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Abstract. A new approach is presented for clustering the speakers from unlabeled and unsegmented 
conversation, when the number of speakers is unknown.  In this approach, each speaker is modeled by a Self-
Organizing-Map (SOM).  For estimation of the number of clusters the Bayesian Information Criterion (BIC) is 
applied.  This approach was tested on the NIST 1996 HUB-4 evaluation test in terms of speaker and cluster 
purities.  Results indicate that the combined SOM-BIC approach can lead to better clustering results than the 
baseline system. 
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1. Introduction 
Most speaker recognition problems have been solved by using supervised methods.  A less 
common problem is unsupervised speaker clustering, segmentation and indexing, where no 
labeled training data is available.  The goal in this case is to assign the data to different 
clusters where each cluster represents a different speaker.  Unlike most clustering 
approaches where each vector is associated with a specific cluster (static clustering), here a 
sequence of vectors has to be associated with the same cluster, which is known as a 
temporal data clustering. 

Temporal data clustering has many applications in temporal data applications including 
speaker recognition [1]-[7], machine monitoring [8], switching chaos [9], [10], prediction of 
systems output [9], clustering of EEG signals [10], music clustering [11], and protein 
modeling [12]. 

Temporal data clustering must be used when there is a successive dependence between 
data vectors in a group.  An additional problem of temporal data clustering is to determine 
the change points (segmentation and change detection problem).  Sometimes the transitions 
between the models are not sharp (e.g., one model appears before the end of the previous 
one) which is known as drifting dynamics [10].  In this case, it is necessary to find the 
transients and to give membership weights to each cluster at every time point. 

Many approaches have been applied for temporal data clustering, e.g., the Dendrogram 
[3]; the VQ algorithms [4], the expectation maximization (EM) algorithm [5], [7]; HMM 
[2], [6], [8], [12]; and neural networks (NN) [1], [9]-[11]. 

In the presented approach, a Code-Book (CB ) is used to model each speaker.  All the 
sCB  are first trained such that each CB  represents a different speaker.  Then an iterative 

competitive algorithm is applied to all the sCB .  The sCB  are created using a SOM [13].  
The convergence of the algorithm, in terms of distance minimization, is proved in [1].  Input 
data was an unsegmented and unlabeled conversation, with unknown number of speakers, 
R .  BIC has previously been applied to validate the speaker clustering for a Gaussian 
cluster model [7].  In this report, we present a version of BIC for the distance-measure case 
and applied to validate the clustering. 

The next sections are organized as follows: Section 2 describes the proposed systems.  
In section 3 we present the experiments and the results, and in section 4 the systems and 
results are discussed. 

2. Systems Description 
In general, given a conversation the goal is to estimate the number of clusters and to cluster 
the data into q  clusters.  The description of the VQ-based clustering system is summarized 
in subsection 2.1.  In 2.2, the BIC validity criterion is presented.  Sub-section 2.3 shows how 
BIC can be applied for a VQ-based clustering system. 

2.1 VQ-Based clustering System 

Assuming that the number of speakers and the segment boundaries are known, and in each 
conversation the data includes, in addition to speech data, non-speech events, the goal of the 
algorithm is to cluster the input data into R +1 clusters.  The initial conditions for the system 
were determined as follows: segments classified by the crude speech/non-speech classifier 
as non-speech were used to train the non-speech network.  Segments classified as speech 
segments were randomly and equally divided and used to train the R  speaker models. 

For the following temporal-data clustering algorithm it is necessary to know the start 
and end points of each segment.  In reality this information is not usually available.  For this 
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reason we cut the data into segments of fixed length (this length was set to one second, 100  
frames).  It was found in [1] that 100  frames and a CB  created using a SOM of size 6 10×  
are sufficient for speaker clustering. 

The precise algorithm description and the proof of its convergence can be found in [1]. 
One iteration of the algorithm consists of following three steps: 
1. Retrain the models with the new partition achieved by the previous iteration. 
2. Regroup the data according to the defined distance measure. 
3. Test for termination: if the termination criterion is met, exit; if not return to 1. 

In the present work the following termination criterion was applied: 

 
Number of segments that change their assignment

0.01
Total number of segments

≤  (1) 

2.2 The BIC Validity Criterion 

The Bayesian Information Criterion for model selection was introduced by Schwarz in 1978 
[14].  According to Schwarz, to select the best model for given data it is necessary to 
maximize the joint likelihood (log-likelihood ( )ˆ,L ΘV ) of the data V  and the estimated 

parameters Θ̂ .  According to the Bayes rule, ( ) ( ) ( )ˆ ˆ ˆ,L L L= +Θ Θ ΘV V .  Schwarz showed 

that under the assumption of continuous parameters in some range, ( )ˆL Θ  depends only on 

the number of estimated parameters Θ̂  and the number of data points that were used for 

parameter estimation, N .  So the joint log-likelihood is: 

 ( ) ( ) ( )1ˆˆ ˆ log,
2

L L N= Θ −Θ ΘVV  (2) 

In practice the second term, often called a penalty term,  is multiplied by a scaling factor λ  
to adjust the equation for a specific application.  Then, a best model out of maxR  estimated 

models can be obtained by maximizing the joint log-likelihood using this scale factor. 

 ( ) ( ){ }
max

*

1, ,

ˆ ˆarg max log
2q q

q R
R L N

λ
=

= −Θ ΘV
�

 (3) 

2.3 BIC Criterion and VQ 

As our CB  is a Euclidian distance-based model and for BIC a log-likelihood must be 
calculated, the following approximation is applied.  For input vector n rv CB∈  we assume 

that each code-word in the codebook is the mean of a Gaussian probability-density-function 
(pdf) with a unit covariance matrix.  Then the estimated log-likelihood of one input vector 
was calculated as: 

 ( ) ( ) ( ) ( ) ( ) ( ){ }** *

1, ,

1
ˆ log    ;   min2

2 2 r

T Tl l m l ml m l m
n r r n r nr n r n l L

d
L v c c v c vc v c vπ

=
= − − = − −− −Θ

�

 (4) 

and the joint log-likelihood, for a model that consists of q  codebooks, is estimated as: 

 ( ) ( ) ( ) ( ) ( )* *

1

1 ˆˆ log log2,
2 2 2

n r

q T
l l

qr n r n
r v CB

dN
L Nc v c v

λ
π

= ∈
= − − − Θ− −Θ ∑ ∑V  (5) 

In this work we applied input vectors of dimension 12, and 60 code-words per one 
cluster model, i.e., each cluster has 60 12 720ClusterΘ = = × =Θ  parameters.  The estimation 
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of the number of clusters was therefore according to the minimization of the following 
expression: 

 ( ) ( ) ( )* **

1, ,30 1

logarg min
n r

q
T

l l
r n r n

q r v CB

qR Nc v c v λ
= = ∈

 + ⋅ ⋅= Θ− − 
 
∑ ∑

�

 (6) 

Where ˆ 720q q q= =Θ Θ . 

3. Systems Evaluation 
The system was tested on the NIST 1996 HUB-4 evaluation dataset.  It is a broadcast news 
speech corpus, and the evaluation set consists of four datasets, each of approximately 30 
minutes in duration.  The four datasets are named File1, File2, File3, and File4 and the 
number of speakers is 7, 13, 15, and 20 respectively. 

3.1 Feature Extraction 

The features used were 12th order LPCC.  The features calculated from 30ms  frames with a 
10ms  frame rate.  In addition, for VQ-based system initialization, the mean absolute values 
for 50ms  of accumulated frames were calculated for speech/non-speech evaluation.  
Preliminary segmentation of speech and non-speech data was performed by thresholding the 
absolute value feature.  The threshold level was set at three percent of the maximum. 

3.2 Evaluation Criterion 

Clustering evaluation was based on the purity concept explained in [5].  In [5], only 
Average Cluster Purity (acp) was calculated.  The criterion used in this paper calculates the 
Average Speaker Purity (asp) as well, as was used in [2].  The reason for the second 
coefficient is to penalize the splitting of one speaker into several clusters.  Two coefficients 
calculation means that one cluster can include several speakers and one speaker may get 
split between several clusters.  It is important to have a confidence measure taking both 
factors into account.  In the case of speaker purity non-speech data was ignored, because it 
is not relevant to relate it to a particulate cluster.  The notation used is: 

R : Number of speakers 
q : Number of clusters 

ijn : Total number of frames in cluster i  spoken by speaker j  

. jn : Total number of frames spoken by speaker j , 0j =  means non-speech frames 

.in : Total number of frames in cluster i  

The acp, based on cluster purity { }. 0

q

i i
p

=
, can be defined as: 

 
2

. . . 2
0 0 .

1
    ;    

q R
ij

i i i
i j i

n
acp p n p

N n= =

= ⋅ =∑ ∑  (7) 

Similarly, asp based on the speaker purity, { }. 1

R

j j
p

=
, but without the non-speech data, is: 

 
2

. . . 2
1 0.0 .

1
   ;   

qR
ij

j j j
j i j

n
asp p n p

N n n= =
= ⋅ =

− ∑ ∑  (8) 

In order to compare between the systems, we calculate the evaluation criterion as the 
geometric mean of the acp and asp: 
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 K acp asp= ⋅  (9) 

It is important to note that the values of acp, asp and K are always between zero and one 
without dependence on the number of speakers.  Higher acp means that the cluster consists 
mostly of one speaker.  Higher asp means that the speaker data does not split between many 
clusters.  The optimal case is to maximize K, ideally with both acp and asp equal to one. 

3.3 Experiment and Results 

As was shown at [1], a model with SOM size 6 10×  (720 parameters per cluster) and 100 
frames per segment are sufficient for speaker clustering.  In all the experiments in this report 
we use these sizes. 

The first row in Table 1 shows the results for the baseline system. In this experiment, 
the number of clusters ( q ) was set to 1R + , where R  is the number of speakers, plus an 
additional cluster for non-speech event, as in [1]. 

The same experiment was conducted again with different initial conditions (SOM’s 
initial weights and initial segmentation) to verify the robustness of the system.  The values 
of K in the second repetition were 0.80, 0.78, 0.80 and 0.71 for the four files.  As in [1], it 
can be seen that the clustering performances are very robust to the systems’ initial 
conditions.  The system has a maximum difference of 0.03  between each pair of K values.  
It is clear that performance degraded where the number of speakers increased due to the 
higher complexity of the data and the smaller amount of data per speaker. 

The second experiment includes clustering and estimation of the optimal number of 
clusters.  The initial number was 30.  At each stage the data was clustered and the validity 
was calculated, for 720=Θ , according to 

( ) ( ) ( )* *

1
log

n r

Tq l l
r n r nr v CB

q Nc v c v λ
= ∈

− ⋅ ⋅Θ− −∑ ∑ .  Different values of scaling factor were 

applied: { } { } 66
00

0.5 kk k
kλ ==

= .  After validity calculation the cluster with the minimum 

amount of data was removed and the system was retrained with the reduced number of 
clusters.  The process was continued until the number of clusters reduced to one.  The 
penalty term influences the validation criterion, as bigger λ  leads to a smaller number of 
clusters and vice versa. It was found that the best scaling factor was 1.5λ = .  Table 1 shows 
the result of the clustering of the four files according to their scores: 
• Second row: the score for the correct number of speakers, 1R +  (one for non-speech 

events). 
• Third row: the score for the best clustering result achieved according to the best K  

value as described in Section 3.2. 
• Forth row: the score according to the estimated number of clusters, with penalty term 

1.5λ = . 
From the result analysis following conclusions can be made: 

1. The results for a-priori known number of speakers are the same as for clustering with 
the clustering reducing approach for 1R +  clusters.  This means that starting with a high 
number of clusters does not influence the clustering performance of the reduced number 
of clusters. 

2. Results using the VQ-BIC approach are close to the best results, usually better than 
with 1R +  clusters.  As non-speech data can come from different sources, several 
clusters can be attached to this data.  Speakers with close characteristics in the feature 
space can be attributed to the same model while speakers with high variability in their 
voice can be split into more than one cluster.  For these reasons the optimal number of 
clusters may differ from 1R + . 
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Table 1: Clustering results for ( 1.5λ = ). 
File 1 – 7R =  File 2 – 13R =  File 3 – 15R =  File 4 – 20R =  

Model 
Type cN  acp asp K  cN  acp asp K  cN  acp asp K  cN  acp asp K  

Baseline 8 0.74 0.94 0.83 14 0.73 0.78 0.75 16 0.75 0.80 0.77 21 0.74 0.67 0.70 

1R +  
clusters 

8 0.92 0.76 0.84 14 0.72 0.84 0.78 16 0.78 0.83 0.80 21 0.68 0.78 0.73 

Best score 12 0.84 0.88 0.86 10 0.82 0.79 0.81 16 0.78 0.83 0.80 13 0.78 0.71 0.74 

*R  
clusters 

12 0.84 0.88 0.86 11 0.79 0.81 0.80 12 0.82 0.74 0.78 13 0.78 0.71 0.74 

4. Conclusions 
The temporal data clustering approach based on VQ, which was presented at [1], was 
applied for long conversations with different numbers of speakers.  It can be seen from the 
results that as the number of speakers increases, the performance of the system degrades.  
This is logical due to the fact that the number of estimated parameters that had to be 
estimated increases linearly with the number of speakers.  Another reason is that as the 
number of speakers increases the overlapping between the clusters become bigger and the 
shapes that should be learned are more complex.  The SOM-based system results are robust 
to initial parameters, as was already shown in [1]. 

Estimation of the number of the participants (validity problem) is very important.  A 
BIC version for a distance measure based algorithm was presented. In the presented validity 
criterion, the scaling factor for BIC is important but the results for 1.0λ =  and 2.0λ =  gave 
comparable results. For instance 2.0λ =  gave the same result in File2, while 1.0λ =  was 
slightly better in File 3. 
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