that what we refer to aQ" " hereisrealw, Q ,wh@ve is the word sequence to be recognised, and
Q is the associated HMM state sequence. However, to simplify notation we just@rite . The same equations carry

through with(W, Q) ifP(Q) is everywhere replaced BYW, Q ,R{W)P(Q|W)

2.1 Evolution of models for classification with uncertain data

A parametric classifier using modél is usually trained on cleanZjata to have pard@neters  using

O = argma)@P(Ztr|Qtr1 Ztr! M,e) (1)
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Although ML parameter estimation is theoretically suboptimal, we are not concerned in this report about how the
model parameter®  were obtained.

In general the Bayes optimal class decisi@g ,p depends on what is kegwn about the value of the clean data

sequenceX when we are given the noisy observed data seqdencey . If tells Xisthat (i.e. if we know a-
priori thatZ is clean), then we have the usual MAP rule (see Fig.1 “HMM baseline”),
Quar = argmaxP(Q| Z M, Z,) DargmaxP(Q| Z,0) (2

It is shown in [12] that in general, if our knowledge of the clean modelXlata  is incomplete or uncerthin, then
Quar = argmaxE[P(Q| Z;@)|Kx, O] 3

In the first MD model (1995) [6]ky tells us thaZp is clean add, is completely uninformative (viz. that
P(clean for each coefficient of is 1 or 0). In this case (see Fig.1 “hard missing data”)

Quap = argmaxP(Q| Z,, ©) @)

This situation could occur in reality in the case of visual masking by opaque objects. In this case the approach to
recognition with visual missing data described in [1] gives the same solution. However, that approach does not
generalise to the case of uncertain rather than missing data, which instead must be based on Eq.3 from [12].

If P(clean are still 1 or 0, but we assume that noise is additie= S+ N , then (on the assumption of simple
additivity of speech and noise energy)certain data is bounded below by zero and above by the observed noisy
spectral valug1998) [12], then, assumiﬁg)(xm‘Kx) = U(X;0,Z,),

Quae = argmaxP(Q|Z,, O)f;"p(Xn|Zy» Q. ©)dXy ©

(See Fig.1 “hard MD with bounds”). If uncertain data are still boundedR{tiean is anywhd @ ij , then it
was shown in [2, 11] that, providing the prior ga{fX) is approximately flat, then (see Fig.1 “soft MD with
bounds”)

Quar = argmaxP(Q| ) [ P(X| Q ©) p(X|Kx)dX ©)

In_ the case of EQ.6, during standard HMM/GMM Viterbi decoding eambq‘mj, 0, Q) is replaced by

0' p(x; ‘ mj, d,. ) p(X% ‘ K;)dx; . Equation 6 forms the basis for Bayes optimal decoding when the clean data value is
uncertain and is represented by a pdf. In the next section we look at new ways in which the clean-data pdf can be
evaluated from a given noise pdf for each spectral component.

1. Any technique for classification with clean models and uncertain data which differs in any way from this rule,
including the general class of data imputation techniqu@g,; = argma>bP(Q\ X Q) , is therefore a-
priori sub-optimal.

2. This assumption has dubious validity. An alternative model is presented below.
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3. Inferring clean data pdf from estimated noise pdf

In this section we present two different approaches to this problem. The first approach is an incremental advance
building on the success of the 2-mix representation of the clean data pdf introduced in [2], where it is assumed that
speech and noise energies are strictly additive. The second approach is more ambitious in that it is assumed only that
the speech and noise signals are additive, so that their energies may add together or cancel out, according to the phase
difference between them (assuming a constant phase difference over each speech sample).

3.1 From 2-mix to 3-mix clean-data pdf, assuming additivity of speech/noise energy
In [2] the clean data pq1'>(xi‘|<i) was approximated by a mixture pdf,
p(x|ki) = P(snf>0)p(x|snr>0)+P(snr<0)p(x|snr;<0) ™

It was also assumed thggnr, >0)  tellsustixat  is dominated by speech [on the basis that under log compression,
(log(a) >log(b)) O (a» b)], so that

(xi|snr; >0) = (x;|logs >logn) = (x;|s » n;) UO(x —z) (8)

i.e. the probability density is approximately zero everywhere except at the observed value. It was also assumed that
(snr;<0) tells us thatx; is dominated by noise, so that we know nothing about the clean value except that it is
bounded below by and above by the observed noise data value, i.e. that

(xi|snr;<0) OU(x;0, z) 9)
The mixture pdf in Eq.7 makes a number of modelling assumptions which can easily be seen to be highly inaccurate.

1. Eq.8 assumes that whemr, >0 , the observed compressed (i.e. log or cube root) spectal value is “domi-
nated by speech”, i.e. tha »n, . While it is true that the observed value will be dominated by speech for
somesnr; >snr,; , this assumption would be considerably more accur@erif; > 0)

2. Eq.9 assumes that when the SNR is negative, the only information the observed value gives about the clean
value is an upper bound. This assumption would be more accurate fosagmenr,,  (snr, ik 0)

3. Even wherg, is dominated by noise, the assumption that the pdf for the compressed data  should be uni-
form is at least debatable. In this case it would seem more reasonable that thespdf for s uniform, in which
case the pdf fog;  will be far from uniform, with most of the probability mass concentrated zpar to

4. The point estimate of the local noise power is used in the calculation of the mix Resgint> 0) in Eq.7,
but the shape and spread of the noise power pdf is not used, though this extra information is often available.

Assuming that an estimate for the spectral noise power pdf as available (here assuming that noise is uncorrelated
across frequency so that we can model a separate univariate pdf for each spectral coefficient) we now show how this
noise pdf can be used to estimate a pdf for each clean spectral coefficient. This clean data pdf can then be used to
overcome the modelling inaccuracies described in points 1-4 hbove

1. If only a point estimate of the noise is available, the noise power variance can often be approximated by the
square of the noise power estimate [13].
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In repeating here the MD tests using the 2-mix pdf given by Egns.7-9 we noted that a number of minor adjustments to
these equations which we tested resulted in a dramatic loss in performance. In what follows we are going to give an
alternative derivation for the clean data pdf which does not require a mixture pdf. However, rather than abolish the
mix pdf in favour of a single function, we are going to stay with the idea of a mix pdf (which seem to work very well),
but change the pdf details as follows:

1. replace the two mix conditiongsnr<0) ando0 < snr) by the three conditiqissir< snr) ,
(snrn,<snr<sng;) and(snr,; <snr) .

2. for (snr<sng,) we will assume not that the noisy compressed data has a uniform pdf, but that the uncom-
pressed clean spectral power has a uniform pdf.

3. for (snr, <snr<sng;) we will assume not that the noisy compressed data has a uniform pdf, but that the
uncompressed clean spectral power has a uniform pdf.

We now consider appropriate pdf mix components for each of these three conditions.

For the conditiongsnr,; <snr) an@snr<sny ) we can make use of the Dirac and Uniform pdfs used before with
the conditiond0<snr) andsnr<Q) respectively, though now with more attention to detail.

For the condition(snr, <snr<sng;) , clean data is bounded by the intefwg|, x;,;] . Forany given  these
bounds are determined by given snr linfgsir, , snr;) and the observed noisyzvalue  as follows:

—Snr

snr = IogEﬁD

IogEy ,Sothats = y/(1+e ™) (20)

and x = C(9 andz = C(y) ,sx, = C[C (z)/(1+e *Mlioyg ang,,; = C[C™ (z)/(1+e DY (11)

Assuming that an estimated pdf is available for the spectral noise plmwerpN(ans) [,Opﬁe_rl(z)] , the clean
data pdfpy(x) can be obtained as follows. For x; assumed(x— C- (z)) . Otherwise we will need to make
use of the following identity (where the functi@ is the invers€of ) (see Appendix B for derivation).
Px(X) = pn(B(2) - B(X))B'(X) (12)
For x < x, assume thaby(n) OU(n;0,y)
1/3

ForC(s) = s 7, py(x) = 3x%/z forx O [C_l(O), z] = [0,7]

For C(s) = log(s) , px(x) = eX/(z—l) forx O [C_l(O), z] = [-», Z]

Note here that whichever compression function is used, the effect of this compression of the clean data pdf is to make
clean-speech power values closer to the observed noisy value much more probable than lower values, even when the
noise power pdf is uniform.

If we have obtained only a mean and variance for the noise, then a candidate noise pdf for a continuous random
variable bounded bj0, y] , is the following form of betalpsi,

1. Although this pdf is quite complicated, both it and its product with a Gaussian pdf can be integrated in closed
form - which is vital for implementation purposes. However, for practical purposes it may be sufficient to
approximatef N(n) by a Gaussian.
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nV—l(y _ n)W—l

yV+W+lB(V’ W)
whereu = po(1—p,)/0a—1 v = pu w = (1—p,)u . (14)

fa(nv, w) = (13)

4. Generic clean-data pdf, assuming only additivity of speech/noise signal

In this section we assume only that the speech and noise signal, not their separate energies, are additive. They may
reinforce or cancel, depending on the phase difference between them (which we will assume constant). In this case
the energy of the combined speech and noise signal, at each centre frefluency , is the average value of the square of
the sum of the speech and noise signals. If we can assume that the signal sample contains several pitch periods, then
this average energy rate is given in terms of the speech sijtjak a sin(t) (with energ;,% ratag/z ) and

. . . . 2 2
noise signah(t) = a,sin(t+¢) (with energy rate = a,/2 )by

X’ = aX/2 = fﬁ/f(s(t)+n(t))2dt = fjg”(assin(t)+ansin(t+cp))2dt (15)
= (ai+a’+2aa,Coq0))/2 = s"+n’+2snCog) (16)

2 . . . 2 )
The clean speech powsr is now a function of the observed noisy observed power  and the noise power as
follows:

1/2,2

s = (-nCoq@) + (X’ —n’Sin(g)) ") (17)

We can now use EQ.12 together with Eq.17 to obtain the clean-speech power pdf directly from a given the noise
power pdprz(nZ) .

First case: assumg = 0 ,sothat s+ n . In this case we have

s = A1) = x—n =>pg(s) = py(B(9)B'(S) = py(x—9) (18)
Then we havy = A(s) = C(9) z= C(¥ x = B(2
=>  py(y) = ps(B(Y))B'(Y) = pn(x—B(¥))B'(y) = pn(B(2)-B(Y))B'(Y) (19)

. . 1/3
Two commonly used compression functions are log( x) amd X

Px(X) = pn(B(2) —B(X))B'(X) for x O [C(0), Z] , elsepx(X) = 0

When py(n) =U(n;0, B(2)) andB(2) = Z° ,
then py(X) = 3x°/Z° forx O[O0, Z]

For given noise pdfpy(N) , and compression function C, with inverse B, the pdf for clean compressed data is in
general given by

Px(X) = pn(B(2) —B(X))B'(x) for x O [C(0), Z] (20)

e.g. for estimated noise pdf uniform, with cube root compression, the clean compressed data pdf is
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px(X) = 3X°/Z° 1)

5. Discussion and conclusion

We have described the steps by which the original paradigm of recognition with missing spectral data led to a more
accurate model for recognition with uncertain data. On the understanding that it is not difficult to obtain an accurate
estimate of the noise pdf for each spectral data coefficient, we then described a number of ways in which the clean-
data pdf can be modelled in terms of the noise pdf. The first and simplest of these models extends the 2-mixture pdf
previously used in the “soft missing data” model, to a 3-mixture pdf. The second more ambitious model aims to
increase the accuracy of the clean-data pdf model still further by taking into account the speech/noise phase
difference. While the framework for the necessary calculations was introduced, this calculation was only
implemented so far for the relatively trivial case in which ###. It would be instructive in future to follow through the
necessary calculations for a number of further cases, according to whether

1. noise power is a given exact value or a pdf

2. logarithm or cube-root compression is in use

3. phase difference is zero, a fixed known value, or has a uniform pdf-ayer]

In the most general case, the noise power will be represented by a pdf and the phase difference will be unknown (so
having a uniform pdf).

The take up of this approach will depend on the existence of closed form and computationally feasible solutions to the
equations here presented. This is a preliminary study and no empirical tests are included. It is intended as a theoretical
foundation from which practical solutions may be developed in future.
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Appendix A: Nomenclature and commonly used abbreviations

ASR
SNR
WER
P(x)
p(x)
P(x,0)
P()

Ok
Xy

d

X clean

Kx

(x)

5(x— a)

n

X

Automatic Speech Recognition

Signal to Noise Ratio

Word Error Rate

probability of “event x” occurring

probability density ak of a continuous value

function with given modeM (not indicated) with parame®rs  used to estiffa}e
function (model and parameters unspecified) used to estittgte

speech unit whose presence is being estimated, or event that data is from this class
data window vector at time step

number of spectral sub-bands

x is from data population used in model training k.e. has no data mismatch)

any knowledge which can be used to fix or constrain the valye of
cumulative density function for the standard Gaussian pdf

the Dirac delta pdf, centred éd) o(x) = 0 e 0 , and integratek to

U(x;a, b) the Uniform pdf over the intervdh, b]

S unknown uncompressed clean speech

x = C(9 unknown compressed clean speech

y =s+n uncompressed noisy speeth(] [0, Y]

z=C(y observed compressed noisy speetyi = C(z) = B(2))
pn(N)  given (estimated) noise pdf

Px(X)

required compressed clean data pdf
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Appendix B: Results used

If y is a 1-1 increasing functioA(X)  of variable ,wiB(X) = A™(x) , axdd py(X)

Pv(y) = px(B(Y))B'(Y)

If yis a 1-1 decreasing function af , then
Pv(y) = —pxB(y)B'(Y)

soin general, ify is a 1-1 function &f , then
Pv(Y) = —pPxB(Y)IB'(Y)

If A(X) is increasing theB(y) is increasing, 301 [ Xy, X,] Bey) U [X4, X5]
=>yO[A(x), A(X)]

If A(X) is decreasing theB(y) is decreasingxsa [ x;, X,] Bty) O [xy, X,]
=>yO[A(%), A(x))] -

Equation relatingx, s n)
x> = & +n’+2nscosh

Solving (6) fors ,Withx2 = a’n’ S realank = s+ n whebh =0 ,giva%z 1

172

s = —nCog0) + n(a —Sirf(0))

and

13

, then
1)

@)

®3)

(4)

(®)

(6)

@)

1. This can be shown easily as follows,(y) = P(Y<y  yl= A(X) is increasing, then applBing  (the

inverse ofA ) to both sides of the inequality gieg(y) = P(X< B(Y)) = Fy(B(Y))

sides with respect tp  then givés(y) = fy(B(y))IB'(y)|

. Differentiating both
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