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Abstract. Although many Offline Cursive Word Recognition systems are based on HMMs, no
attention was ever paid, to our knowledge, to the fact that the feature vectors are typically not
in the most suitable form for modeling. They are most of the time correlated and embedded in a
space of dimension higher than their Intrinsic Dimension. This leads to several problems and has
a negative influence on the performance.

By applying some transforms it is possible to solve, or at least to attenuate, such problems
resulting in data easier to model and in systems with higher recognition rate. In this work, we
used Principal Component Analysis (linear and nonlinear) and Independent Component Analysis.
A reduction of the error rate by up to 30.3% (over single writer data) and 16.2% (over multiple
writer samples) is shown to be achieved.
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1 Introduction

Hidden Markov Models are widely applied in Offline Cursive Word Recognition [1][2][3]. The systems
using such approach (see e.g. [4][5][6][7][8][9][10]) convert the handwritten data into vector sequences by
splitting them into fragments and by extracting from each one of these a feature vector. The sequence
of observations so obtained is modeled with the HMMs that are probability density functions over the
space of the vector sequences [11].

Although such an approach is common, no systematic attention was ever paid, to our knowledge, to
the possibility of improving the performance of the HMMs by giving the feature vectors a form that is
more suitable for the modeling. The raw vectors are typically affected by two fundamental problems:
they are embedded in a space that has a dimension d higher than their Intrinsic Dimension (ID) and
they are correlated (see section 2 for a description of both points). Such problems can be solved (or
at least attenuated) by applying transforms that can compress and decorrelate the data.

In this work, we used Karhunen-Loeve Expansion, Nonlinear Principal Component Analysis (based
on autoassociative neural networks) and Independent Component Analysis. The first two techniques
are a linear and nonlinear version respectively of Principal Component Analysis. The last one is a
transform that tries to model the data as a linear combination of statistically independent stochastic
variables. Depending on the transform, the attention will be focused on compression or decorrelation,
however all the transforms are shown to improve significantly the recognition rate of a baseline system
using raw feature vectors. A maximum reduction of the error rate by 30.3% and by 16.2% was achieved
over single and multiple writer data respectively.

The remaining of the paper is organized as follows: section 2 describes the disadvantages of using raw
data, section 3 presents the data transforms applied, section 4 gives a brief overview of the system
used, section 5 describes experiments and results obtained, section 6 draws some conclusions and final
remarks.

2 Raw Data Disadvantages

This section explains why compression and decorrelation (that can be obtained through the transforms
presented in this work) of the feature vectors can improve the performance of the HMMs.

The ID of a data set is the minimum number of free variables needed to represent the data without
information loss. In other terms, a data set Q@ € R? is said to have an ID equal to m if its elements
lie entirely within an m-dimensional subspace of R? (where m < d) [12]. The use of more dimensions
than necessary leads to two main problems [13]: Curse of Dimensionality and increase of the number
of parameters in the HMMs.

Curse of Dimensionality is a phenomenon that can be explained through a simple example [14][15].
Consider a space partitioned into regularly arranged cells: by increasing the dimension, the number
of cells increases exponentially. A modeling problem consists essentially of estimating the distribution
of the data and this can be done reliably only if the space occupied by the data is well sampled. If
the number of cells increases exponentially, the number of data points necessary for a good sampling
increases itself exponentially. The use of too many dimensions can make a given amount of training
data less effective or even insufficient for the modeling. A reduction of the dimension is then necessary.
Another aspect of the problem is the number of parameters in the HMMs. This is related to the
dimension of the observation vectors. By reducing their dimension, the number of parameters can be
significantly reduced. This is important because the amount of available training material limits the
number of parameters that can be reliably trained.

The second important problem is the correlatedness. The data is said correlated when its covariance
matrix:

Cx = E[(x = p)(x = )] (1)

(where p = E[x]) is full. When continuous density HMMs are used, the emission probabilities are
modeled as Gaussian mixtures and their covariance matrices should be correspondently full. Because a
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full covariance matrix has too many parameters (d? if d is the dimension of the vectors), it is common
to use diagonal matrices (having only d nonzero elements). This still allows one to model correlated
data, but requires more Gaussians than when the data is uncorrelated. By decorrelating the data, it is
possible to reduce the number of necessary Gaussians leading, for a fixed amount of training material,
to a more effective training of their parameters.

3 Data Transforms

For the reasons explained in the previous section, it is desirable to have observation vectors with
dimension as close as possible to their ID and uncorrelated. Such conditions can be achieved by
projecting (either in a linear or a nonlinear way) onto an appropriate subspace of dimension m in the
original data space of dimension d (m < d).

The literature presents several methods to perform such task (see [13] for a deep analysis of the
problem). In this work, we applied Principal Component Analysis (PCA) and Independent Component
Analysis (ICA). They have two important advantages: the first one is that they are unsupervised. In
this way, no labeling of the data (an operation that can be heavily time consuming in handwriting
recognition) is required. The second one is that they are based on very general assumptions about
the data and they can thus be applied to many different problems [13][15].

In both cases, the transforms are characterized by a set of parameters that can be estimated using a
set T of training vectors. This is composed of all the feature vectors extracted from the words used
to train the Hidden Markov Models.

In the next three subsections, the applied algorithms are explained in detail. Subsection 3.1 describes
the Karhunen-Loeve Expansion (a linear version of the PCA), subsection 3.2 presents a nonlinear
version of the PCA based on autoassociative neural networks and subsection 3.3 explains ICA.

3.1 Karhunen-Loeve Expansion

The KLE is based on the following linear transform:
y = Ax (2)

where A is a d X d matrix, y is the transformed vector and x is the original vector assumed to have
E[x] = 0. The elements of A are estimated so that, when only the first m components of y are
retained, the Mean Squared Error (MSE):

1N
E(m) = N Z(Yzm — Apx)? (3)

(3

is minimized (y}" is the vector of the first m components of y;, A, is the matrix composed of the first m
columns of A and N is the total number of vectors in the training set). It can be demonstrated that the
resulting matrix A is the one having as columns the eigenvectors of the covariance matrix ¥ = E[xx”]
ordered following the respective eigenvalues (from the biggest to the smallest). A component y; of
y corresponds to the projection of x along the j* eigenvector of the covariance matrix. The y;’s
are called Principal Components (hence the name PCA). Each eigenvalue o3 accounts for the data
variance along the direction individuated by the corresponding eigenvector. For this reason, the
subspace spanned by the first m columns of A accounts for more variance than any other subspace
spanned by a different set of m orthogonal axes [15]. This is an important property. In the hypothesis
that the variance of the data is given by information useful for a certain task (and not by noise), the
subspace of the first m eigenvectors is the one containing more information than any other with the
same dimension.

The MSE, when retaining only m Principal Components (see equation 3), can also be estimated as
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follows:

E(m) = | > ol (4)

If the last eigenvectors are sufficiently small, the error in (4) is negligible and the original data can
be compressed without a significant loss of information. This allows one to reduce the dimensionality
of the vectors with the advantages described in section 2. Although the KLE is not a good estimator
of the ID (in the sense that the m for which the error in (4) is negligible is typically higher than the
actual ID of the data), a significant compression can often be achieved.

When m = d, the error in equation (3) is null and the transform corresponds to a change of reference
frame. The resulting data is uncorrelated and, although no compression is achieved, the performance
of the HMMs can still be improved. In fact, the transformed data has diagonal covariance matrix and
can be modeled more effectively than data having full covariance matrix given a certain number of
Gaussians (see section 2).

Some systems presented in the literature (e.g. [16][17]) used KLE to compress the vectors, but no
clear explanation of the criteria used to set the number of retained components was given. Moreover,
no comparison was made with respect to a baseline system.

The fundamental limit of the KLE is the linearity of the transform in equation (2). When the
data is distributed over nonlinear subspaces, the projection onto a linear subspace can be a rough
approximation. Possible solutions are to use a nonlinear transform, or to map the data into a space
(eventually with higher dimension) where the nonlinear surfaces are hyperplans and then to apply
a KLE in such a new space. This last approach is used with the autoassociative neural networks
described in the next section.

3.2 Nonlinear Principal Component Analysis

Many pattern recognition problems can be solved with Neural Networks that (even if based on different
underlying principles) are found to be implicitly equivalent or similar to statistical methods usually
applied to solve them [18][19][20]. The main advantage is that different problems can be solved using
a single theoretic framework without the need of a deep domain specific knowledge [21].

A KLE can be obtained using an autoassociative (i.e. having as output the input pattern) Multi
Layer Perceptron [14] with linear activation functions in the neurons. The training criterion must
be the minimization of the MSE. The hidden layer of such a network encodes the KLE of the input
data [22][23]. In order to discard the less informative Principal Components, it is necessary to estimate
the variance along the different components of the transformed vectors. Another possibility is to train
several networks with different size of the central layer.

By changing the architecture of the network it is possible to perform a Nonlinear Principal Component
Analysis (NLPCA). By nonlinear it is meant that the data can be projected onto nonlinear subspaces
(e.g. curve surfaces). This is an advantage when the original data is distributed over nonlinear struc-
tures and the projection onto linear subspaces (like in KLE) might lead to a high approximation
error [24]. This allows one to overcome the main limit of the KLE (see previous subsection). NLPCA
was applied to many domains [13], but it was never used, to our knowledge, in Offline Cursive Hand-
writing Recognition.

The network performing NLPCA has five layers (see figure 1). The activation functions are linear
in the input, output and central layers and nonlinear in the others [14][15]. This is often called a
bottleneck network because it forces the data to pass through the central layer that has a number of
neurons less or equal to the dimension of the space the input vector is embedded in. The network is
autoassociative and the training criterion is the minimization of the Mean Squared Error (see subsec-
tion 3.1).

The first nonlinear layer (see figure 1) performs a mapping of the original data into a space (called
feature space) where nonlinear structures are transformed into linear ones. The central layer projects
the mapped data onto a linear subspace of the feature space. The second nonlinear layer performs
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the inverse mapping of the first one and the final layer outputs the input pattern.

The NLPCA is encoded by the central layer. The subspace spanned by its output accounts, given the
number of its neurons, for the biggest amount of variance of the input data. The information loss is
then minimized when the original data is compressed [25]. Unlike in KLE, the uncorrelatedness of
the transformed data is not guaranteed [13]. This can create problems when using continuous density
HMMs (see section 2).

A further problem is given by the fact that the mapping of the data onto the subspace spanned by
the Principal Components is continuous. This creates problems when the original data is distributed
over a surface that is discontinuous or self-intersecting. In correspondence of the discontinuities or of
the point of self-intersection the results are unreliable [25].

3.3 Independent Component Analysis

The Independent Component Analysis can be defined using a statistical latent variable model. The
components of the data vectors x can be thought of as linear combinations of m stochastic variables
s; that cannot be observed directly:

T; = W;181 + WSy + ... + WinSm (5)

where the w;; (with ¢ =1,...,d and j =,1,...,m) are some real coefficients. This is the basic ICA
model, the w;; coefficients are not known and must be estimated (under assumptions as general as
possible) using only the data vectors in T.

This corresponds to estimate the parameters of a linear transform:

x =Ws (6)

making the problem similar to the KLE one (see subsection 3.1). There are only two hypotheses
that must be assumed to make sure that the w;; can be estimated. The first one is that the s; are
statistically independent, the second one is that their distribution is not Gaussian [26][27][28]. Two
variables s; and s; are said statistically independent when p(s;, s;) = p(s;)p(s;). The nongaussianity
is necessary because, when the s; are Gaussians and statistically independent, the transform W can
be identified only up to an orthogonal transform and this ambiguity must be avoided.

The above assumptions are very general and, for this reason, ICA can be applied to a wide spectrum
of problems. On the other hand, the generality causes some ambiguities that cannot be avoided. It is
not possible to determine the variance of the Independent Components. The reason is that any scalar
multiplier in one of the sources s; can be canceled by dividing the corresponding column in W by the
same factor [27].

From a practical point of view, a measure of nongaussianity, the negentropy, is the basis of the criterion
used to find the Independent Components [29][30]. The negentropy of a variable y is defined as follows:

J(y) = H(Ygauss) — H(y) (7)

where ygquss is a Gaussian variable with the same covariance matrix and mean as y and H is the
entropy:

H(y) = - / p(y)logp(y)dy. (8)

An important advantage of J(y) is that, if the y; are forced to be uncorrelated (which is in our case
a desirable condition), it is related to their mutual information:

I(y1,y2,.--,yd)=J(.Y)—ZJ(yi)- 9)

The mutual information is the information theoretic measure of the independence of the variables.
The Independent Components can then be obtained by finding the directions of maximum negentropy.
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This transforms the ICA problem into a numerical optimization problem. Since the negentropy is very
heavy to compute, several approximations of it were proposed allowing a fast and reliable estimation
of the independent components [29][31].

The ICA is helpful for both compressing and decorrelating the data. The statistical independence
implies the uncorrelatedness and this is helpful to the HMM performance (see section 2). The com-
pression can be achieved by setting m < d in equation (5). A survey on the applications of ICA can
be found in [27]. Although the algorithm was used in a wide variety of problems, no handwriting
recognition system appears to make use of it.

4 The Recognition System

This section presents the recognition system used in the experiments (for a full description see [32]).
The raw word images are first binarized with the Otsu algorithm [33], then slope (the angle between
the horizontal direction and the direction of the line the word is aligned on) and slant (the angle
between the vertical direction and the direction of the strokes supposed to be vertical in an ideal
model of handwriting) are removed with the technique described in [34].

The system is based on a sliding window approach. A window shifts column by column from left to
right and, at each position, a pattern is isolated. A feature vector is extracted from each pattern and
the word is so converted into a sequence of observations. The feature extraction process consists of
partitioning the pattern into 16 cells regularly arranged in a 4 x 4 grid and of counting the number
n; of foreground pixels in each cell. The feature vector is then obtained as follows:

). (10)

n n N6

1 2
Zlnz’zznz’,zlnz

The vector sequences so obtained are modeled with Continuous Density Hidden Markov Models [11].
A different left-right HMM is created for each letter and the word models corresponding to the lexicon
entries are built by concatenating the single letter models. This makes the system flexible with respect
to a change of lexicon because it is not necessary to have samples of the lexicon words in the training
set. The only important thing is to have in the training set samples of all the letters (a condition easy
to achieve).

Each letter model is characterized by the number of states S and by the number of Gaussians G
in each state. For simplicity, G and S are the same for every letter models. The training of the
models is performed with the Baum-Welch algorithm [11][35] and it is embedded. This means that
the Baum-Welch algorithm is applied to the word models (built by concatenating the single letter
models) rather than to the single letter models. This has two advantages, the first one is that it is
not necessary to segment the words into letters, the second one is that the letters are modeled as a
part of the words, i.e. their actual condition in cursive handwriting.

The recognition is performed using the Viterbi algorithm [35][36]. This gives the best likelihood A that
can be obtained by following a unique state sequence in the word model with the vectors extracted
from the handwritten data. The entry of the lexicon corresponding to the model giving the highest
value of A is selected as transcription of the handwritten word.

F=(

5 Experiments And Results

The experiments were performed over two different data sets. The first is publicly available ! and it is
composed of 4053 words produced by a single person. The database is split into training (2362 words),
validation (675 words) and test set (1016 words). It was originally presented in [9] and will be referred
to as Cambridge database. The second is a collection of 12199 samples (split into training, validation
and test set containing 5347, 2715 and 4137 words respectively) written by around 200 persons. The

IThe data can be downloaded at the following ftp address: ftp.eng.cam.ac.uk/pub/data.
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samples were extracted from a database of handwritten pages collected at University of Bern [37] and
will be referred to as Bern database. The word length distribution of the two sets is shown in figure 2.
In the next three subsections, the estimation of the transform parameters, the results over the Cam-
bridge database and the results over the Bern database are respectively presented.

5.1 Transform Parameters Estimation

In the case of KLE, the raw data is transformed through the matrix A (see above). This is obtained
by estimating the eigenvectors of the covariance matrix of the vectors extracted from the words used
to train the HMMs.

The word recognition experiments involve a validation and a test (see next subsections). For the
validation, the matrix A is obtained using the vectors extracted from the words of the training set.
For the test, A is obtained using the vectors extracted from the union of training and validation set.
In the case of ICA, the approach used is the same as in the case of KLE, but it must be repeated
for each number I of Independent Components. As explained above, the Independent Components
cannot, be ordered following some criteria, hence the only way to achieve a data compression is to
estimate a different transform for each value of I.

A similar approach is followed in the case of the NLPCA with the difference that there is a parameter
to set: the number N of neurons in the second and fourth layers. An optimal NV is selected for each
number of Principal Components (neurons in the central layer) P. For a given P, several networks
(with different N) are trained over the training set and tested over the validation set. The network
with the smallest N having an MSE lower than a fixed threshold is retained as optimal. The value of
the threshold is fixed so that the absolute error per component is 0.01. Our features are percentages
(see section 4) obtained from sets containing typically less than 1000 elements. For this reason, the
third digit after the comma is very noisy and it is not worth estimating it precisely.

5.2 Experiments Over The Cambridge Database

Our system is characterized by the number of states S and Gaussians G per state in its models. For
simplicity, S and G are the same for all the letter models. The parameters S and G are selected as
follows: models with a number of states S ranging from 8 to 12 and number of Gaussians G between
10 an 15 are trained over the training set and tested over the validation set. Both the ranges of S and
G were determined by the available training material. The system showing the best performance was
retained as optimal, retrained over the union of training and validation set and finally tested over the
test set. This allows one to set the values of S and G by measuring the performance over a set (the
validation set) that is independent of the test set. In this way S and G are not fitted to the test set
and the performance of the corresponding system is not overestimated. The lexicon size is 1370.
The baseline system was obtained using the raw feature vectors. The recognition rate of the optimal
system (S = 11 and G = 12) over the test set is 92.4%.

When using KLE, NLPCA and ICA, the parameters to be set through validation are not only S
and G, but also the number of retained Principal Components P or Independent Components I that
ranged between 13 and 16. The best system based on KLE is obtained with P = 16 (using models
having S = 9 and G = 13) and its recognition rate (measured over the test set) is 94.7%. When
using NLPCA, the performance over the test set is 94.0% (the optimal P, S and G are 14, 9 and
12 respectively). The best system using ICA has S = 11, G = 14 and I = 14. Its recognition rate
over the test set is 93.6%. For both PCA and NLPCA, the result corresponds to an improvement of
the baseline system with a probability higher than 90%. The difference in performance between PCA
and NLPCA is caused with high probability (more than 30%) from statistical fluctuations. In the
ICA case, there is a significant probability (~ 15%) that the improvement with respect to the baseline
system is simply due to statistical fluctuations.

To evaluate the recognition rate as a function of the number of retained Principal Components (Inde-
pendent Components), the best system (over the validation set) for each value of P (I) was retrained
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(over the union of training and validation set) and tested over the test set. The results are shown
in the left plot of figure 3. The error rate is reduced by 30.3%, by 21.0% and by 15.8% using KLE,
NLPCA and ICA respectively. The right plot of figure 3 shows the performance as a function of the
word length for the best systems using raw data, KLE, NLPCA and ICA. The four systems have a
similar performance when the length of the word is high (more than 7-8 letters), but for the short
words (that are more difficult to recognize) the transform based systems work significantly better.

5.3 Experiments On The Bern Database

The same procedure followed for the Cambridge database was used for the Bern data. In this case, S
ranges between 12 and 16 while G goes from 10 to 15.

The best baseline system (the lexicon size is 100) has S = 14 and G = 12. Its recognition rate over
the test set is 77.8%.

KLE, NLPCA and ICA were applied using the same method described in the previous subsection
with P and I ranging from 11 to 16. The system selected through validation when applying KLE has
S =15,G =12 and P = 16 (the best performing system with P = 14 was not selected because it had
a lower recognition rate over the validation set). Its performance (over the test set) is 78.8%. The
best NLPCA based system has S = 15, G = 12 and P = 14. The recognition rate is 81.4%. The best
system using ICA has S = 14, G = 11, I = 16 and a recognition rate over the test set of 78.6%.
The probability of the improvement obtained with NLPCA being a statistical fluctuation is less than
1%, it is then possible to say that the baseline system recognition rate is definitely increased. In the
case of the other transforms, the probability of the improvement being due to statistical fluctuations
is around 15%.

The performance of the best system for each P (I) was measured over the test set (as for the Cambridge
database) and the results are shown in figure 4. The NLPCA performs in general better than KLE
and ICA. The latter obtains a slight improvement of the baseline system and appears to be not so
effective over this database.

The right plot of figure 4 shows the performance of the system as a function of the word length. As
for the Cambridge database, the transform based systems are shown to work significantly better over
the short words (less than 4 letters).

6 Conclusions

This work addressed the problem of giving the feature vectors a form more suitable for being modeled
with HMMs. This is done by applying three transforms (KLE, NLPCA and ICA) that were compared
using both multiple and single writer data.

The transforms are beneficial under several aspects. They can allow one to compress the vectors
resulting in data easier to model and HMMs with less parameters. Moreover, when using KLE
and ICA, the data is decorrelated and is then more suitable for modeling with Gaussians holding
diagonal covariance matrices (in this case, the performance of the system can be improved even
without compression).

Two data sets were used, the first is writer dependent, while the second is writer independent. The
error rate was reduced by 30.3% over the single writer data and by 16.2% over the multiple writer
data.

No transform appears to be systematically better than the others. On the other hand, ICA was shown
to determine the lowest improvement of the baseline system over both databases. KLE and NLPCA
are shown to perform close to each other for single writer data, while on multiple writer data, the
NLPCA appears to be definitely superior. The presence of many writers determines probably a more
complex distribution of the data. The NLPCA can then take more advantage from its better ability
(due to nonlinearity) in capturing the structure underlying the data distribution.

For both databases, the baseline system showed the lowest performance. This happens because the
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feature vectors extracted from the handwritten samples are both correlated and embedded in a space
of dimension d higher than their ID. Any system using feature vectors with the same problems can
take advantage from the application of the transforms used in this work or of other techniques able
to compress and decorrelate the data.
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Figure 1: Five layer network performing Nonlinear Principal Component Analysis. The neurons
labeled with In have linear activation functions, while those labeled with nl have nonlinear activation
functions. The lower part of the figure shows the effect on the data of the different layers. At the
input the data is distributed with some nonlinear structure. After the first nonlinear layer, the data
is mapped into a space where the nonlinear structure becomes linear. The central layer performs a
linear PCA (represented by the dashed reference frame). The remaining part of the network maps

the data back into the original space.

| data [ S |G| D[ Acc(%) ]
raw 11| 12 | 16 92.4
KLE 9 | 13|16 94.7

NLPCA | 9 |12 | 14 94.0
ICA 11|14 | 14 93.6

Table 1: Performance over the test set for Cambridge database. For each system selected through
validation, the number of states S per letter model, the number of Gaussians G per state and the
dimension D of the feature vector are reported together with the performance over the test set.
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Figure 2: Word length distribution of the Bern and Cambridge Database.

| data [ S [G | D] Acc.(%) ]
raw 14 | 12 | 16 77.8
KLE 15|12 | 16 78.8
NLPCA |15 |12 | 14 81.4
ICA 14 | 11 | 16 78.6

Table 2: Performance over the test set for Bern database. For each system selected through validation,
the number of states S per letter model, the number of Gaussians G per state and the dimension D
of the feature vector are reported together with the performance over the test set.
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Figure 3: Performance over the Cambridge database. The left plot shows the performance of the
system over the test set as a function of the number of Principal (Independent) Components retained.
The systems selected through validation are highlighted. The right plot shows the performance (over
the test set) of the systems selected through validation as a function of the word length.
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Figure 4: Performance over the Bern database. The left plot shows the performance of the system
over the test set as a function of the number of Principal (Independent) Components retained. The
systems selected through validation are highlighted. The right plot shows the performance (over the
test set) of the systems selected through validation as a function of the word length.



