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Abstract. In this paper, we present a simple yet effective way to improve a face verification
system by generating multiple virtual samples from the unique image corresponding to an access
request. These images are generated using simple geometric transformations. This method is
often used during training to improve accuracy of a neural network model by making it robust
against minor translation, scale and orientation change. The main contribution of this paper is
to introduce such method during testing. By generating N images from one single image and
propagating them to a trained network model, one obtains N scores. By merging these scores
using a simple mean operator, we show that the variance of merged scores is decreased by a factor
between 1 and N. An experiment is carried out on the XM2VTS database which achieves new
state-of-the-art performances.
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1 INTRODUCTION

1.1 Problem Definition

Biometric authentication (BA) is the problem of verifying an identity claim using a person’s be-
havioural and physiological characteristics. BA is becoming an important alternative to traditional
authentication methods such as keys (“something one has”, i.e., by possession) or PIN numbers
(“something one knows”, i.e., by knowledge) because it is essentially “who one is”, i.e., by biometric
information. Therefore, it is not susceptible to misplacement, forgetfulness or reproduction. Examples
of biometric sources are fingerprint, face, voice, hand-geometry and retina scans. General introduction
of biometrics can be found in [5].

Biometric data is often noisy because of the failure of biometric devices to capture the plastic nature
of biometric traits (e.g. deformed fingerprint due to different pressures), corruption by environmental
noise, variability over time and occlusion by the user’s accessories. The higher the noise, the less
reliable the biometric system becomes. Current biometric-based security systems (devices, algorithms,
architectures) still have room for improvement, particularly in their accuracy, tolerance to various
noisy environments and scalability as the number of individuals increases. The focus of this study is
to improve the system accuracy by directly minimising the noise by using multiple virtual samples,
when multiple real samples are not available.

1.2 Related work in the literature

In the literature, to the best of our knowledge, the closest work to ours is the one reported by Kittler
et al [1]. The fundamental difference is that they assume that multiple samples are available. In
real-life situation, where a face image is scanned and transfered over a communication line, obtaining
multiple face images for each access may not be feasible. In this case, “virtual” samples could be used.
Although there is no gain in information, in this paper, it is shown that accuracy can still be exploited
by reducing variance of the virtual samples. Moreover, this approach can be easily generalised to
other pattern recognition problems.

An alternative approach to creating variations due to geometric transformation is to synthesize
virtual images from an approximated user-customized 3D model. This approach, although maybe
more effective than the proposed method, is not considered here due to the possible inaccuracy of
approximating the model in the first place. Our approach does not require such an estimation. The
rest of this paper is organised as follows: Section 2 explains the theoretical bounds in the expected
gain coming from averaging scores; a description of the experiment can be found in Section 3; this is
followed by conclusions.

2 VARIANCE REDUCTION VIA AVERAGING

2.1 Variance reduction

Let us assume that the measured relationship between a feature vector x; and its associated score y;
can be written as:

yi = f(xi) + ni- (1)
where f(-) is the true relation and #; is a random additive noise with zero mean. The mean of y over

N trials, denoted as ¢ is:
1
i=x Z; yi. 2)

With enough samples, the expected value of y, denoted as E[y], which is estimated by the mean of y,
approximates the “true” measure:

Ely] = E[f®)]+En (3)
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= (. (4)

Moreover, the variance of y can be written as:
1
Varly] = - Varl (5)

Therefore, it can be concluded that when IV scores of a single biometric source are averaged, noise that
occurs due to classification can be reduced by a factor of N. The effect of averaging in Equation 2 can
best be observed using synthetically generated data in Figure 1. Assume that in the original problem,
the genuine user scores follow a normal distribution of mean 1.0 and variance 0.9, denoted as A/(1,0.9),
and that the impostor scores follow a normal distribution of A'(—1,0.6) (both graphs are plotted with
’+7). If for each access, three confidence scores are available, according to Equation 5, the variance of
the resulting distribution will be reduced by a factor of three. Both resulting distributions are plotted
with ’0’. Note the area where both the distributions cross before and after. This area corresponds to
the zone where minimum amount of mistakes will be committed given that the threshold is optimal !.
The decrease in this area means an improvement in the recognition rate. In general, the more samples
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Figure 1: Averaging scores distribution in a two-class problem

are used, the sharper (taller and with shorter tails at both ends) both the impostors’ and the clients’
score distributions become. The sharper they are, the lower the area where these two distributions
overlap. The lower this area is, the lower the number of mistakes committed.

2.2 Error reduction

The above discussion is only true when scores are corrupted by noise with zero-mean and uncorrelated.
In reality, one knows that scores coming from virtual samples are dependent on the original image.
What would then be the upper and lower bounds of such a gain? Here, we refer to the work of
Bishop [2, Chap. 9] who has shown that by averaging scores of N classifiers, a committee could
perform better than a single classifier. The assumptions were that each classifier was not correlated
and that the error of each classifier had zero mean. He showed that:

1 N
err, = mZerri (6)
i=1
1
= Nmean(erri). (7)

LOptimal in the Bayes sense, when (1) the cost and (2) probability of both types of errors are equal.
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where err. is the error of the committee and err; is the error associated to the i-th classifier. Note
that the major difference between Bishop’s context and ours is that scores are due to variation of
N classifiers. In our context, scores are due to variation in the “virtual” samples obtained from N
geometric transformations. The index i is referred to a sample hereinafter.

Due to the false assumption of uncorrelation in scores obtained from virtual samples, the error
reduction obtained using the mean operator will not be N as shown in Equation 7 but less. This
equation should be rightly written as:

1
err, = amean(err) (8)
1<a<N.

where a can be understood as a “gain” in error reduction. It shows that the maximum gain in
averaging scores is N with respect to the average performance of each virtual sample. This is, in
practice, not attainable since the scores are correlated. The minimum gain, according to Equation 8
is 1, which means that there is no gain but one does not loose in the combination neither. This can be
understood as follows: If the errors made by each virtual score are dependent, i.e., they make exactly
the same error in the extreme case (V; j(err; = err;)), then mean(err) = err; = err., which implies
that a = 1.

As in the case of committee of classifiers, by averaging N scores from N transformed images, the
gain factor in terms of error reduction with respect to a single input image is in the range [1, N].
Therefore, score averaging is a simple yet effective way to increase system accuracy.

3 EXPERIMENT

3.1 Database and Protocols

The XM2VTS face database is used for this purpose because it is a benchmark database with well-
defined protocols called the Lausanne Protocols [3]. The XM2VTS database contains synchronized
image and speech data recorded on 295 subjects during four sessions taken at one month intervals.
On each session, two recordings were made, each consisting of a speech shot and a head rotation shot.

The database was divided into three sets: a training set, an evaluation set, and a test set. The
training set was used to build client models, while the evaluation set was used to compute the decision
(by estimating thresholds for instance, or parameters of a fusion algorithm). Finally, the test set was
used only to estimate the performance of the system.

The 295 subjects were divided into a set of 200 clients, 25 evaluation impostors, and 70 test
impostors. Two different evaluation configurations were defined. They differ in the distribution of
client training and client evaluation data. Both the training client and evaluation client data were
drawn from the same recording sessions for configuration I (LP1) which might lead to biased estimation
on the evaluation set and hence poor performance on the test set. For configuration IT (LP2) on the
other hand, the evaluation client and test client sets were drawn from different recording sessions
which might lead to more realistic results. More details can be obtained from [3].

In this database, each access is represented by only one face image. We can increase the number of
images by using geometric transformations. In this way, we obtain multiple “virtual” samples from a
single access. For each virtual image, features will be extracted in the same way as a real face image.
Both feature extraction and geometric transformations are explained in sections below.

3.2 Features

In the XM2VTS database, a bounding box is placed on a face according to eyes coordinates located
manually. This assumes a perfect face detection. The face is cropped and the extracted sub-image is
downsized to a 30 x 40 image. After enhancement and smoothing, the face image has a feature vector
of dimension 1200.
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In addition to these normalised features, RGB (Red-Green-Blue) histogram features are used. To
construct this additional feature set, a skin colour look-up table must first be constructed using a
large number of colour images which contain only skin. In the second step, face images are filtered
according to this look-up table. Unavoidably, non-skin pixels are captured as well. This noise will be
submitted to a classifier to discriminate its degree of relevance. For each color channel, a histogram
is built using 32 discrete bins. Hence, the histograms of three channels, when concatenated, form a
feature vector of 96 elements. More details about this method, including experiments, can be obtained
from [4].

3.3 Geometric Transformations

The extended number of patterns is computed such that given an access image, N geometric trans-
formations are performed. This number is calculated as follows: N = 2 x A x B, which shows the
mirrored number of shifted and scaled face patterns. A = number of shifts x 8 + 1 is the total number
of shifts, in 8 directions, including the original frame, for each scale. B = number of scales x 2 + 1 is
the total number of scales, in 2 directions (zooming-in and zooming-out), including the original scale.
In the experiment, 4 shifts and 2 scales are used. This produces 330 virtual images per original image.

In the following experiments, we compared the system from [4] (denoted “original”) to our system
(denoted “averaged”). In the original system, geometric transformations were added to the training
set only, while in the averaged system, they were also added to the evaluation and test sets.

The training set is used to train an MLP for each client and the evaluation set is used to stop the
training using an early-stopping criterion. At the end of training, the trained MLP model is applied on
the evaluation set again to estimate the global threshold that optimises the Equal Error Rate (EER).
Once all parameters are set, including threshold, the trained MLP model is applied on the test set.
Thus the obtained Half Total Error Rate (HTER) on the test set is said to be a priori, while if the
threshold was optimising EER on the test set, it would be called a posteriori. Of course, the a priori
results are more realistic. In the experiment, the optimised client dependent MLPs had 20 hidden
units each.

3.4 Results

The experiments are carried out on LP1 and LP2 configurations of XM2VTS database. The results
are shown in Tables 1 and 2. Odd lines in these tables show the HTERs of the original approach while
even lines show the HTERs after averaging virtual scores. In all comparisons, the improvements are
obvious. The HTERs in Table 1 are a posteriori and thus not realistic, but nevertheless give insights
of the expected improvements. The HTERs in Table 2 are a priori. The corresponding DET curves
of Table 2 are shown in Figure 2. As expected, the performance obtained by averaging is always
superior. Moreover, to the best of our knowledge, the newly obtained a priori results appear to be
the best published ones on this benchmark database.

Table 1: Performace of averaging scores versus original approach based on a posteriori selected thresh-
olds

Data sets | Models | FA[%] | FR[%] | HTER[%]
LP1 Eval | Original 1.667 | 1.667 1.667
LP1 Eval | Averaged | 1.333 | 1.333 1.333
LP2 Eval | Original 1.250 1.250 1.250
LP2 Eval | Averaged | 1.107 | 1.000 1.054
LP1 Test | Original 1.817 | 1.750 1.783
LP1 Test | Averaged | 1.692 1.750 1.721
LP2 Test | Original 1.726 | 1.750 1.738
LP2 Test | Averaged | 1.514 | 1.500 1.507
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Table 2: Performace of averaging scores versus original approach based on a priori selected thresholds

Data sets | Models | FA[%] | FR[%] | HTER|%]
LP1 Test | Original 1.230 | 2.750 1.990
LP1 Test | Averaged | 1.474 | 1.750 1.612
LP2 Test | Original 1.469 | 2.250 1.860
LP2 Test | Averaged | 1.285 | 1.750 1.518
DET curve DET curve
40 40
20 20
10 10
* 2 * 2
1 1
0.5 0.5
0.2 0.2
0.1 0.1
0102051 2 5 10 20 40 0102051 2 5 10 20 40
FA [%] FA [%)
(a) LP1 configuration (b) LP2 configuration

Figure 2: Test sets on XM2VTS database

3.5 Analysis of virtual distribution scores

One insight to examine the effectiveness of this method is by looking at the probability density
function (pdf) of the 330 virtual scores with respect to a false rejection and a correct acceptance.
This is shown in Figure 3. When given an upright-frontal image of a client within a certain allowed
degree of transformation, one obtains a sharply picked pdf (with very low variance) around the mean
1. The MLP associated with client 006, in this case, was trained to give a response of 1 for a genuine
access and —1 for an impostor access. When the original image is “out” of the allowed transformation
range, the pdf of virtual scores has a large variance and a mean displaced away from 1. Note that
the logarithmic scale for the probability is used in the graph to amplify the changes in distribution
accross the score range [—1,1].

While a single image normally produces only one score, a set of virtual images has the advantage
of producing another information: the score distribution. One way to measure this distribution is
by its variance. For instance, for the example above, the variance for the correct acceptance case is
1.5670e-05 while the variance for the false rejection case is 0.0181. Clearly, variance of virtual scores
can give supplementary information that the original approach cannot. In general, the pdf (not just
the variance) could probably provide useful insights to improve this method further.

3.6 Variance and error reduction

This section tries to examine the relationship between the reduction of both variance and error. The
hypothesis here is that, when N (N = 330 in our case) virtual scores are averaged, Equation 5 says that
the reduction is by a factor of N, assuming that the scores are independent. They are unfortunately
not in our case. To measure the degree of independance, we introduce a wvariance reduction ratio,

defined as: ]
_ Varly,
o Varly] )
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Figure 3: Examples of “bad” and “good” photos and their corresponding distribution of virtual scores
for client 006

where y are either client or impostor scores from the original method and y, are either client or
impostor virtual scores. These values are shown in Table 3.

Table 3: The gain factor 8 between the scores of virtual samples and that of original samples.

Data sets Pdfs of Gain factor
access type LP1 LP2

Eval Client pdf | 1.2716 | 1.2561
Eval Impostor pdf | 1.0960 | 1.0769
Test Client pdf | 1.1689 | 1.2675
Test Impostor pdf | 1.1642 | 1.0507

In all cases, § > 1. Unfortunately, 3 is very close to 1 and very far from N. This is expected because
of strong depenancy of virtual scores. In all cases, variances of each data set (client and impostor
accesses) are reduced systematically.

How about the gain factor of HTER? These values are readily available from Table 1 by dividing
the odd lines HTER by the corresponding even line HTER. The definition of a can be derived from
Equation 8. The error reduction for each set of Evaluation and Test data in both LP1 and LP2
configurations are shown in Table 4.

Table 4: The gain factor of error reduction according to Table 1

Data sets | Gain factor
LP1 Eval 1.251
LP2 Eval 1.186
LP1 Test 1.010
LP2 Test 1.153

Note that the variance reduction (Table 3) and error reduction (Table 4) are somewhat propor-
tional. In general, if there is a reduction in variance of client or impostor pdf, there will be a reduction
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in classification error (specifically HTER, in our case). To our opinion, it is necessary to investigate
this “intuition” further.

As can be observed, these gain factors are very close to the lower bound, i.e., 1, which means that
the gain is very little. This may be due to the high correlation among virtual scores. Nevertheless,
the fact that improvement is guaranteed makes our approach still very attractive.

Finally, an appropriate question to ask is: by how much the virtual samples approach method
wins over the original real samples approach? To answer this question, we literally computed the total
error (sum of false acceptance and false rejection errors) for both methods. The difference between
these two erros, i.e., err(8) — err,(#) are plotted in Figure x.

4 CONCLUSION

By applying N geometric transformations to a given original face image access, it is shown that one
could reduce the variance of the original score by a factor of N. Furthermore, by taking into account
the assumption that these IV image samples are dependent on the original image, the classification
error, with respect to the original method is shown to reduce by a factor between 1 and N.

To put in a formal framework, our proposed approach can be summarised as:

1
Y= > f(hlg(x,1)) (10)

teT

instead of y = f(h(x)) for the test set, where, ¢t € T is a set of geometric transformation parameters
applied by g (the transformation function) on the feature vector x, h is a feature extraction function
and f is a trained classifier on h(f(x,t)) over t € T with x sampled from a training set. Equation 10
explains why this method is robust against minor geometric transformations: it is integrated over the
space of these transformations and hence achieves invariance over this space.

This method has the advantage of being simple to implement. Furthermore, it does not require
multiple real examples. This makes it easily extendable to many general classfication and regression
problems. The only added complexity during testing is proportional to the number of artificially
generated samples, given that a suitable transformation for a given data set can be defined.

The future work will consist of proposing a theoretical model to understand the necessary criteria
and conditions for averaging samples to work. Right now, the relationship between variance reduction
and error reduction have not thoroughly been investigated. Such analysis will eventually show the
criteria of success or failure of this approach, i.e., when the performance degrades.
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APPENDIX

This section is a follow-up based on the observation reported before. It describes several attempts
to combine virtual scores. These methods includes using median operator and GMM (Gaussian
Mixture Model) and entropy methods. The result based on the mean operator is analysed in details,
particularly in comparaison with the original approach (using only real samples).

5 Combining virtual scores

It has been shown that the averaging scores from virtual samples can increase the performance.
However, it is not clear how the distribution or density of scores from virtual samples can be used.
This section proposes several methods to do so:

e Median operator. It is the closest operator to the mean operator and is known to be robust
against out-liers.

e Entropy method based on global models. The pdf of a global client and impostor scores are first
estimated. These pdfs are then compared to the pdf of a given access. The pdf of a given access
can be calculated from all the virtual scores associated to an access request. The authentication
task then becomes matching of two pdfs using the Kullback distance.

e Entropy method based on local models. This is similar to the global models except that local
models are used. Local models means models estimated only from client or impostor accesses
associated to a given user-specific classifier.

e Gaussian Mixture Model. GMM is very useful for matching sequences which are assumed to have
been derived from identically and independently distribution. Virtual scores can be regarded as
coming from a certain form of distribution. This distribution can be estimated using a mixture
(weighted sum) of Gaussians. During an access, set of virtual scores that is obtained can be
regarded as a sequence. This sequence is then matched to the GMM computed a priori to
obtain the likelihood. Two GMM models are needed: GMMs associated to the client and to the
impostor.

The entropy methods and GMM are explained in the following sections.

5.1 Entropy method

The entropy method requires that the density of the data be estimated. There are several ways to
estimate the density according to [2, Chap. 2]: histrogram, Parzen window and GMM. These methods
receive a set of data and output a density function. Histogram suffers from having the need to define
the length of each bin. Larger bins may produce smoother density estimate but does not give accurate
estimate on the density of a given value y. Thus, Parzen window and GMM are used. Parzen window
is described below and GMM is discussed further.

5.1.1 Density estimation using Parzen window

Given a set of scores y;,i = 1,..., N, its density function can be calculated using:

N .
i) =5 X () (1)

where H(u) is a kernel function taking a scalar u. When H(u) is a Gaussian function, Equation 11
becomes:

N

- 1 1 "—y;
p(y)ZNZ(%h2)1/2exp{y hy } (12)

i=1
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In practice, y' is sampled within two bounded values. For our case, y' is bounded within [—1.2,1.2]
because the MLPs used are trained to give scores between —1 and 1. Therefore, values outside the
range are not very useful. 1000 samples of y' within the said range are sampled for each client and
impostor pdf over the evaluation sets of LP1 and LP2. The parameter h, which corresponds to the
variance of distribution, controls the smoothness of the resultant pdf.

We have attemped to use cross validation to estimate an optimal h value. In each fold of cross-
validation, one held-out set is used for test while the rest are used for training. The training set y;
is used to estimate []; p(y}) with y; as scores from the test set. The goal is to use several h values
that minimises the product. Unfortunately, such cross-validation cannot be established when h takes
on smaller and smaller values (equivalent to higher capacity) because y and y’ are very similar. In
fact, these scores (y and y') are extremely concentrated at +1 for the client and —1 for the impostor
scores. As a consequence, h is fixed arbitrarily to 0.2.

In actual implementation, the negative sum of logairthm is used to overcome the computation pre-
cision problem, i.e., — Ej In p(yj). This is because the product of several small values will eventually
lead to zero in finite precision.

The larger h is, the smoother the resultant pdf. Note that this method is similar to histogram
except that it gives a smoother estimation of pdf. Furthermore, another major differnce is that the
Parzen window method have bins centered around the data point, contrary to histogram which has a
fixed bin. The resultant pdfs are shown in Figure 4. Note that in both protocol configurations, the
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Figure 4: The client and impostor pdfs of the evaluation sets of LP1 and LP2 configuration

pdf of the original client and that of its extension (with virtual method) are not comparable because
the extended method has 330 times more data than the original

5.1.2 Entropy method based on global models

Entropy is used to compare two pdfs from a set of virtual scores Y. In our case, one pdf comes from
a global model (client or impostor), denoted as p(Y'), and the other pdf comes from another set of
virtual scores, denoted as ¢(Y). Both pdfs are estimated by the Parzen window method described
earlier. Both pdfs are sampled at same i-th location in the score space. This can be denoted as y;.
The entropy of a given access distribution ¢(Y") can then be defined as:

L(p,q) = - Zp(yi)ln;%- (13)

Entropy can be regarded as a distance as to how much ¢(y) is similar to p(y) but not the other
way round, i.e., this distance is not symetric. This alone does not give discriminative information. To
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do so, entropy of a client and impostor model should be used together. Let L(py1,q) be the entropy
of g(y) with respect to a client model and L(py2,q) be that of ¢(y) with respect to an impostor model.
Then the distance between these two entropy can be defined as:

A = L(pw2,q) — L(pw1,q) (14)

A > 0 means that the entropy of an impostor model is more than that of a client. Therefore
A > 0 reflects how likely a set of virtual scores belong to a client.

5.1.3 Entropy method based on local models

Instead of using two global models to represent a client and impostor score pdf, one can also represent a
client and impostor score pdf for each client. This can be done by replacing p,,1 and p,,» in Equation 14
to two local models as follows:

A =Lpl,,q) — Ly, q), (15)

where n is an index unique to a client.
One possible problem with this approach is that one does not have enough data to estimate p,
correctly, because client accesses are limited for training.

5.1.4 Gaussian Mixture Model

Given a claim for genuine client w;’s identity and a set of N virtual scores Y = {y;}Y, supporting
the claim, the average log likelihood of the claimant being the true claimant is calculated using;:

N
L0 Pa) = 5 >~ ogp(ui) (16)
M
where  p(Y|A) =Y mj N(y; pj,0) (17)
j=1
and A = {mj, pj, 05}, (18)

Here Ay is the model for person w;. M is the number of mixtures, m; is the weight for mixture j

(with constraint E]]Vi1 m; = 1), and N (y; p, o) is a multi-variate Gaussian function with mean p and
variance o:

N —(y— )’
N 0) = e | U2 (19)

The number of mixture of Gaussian components are estimated using 5-fold cross-validation from
a giving training set.

The impostor model is constructed in a similar way accoring to Equations 16, 17 and 18, with Y
as all scores belonging to impostors ws.

An opinion on the claim is found using;:

AY) = LY [Aw1) = LV [Aw2) (20)
The opinion reflects the likelihood that a given claimant is the true claimant (i.e., a low opinion

suggests that the claimant is an impostor, while a high opinion suggests that the claimant is the true
claimant).
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Table 5: Different combination methods of virtual scores on LP1.

Method HTER
Evaluation | Test a posteriori | Test a priori
Original 1.667 1.783 1.875
Mean 1.333 1.721 1.612
Median 1.667 1.750 1.667
GMM 1.518 1.741 1.709
Global Entropy 1.333 1.734 1.606
Local Entropy * 0.499 3.000 2.186

(*) indicates biased estimate.

Table 6: Different combination methods of virtual scores on LP2.

Method HTER
Evaluation | Test a posteriori | Test a priori
Original 1.250 1.738 1.737
Mean 1.054 1.507 1.518
Median 1.238 1.750 1.547
GMM 1.034 1.500 1.493
Global Entropy 1.218 1.500 1.559
Local Entropy x 0.251 2.500 2.043

(*) indicates biased estimate.

5.2 Experiment Results

Using the discussed methods, experiments are carrried out on LP1 and LP2 protocols. The results
are shown in Table 5

Except the local entropy method, all the methods improve the original approach. GMM seems to
perform the best in LP2 protocol but among the worse in the LP1 protocol. It is therefore difficult to
judge the best combination method. It is surprsing to see that the mean operator which is a simple
method, is among the best way to merge the virtual scores in both protocols.

6 Half total error rate and classification error rate revisited

In biometric authentication, HTER is often used as an important criteria. In this section, we wish to
clarify between these two types of errors as evaluation criteria.
Let us define false rejection with respect to a threshold 6 as follows:

FR(0) = [{yly € wi Ay <0}, (21)

where w; is client class and || e || is the cardinality (number of elements) of e. Similaryly, false
acceptance with respect to a threshold 6 can be defined as:

FA®0) = |{yly € w2 Ay > 60}], (22)

where wy is an impostor class.

In other words, a client score is considered a false rejection case when it is below a threshold.
Similarly, an impostor score is considered a false acceptance case when it is above or equal a given
threshold.
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We now try to relate these two equations to its probability density, assuming that it is known for
both the client and impostor classes. F'R(6) can be written as:

0
FR®) = lwill [ plyfun)dy. (23)
Similarly, F'A(f) can be written as:

FA®) = s /0 " p(ylws)dy. (24)

According to Bayesian rule, the probability of commiting error, (denoted as ERR hereinafter), by
taking into account of class prior, can be written as:

0

ERR(9) = /

— 00

p(ylw)dy x Plwn) + /9 " pylwn)dy x Pws). (25)

An intuitive way to understand the probability of error is that the density of false rejection and that
of false acceptance are weighted by P(w;) and P(w2), where the class priors (weights) sum to one,
ie., P(wy) + P(wz) = 1.

By making use of Equations 23 and 24, we can rewrite Equation 25 as:

FR(6)

[[wn ]

ERR(9) =

In biometric authentication, P(w;) and P(w=) are often unknown, or assumed to be unknown (such
is the case during testing: P(w;) are P(w2) are known under laboratory condition but are deliberately
assumed to be unknown). In either situation, P(w;) = P(w2) = 1. Therefore, Equation 25 can be
simplified as:

1 (FR(6 FA(6
HTER(f) = = < ©) ( )> . (27)
2\ il el
This error is commonly called Half Total Error Rate (HTER).
To compare HTER and probability of classification error (ERR), ERR can be rewritten as:
rR@) - FRO), lwll _ FA®)
fwil] flwa|[ + wa |~ Jwall [Jws]] + [Jws]]
FR(9) + FA(O
[[w || + [Jw2]|
using the knowledge that P(w;) = % and P(ws) = m

To give an idea how these two errors behave, we have generated client and impostor sets of scores
artificially. The client has a density distribution of A’(1,0.3) (mean 1; variance 0.3) while the impostor
has a density of A'(—1,0.2). These two distribution functions are shown in Figure 5(a).

For the first case (called balanced class configuration), the client and impostor sets have 1000
access scores respectively. For the second case (called unbalanced class configuration), the client set
has 1000 scores while the impostor set has 10000 accesses, i.e., unbalanced by a factor of 10. The
HTER and ERR curves (as a function of threshold 6) of these two cases are shown in Figure 5(b) and
(c). Note that, due to unblanaced class prior, the ERR is affected while HTER is not.

Note that, in reality, errors committed in FA and FR have different costs. Let Cr4 and Cppg be
the cost of FA and FR, respectively. Then, Equations 27 and 28 can be written in terms of cost as:

CHTER(O) = % (ﬂf}fﬂ) x Cpr + Fii—iﬂ) X CFA> (29)
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Figure 5: Artificially generated scores and their HTER(6) and EER(6) curves

and
FR(0) x Crr + FA(0) x Cra
[[wi || + [Jw2]|

Crprr(8) = (30)

respectively.
These two types of error (or cost) have an important impact on our result, to be described in the
next section.

7 Analysis of results using the mean operator

By using the HTER criteria from Equation 27, we explicitly calculated the HTER as a funciton of
6 for the evalluation set of LP1 on experiment using original samples and virtual samples combined
with the mean operator. The HTER curves is shown in Figure 6(a). This graph has a form similar
to Figure 5(b), as expected. However, it gives little information on how much one method wins over
the other method. To visualise this information, we introduce the diffrence of HTER as:

A(8) = COFE () — CVTE(9), (31)

where CORL is the cost of using original samples and CV'® is the cost of using virtual samples.
For both cases, the cost could be evaluated using HTER criterion (Cuyrgr(f)) or ERR criterion
(Crrr(0)). Distinctions are made here because they give different results.

7.1 Equal cost assumption

In the following section, the costs of FA and FR are assumed equal, i.e., 1. Different values of these
costs will be used later.

The difference according to HTER criteria, Agrgr(#), is shown in Figure 6(b). Figure 6(c) shows
a zoom-in version of (b). The blue circles show the position where Agrgr(f) is positive, i.e., where
CYAR -(0) is smaller than CQEL - (6), which is desirable.

When using the ERR as criteria, according to Equation 28, the ERR curves for both the original
and virtual methods are shown in Figure 6(d). As expected, it is similar to Figure 5(c), with their tails
not easily perceived due the highly unbalanced class prior. In this particular data set (LP1 Evaluation
set), the client set has 600 scores and the impostor set has 40000 scores.

The cost difference of both the original and virtual methods, as a function of threshold 6 are shown
in Figure 6(e). The zoom-in version of it is shown in Figure 6(d).

Comparing HTER, (Figure 6(a-c)) and EER (Figure 6(d-f)) criteria, one can observe that the
virtual methods wins over the original method using the ERR. criteria because the winning positions
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are almost always continuous within two bounds [a, b], where a > —1 and b < 1. This is unfortunately
not the case for HTER criteria.
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Figure 6: Comparaison of the original and virtual methods using mean operator using HTER and
classification error (ERR) criteria based on the evaluation data set of LP1. There are 40000 impostor
accesses comparing to 600 client accesses.

7.2 Explanation for winning bound in ERR and HTER

We believe that these winning positions bounded in [a, b] for EER criterion are not a conincidence.
The same is true for the discontinued winning positions for the HTER criterion.

To analyse this behaviour, it is desirable to know “how much contribution a FA and a FR. is to the
overall cost”. This quantity is just the derivative of the cost. For both the HTER and ERR criteria,
their derivatives can be calculated from Equation 29 and 30 as:

dCurer(d) _ Crr 6FR(0) Cra SFA()

0 oAwill 00 2Awal] 0 32)
and
6CERR(9) _ CFR 6FR(0) + CFA (5FA(9) (33)
36 (w1 ]| + [|w2]] 66 [fwr ] + ||wa[ 66
respectively.

In biometric application, ||ws|| > ||w:]||- If everything else cosidered equal, i.e., Cpa = C’F r=1
and , |6F($(0)| |6FR(9)| for the case of HTER criterion, increase of one FR contrlbutes 2H 7 to the
cost While increase of one FA contributes 2||w ik Obviously, contribution of FA is downplayed by the
factor 2H Al because 2||w < W

This minimum cost can be found by setting the derived cost function to zero. We will study
only the HTER criterion because it is more relevant in this application. Setting Equation 32 to zero,
together with Equation 23 and 24 gives:

Crr 6FR(H)  Cpa 6FA(6)

0
2[jws]| 06 2[fws|| o0
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_ CFR 0 C'FA )
" M@< o [_vbler) dy) 2w ||60< o [ '“’”y>

Ore e

0 =
2

0+ A6 ) (34)

Indeed, there exists one single threshold 8* that optimises the cost criteria. The wider the score
space where the virtual method wins over the original method (the winning positions), the higher the
probability that the virtual method will win. This is because 8* will have higher probability of falling
into one of these winning positions.

7.3 Unequal cost assumption

What if the cost of FA and FR are different? From Equation 32, intuitively, one could predict that
high Cp4 will increase favourably the contribution of JFA(H) which is downplayed by very large ||w2]|.
Indeed, this is often the case because false acceptance is often very serious in high security application.
According to the NIST standard, Cryg = 10 while Crg = 1.

Using these convention, we calculated the cost according to HTER for the case (Cra = 10,
Crr = 1) and (Cra = 10, Crg = 1). HTER criterion is used because it is a more realistic and
relevant criterion in biometric authentication then the ERR criterion. The cost curves are shown in
Figure 7.

In real application, the threshold # takes on a value that optimises best the cost function. We
calculated the optimal threshold 6* together with its corresponding minimum cost of HTER. The
results are shown in Table 7

Table 7: Different combination methods of virtual scores on the evaluation set of LP1.

Crr | Cra Original Method Virtual Method
Min. cost 6* | Min. cost o*
1 1 0.0313 | -0.5910 0.0280 | -0.6503

1 10 0.0641 | 0.2322 0.0635 | 0.0759
10 1 0.1343 | -0.9754 0.1095 | -0.9221

On all three different assumption of costs of FA and FR, the virtual method seems to be robust.
Although the virtual method does not garantee to win over the original method at all score space, it
is at least better when using the optimal threshold.

It is indeed exciting to observe in Figure 7(a) and (b) how the virtual method wins over the original
method. High cost of FA gives favourable result to the virtual method. Inversely, high cost of FR gives
favourable result to the orignal method. However, even in this disadvantage situation, Figure 7(d)
shows that the virtual method still wins over the original method with a very narrow bound of [a, ]
values.

It should be emphaised here that the threshold 6 does not take on any value. It takes a specific
value that minimises the cost. As long as this optimal threshold, 8*, falls within [a, b], then the virutal
method will always be beneficial.

One possible explanation to why there exist a bound [a, b], often continuous, but not necessarily
so, where the virtual method will win over the original method is due to the reduction of variance in
using multiple virtual samples comparing to the original method. When variance reduces for both the
client and impostor pdfs, the peak of distribution will become higher than those of the original pdfs.
The tails, on the other hand, will be longer and thiner comparing to the original pdfs. As a result, the
overlaping regions, where errors are made, reduces. When computing the difference between the cost
function of the original and the virtual method, the virtual method wins over the original method at
the area (the winning positions) where both the client and impostor overlaps. This intutively shows
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Figure 7: Comparaison of the original and virtual methods merged using mean operator according to
the cost of HTER, based on the evaluation data set of LP1

why the virtual method is useful. In practice, we found that such winning positions are not often
continuous due to the different class prior and cost of FA and FR, according to the HTER criteria.

It is well known in the problem of regression that reduction of variance gives more accurate output
function. In the problem of two-class classification as thoroughly studied here, reduction of variance
by means of averaging virtual samples does leads to improved classification performance in both EER
and HTER criteria. Furthermore, the gain in EER criteria is more consistent (better) than the
gain in HTER. In addition to this obversavtion, high cost of FA in biometric authentication favours
this virtual method. As a conclusion, the virtual method is an effective way of improving a general
biometric authentication system when only one sample is available.
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