

INFORMATION RETRIEVAL ON NOISY TEXT

David Grangier ^{1,2} Alessandro Vinciarelli ¹
Hervé Bourlard ¹

IDIAP-COM 03-08

- 32 -

¹ IDIAP, Martigny, Switzerland
² Eurecom, Sophia-Antipolis, France

Contents

1	Introduction	3
2	State of the Art	5
2.1	Introduction	5
2.2	Structure of an SDR System	5
2.2.1	Speech Recognition	6
2.2.2	Segmentation	7
2.2.3	Preprocessing and Normalization	7
2.2.4	Indexing	8
2.2.4.1	The Binary Model	9
2.2.4.2	The Vector Space Model	9
2.2.4.3	The Probabilistic Model	10
2.2.5	Retrieval	10
2.2.5.1	Preprocessing, Normalization and Indexing	11
2.2.5.2	Query Expansion	11
2.2.5.3	Matching Measures and Ranking	14
2.2.5.4	Recombination	15
2.3	Evaluation	15
2.3.1	Precision and Recall	15
2.3.2	Precision versus Recall Curve	16
2.3.3	Averaging over Queries	17
2.4	Conclusion	17
3	Experiments and Results	19
3.1	Introduction	19
3.2	Experimental Setup	19
3.2.1	TDT2 Database	20
3.2.2	TREC SDR Queries	20
3.3	Experiments and Results	20
3.3.1	Clean Text	22
3.3.1.1	Normalization Effect	22
3.3.1.2	Matching Measure Effectiveness	23
3.3.1.3	Query Expansion Effectiveness	23
3.3.2	Noisy Text	27
3.3.2.1	Normalization Effect	27
3.3.2.2	Matching Measure Effectiveness	27
3.3.2.3	Query Expansion Performance	27
3.4	Conclusion	31
4	Conclusions and Future Work	33

Chapter 1

Introduction

Audio databases are collected in several application domains (broadcast news, video conferences, etc), and, as their size increases, the problem of their management becomes more and more important [14, 40]. It is not possible to take full advantage from a data collection without effective indexing and retrieval techniques. Part of the audio databases consists of speech recordings and Spoken Document Retrieval (SDR) aims at accessing the information these recordings contain. An SDR system finds segments of the speech recordings that are relevant to an information need expressed through a query.

SDR is a recent research area relying on two well established domains: Automatic Speech Recognition (ASR) [15] and Information Retrieval (IR) [3]. ASR systems transcribe speech into digital texts, while IR systems retrieve documents relevant to a query from a text collection. The main development in SDR took place in the last decade. Major contributions were given in the framework of the SDR track at the TREC conferences between 1997 and 2000 [11]. In this framework, the ASR and IR communities were brought together, allowing them to share their systems and expertise. The resulting SDR systems have been compared using the same data and experimental setup.

Some fundamental questions have found an answer during TREC evaluations: the use of transcriptions of speech at word rather than at phoneme level has been shown more effective [22, 23]. It has also been established that the presence of a significant word error rate (typically, more than 25% of the words are not correctly transcribed) still allows satisfying performance with an IR system [13, 16, 25]. These results have defined the state-of-the-art approach to the SDR problem, which will be used in this work.

The aim of this thesis is to measure the effect of the noise (i.e. the recognition errors) on the retrieval performance. To perform such a task, a state-of-the-art SDR system has been implemented. At each step of the retrieval process, the performances obtained over both noisy and clean data are compared using some standard IR measures (precision, recall, etc).

The rest of this thesis is organized as follows, chapter 2 presents the state-of-the-art in SDR, chapter 3 shows experiments and results and chapter 4 draws some conclusions and delineates possible future works.

Chapter 2

State of the Art

2.1 Introduction

This chapter presents the state-of-the-art in SDR. The aim of SDR is to find automatically segments of a speech database that are relevant to an information need expressed through a query. The evident advantage of automatic processing is the possibility of dealing with huge audio databases, whose complete manual examination is unfeasable in a reasonable amount of time.

The main development in SDR took place in the last decade [11] and some systems are yet running in real world applications [26]. The process of most state-of-the-art SDR systems can be split into three main steps: transcription, segmentation and retrieval. At transcription step, the speech data is transcribed into digital text. At segmentation step, the ASR transcriptions are split into documents, which are the basic information units of retrieval. At retrieval step, the set of documents and the query are taken as input and a ranking is given as output [3]. In this ranking, the documents that are relevant to the query should appear before non-relevant ones.

The evaluation of an SDR system, as any other IR system, is done by measuring how close the ranking is to the ideal answer (all relevant documents appear before non-relevant ones). To perform such a task, there are different measures (precision, recall, break-even point, etc). Depending on the task, some of them can be more appropriate than others [27].

The rest of this chapter is organized as follows, section 2.2 presents the structure of an SDR system, section 2.3 outlines the evaluation of such a system and section 2.4 draws some conclusions.

2.2 Structure of an SDR System

The structure of an SDR system is composed of five modules (see figure 2.1): *recognition*, *segmentation*, *normalization*, *indexing* and *retrieval*. Recognition transcribes the speech signal into a stream of phonemes or a stream of words. Segmentation splits the stream into segments, called *documents*. Ideally, each document should be homogeneous in content, i.e. according to any query, the content of a document should either be completely relevant or completely non-relevant. In other words, any fragment of a document should have the same relevant judgment as the whole document. Normalization removes any variability that is not helpful for retrieval. Indexing gives each document a representation suitable for the retrieval process. Retrieval takes as input the query and the documents and ranks the documents according to their *Retrieval Status Value* (RSV). The RSV is a measure of relevance such that relevant documents should precede non-relevant ones in the ranking.

The modules before the retrieval compose the so-called *offline* part of the system. The reason is that they are performed only once for a given database. The retrieval module is often referred to as the *on-line* part of the system because it is performed each time a query is submitted.

Transcribing the speech data into a stream of phonemes rather than into a stream of words at the

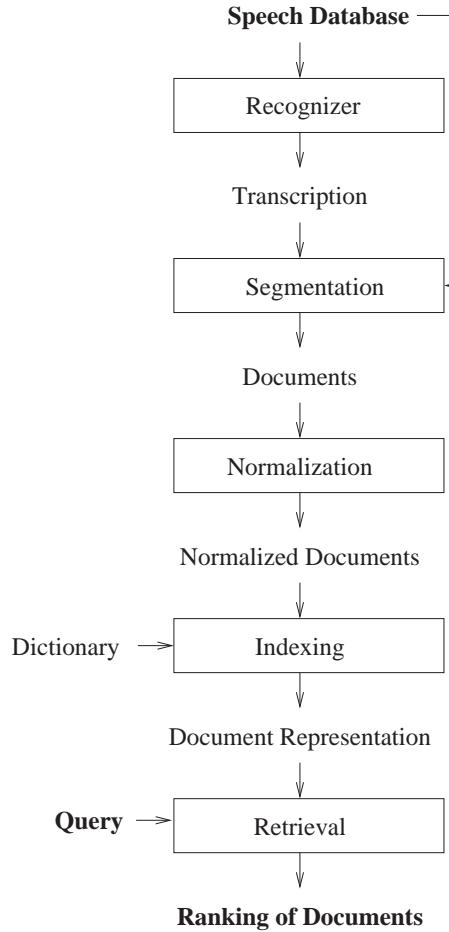


Figure 2.1: Structure of an SDR system

recognition step changes significantly the retrieval process. The use of a phoneme transcription has been shown less effective [11, 22], this paper will hence focus on the word-based approach.

2.2.1 Speech Recognition

Automatic Speech Recognition is the problem of transcribing a speech signal into a digital text. The signal is converted into a sequence $O = (o_1, o_2, \dots, o_m)$ of observation vectors (see [15] for the commonly applied techniques) and the recognition task can be thought of as finding a word sequence \hat{W} maximizing the a-posteriori probability:

$$\hat{W} = \arg \max_W p(W|O) \quad (2.1)$$

where $W = (w_1, w_2, \dots, w_n)$ is a sequence of words belonging to a fixed vocabulary V . By applying Bayes theorem, Equation (2.1) can be rewritten as follows:

$$\hat{W} = \arg \max_W \frac{p(O|W)p(W)}{p(O)} \quad (2.2)$$

and since O is constant during recognition:

$$\hat{W} = \arg \max_W p(O|W)p(W). \quad (2.3)$$

The right side of Equation (2.3) shows the role of the different sources of information in the recognition problem. The term $p(O|W)$ is the probability of the observation sequence O being generated by a model of sentence W . This probability is estimated with HMMs.

If W is composed of n words and the size of the dictionary is $|V|$, then the number of possible word sequences is $|V|^n$. Even for small values of $|V|$ and n , this amounts to a huge number, making the task of the recognizer difficult. Moreover, n is not known in advance and such amount must be thus summed over all possible values. The term $p(W)$ provides an a-priori probability of the word sequence W being written and it is often estimated using a *Statistical Language Model* [20]. A good SLM can significantly constrain the search space so that all the sentences that are unlikely to be written (from a linguistic point of view) have a low probability.

The performance of a recognizer depends on the data. Systems transcribing single speaker utterances recorded without noise can achieve recognition rates close to 100%. In more realistic cases (multiple speakers, background noise, etc.), the performance is severely degraded. In this work, we use broadcast news where there are several speakers recorded in a clean environment and reading rather than speaking spontaneously. The recognition rate of our transcriptions is $\sim 70\%$ [5].

2.2.2 Segmentation

After the recognition, the database is available as a continuous stream of words. Retrieval systems are useful when they allow the access to specific parts of the data that are not easy to find by manual inspection. For this reason, it is necessary to segment the stream into smaller units, called *documents*.

The document is the basic unit of the retrieval process, i.e. the system does not consider fragments of the database smaller than a document. The first boundaries available to perform segmentation are those provided by the recording sessions. They are sufficient in some applications (e.g. an answering machine messages retrieval) but, in other cases, further segmentation is needed (e.g. broadcast news retrieval, as a one-hour program contains a large variety of different stories).

In this case, there are three possibilities: the segmentation can be performed using only the speech signal, only the transcription or both. Segmentation based on the speech signal allows to find boundaries such as speaker turns [17], speech/non-speech changes [2], or dialog annotation based boundaries (monologue/dialog segmentation, consensus/disagreement detection, etc) [21]. These features can provide information about changes in content along the stream: a segment between two speaker changes is more likely to be homogeneous in content than a succession of several speaker interventions, a non speech period is likely to precede a new topic, etc.. Segmentation based on the transcription gives the possibility to use techniques such as topic detection, which detects topic transitions through changes in the words used [4]. However, segmentation is generally performed with a temporal sliding window [16, 26]. This technique is simple but leads to good results. In this case, the documents are segments of a fixed duration, extracted periodically from the speech signal.

Once the segmentation step is completed, the original stream of words is converted into a set of documents. The system cannot retrieve units smaller than the documents. In other words, segmentation defines the level of granularity of the retrieval system.

2.2.3 Preprocessing and Normalization

The data variability, which is not useful to model the document content is removed through *preprocessing* and *normalization*. Preprocessing removes punctuation and other non alphabetical characters (e.g. digits, the '@' character), transforming each document into a stream of words [8]. Normalization removes any variability in the stream of words which is not helping the retrieval process. In the case of Spoken Document Retrieval, the text is the output of a recognizer and contains no punctuation, therefore, the preprocessing step is not required.

Normalization is composed of *stopping* [8] and *stemming* [9]. Stopping is the elimination of words supposed to be useless to represent document content. There are usually functional words (e.g. articles, conjunctions, pronouns) and other words of common use (e.g. *to say, to be, good*). The list of

words to be removed is called *stoplist* and its elements *stopwords*. A stoplist can be generic or domain specific. In the last case, stopwords are words widely used in a specific context (e.g. *music* in the case of a musician biographies database). The effect of stopping (see figure 2.2) is a significant reduction of the total number of words in the database (usually by 30-50%).

Stemming is the substitution of each inflected form of a word with a common representation: the *stem*. The stem is the part of the word that remains unchanged after removing affixes and suffixes. For example, *connected*, *connection* and *connects* will be replaced by *connect*. Stemming supposes that the use of an inflected form depends on the sentence construction and that only the stem is meaningful for representing the document content. The most applied stemming algorithm has been developed by Porter [24]. It is a good trade-off between simplicity and effectiveness [9]. The effect of stemming is a reduction of the lexicon¹ size (generally by more than 30%).

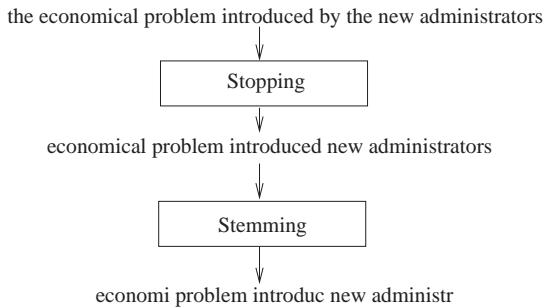


Figure 2.2: An example of normalization

After stopping and stemming, the documents are streams of *terms*. There is a fundamental difference between terms and words. Terms are used to index the documents and they correspond to the initial words only when stopping and stemming are not applied. However, this happens very rarely as stopping and stemming have been shown to improve the retrieval performance [40].

2.2.4 Indexing

At the indexing step, the documents are available as streams of terms. Such a representation is not suitable for the retrieval process and must be changed. This task is performed during the indexing. Since the early times of IR development, the indexing approaches based on the physical properties of the documents have been shown to be the most effective [18, 19]. By physical property, it is meant any property that can be measured (e.g. frequency of term in the documents, number of words between two terms in the text, etc). Approaches trying to extract semantic information in the same way a human can do were not able to achieve satisfying results [3].

Indexing uses a finite set of terms, the *dictionary*. The dictionary is usually the list of all different terms contained in the database, but it can also be predefined. The dictionary can include compound words, such as *Los Angeles*, *Computer Science* or *rule-of-thumb*, if they are bringing more information than their individual parts [38]. On the other hand, their collection requires a heavy manual effort (a reliable automatic approach to extract compound words is not available). Moreover, the compound words are often database dependent, so that their extraction must be repeated for each database. Compound words are not often included in the dictionary because the improvement they introduce is not always worth the effort they require [3]. Usually, indexing does not take into account the order of the terms in the document. This is called *bag of terms* approximation.

There are essentially three indexing approaches, corresponding to three models: the *binary model* [39], the *vector space model* (VSM) [35] and the *probabilistic model* [6]. The binary model is based on

¹The lexicon is the set of all unique terms in the database

boolean algebra and has been the first retrieval model proposed. The other models are more recent and lead to better performance. State-of-the-art systems are mostly based on the VSM, which offers several advantages with respect to the probabilistic model. The retrieval section (2.2.5) hence focus on the VSM. The three models with their advantages and disadvantages are described in the following subsections.

2.2.4.1 The Binary Model

The binary model is based on set theory and Boolean algebra. It considers only presence or absence of terms in the document. A document is represented with a list of binary variables corresponding to each dictionary term. Each variable is set to 1 if the associated term is present in the document and to 0 otherwise:

$$d_i = (b_{1,i}, \dots, b_{T,i}) \quad (2.4)$$

where T is the dictionary size and $b_{k,i}$ is the binary weight of term k in document i :

$$b_{k,i} = \begin{cases} 0 & \text{if term } k \text{ is present in document } i \\ 1 & \text{if term } k \text{ is not present in document } i \end{cases} \quad (2.5)$$

In this model, a query is a boolean function (e.g. $(term_i \text{ and } \text{not}(term_j))$ or $term_k$) and the system retrieves all documents satisfying the condition expressed by the function. The main advantage is that this model is easy to understand. On the other hand, the user is expected to know boolean algebra and it can be difficult to express complex information needs through logic functions.

2.2.4.2 The Vector Space Model

In the VSM, each document is represented by a vector, each component being associated with a term. The component is typically a function of the frequency of the term in the documents. This leads to the following representation, for a given document i :

$$\mathbf{d}_i = (w_{1,i}, \dots, w_{T,i}) \quad (2.6)$$

in which, $\forall k$, $w_{k,i} = f(\tau_k, i)$ where τ_k is the vector $(tf_{k,1}, \dots, tf_{k,N})$, $tf_{k,i}$ is the number of occurrences of term k in document i and N is the number of documents in the database. The most common weighting function f is called $tf \cdot idf$ [1, 33] and is defined as follows:

$$w_{k,i} = tf_{k,i} \cdot idf_k \quad (2.7)$$

in which,

$$idf_k = \log \left(\frac{N}{N_k} \right) \quad (2.8)$$

where N_k is the number of documents in the database containing term k .

The term frequency gives more weight to terms occurring more frequently in the document, based on the hypothesis that a term occurring several times is more representative of the document content. However, the tf factor alone is not sufficient. For example, a high frequency term occurring in most documents of the collection is not helpful to distinguish relevant documents from others. The inverse document frequency idf gives more weight to terms occurring in few documents, rare words being considered more discriminant [7]. The $tf \cdot idf$ weighting can be used for both queries and vectors.

In the VSM, the queries can be expressed in natural-language. The retrieval is performed by measuring the matching between the vector representing the query and the vectors representing the documents. The matching measure can generally be interpreted as a scalar product:

$$RSV(\mathbf{q}, \mathbf{d}_i) = \sum_{k=1}^T q_k \cdot w_{k,i} \quad (2.9)$$

where $q = (q_1, \dots, q_T)$ is the query vector.

Contrary to the binary model, the RSV is not binary: the matching measure is continuous, giving better values to documents better matching the query. Using a continuous RSV allows the user to be aware of two aspects of the output: how reliable the system judgment is and how well the considered document is answering the information need. Moreover, the query can be expressed in natural-language, which makes the query formulation task more intuitive. However, the vector space model does not allow to exclude a word or to require a word to be present in the retrieved documents, whereas it is possible within the binary model.

2.2.4.3 The Probabilistic Model

Probabilistic IR models use the probability $p(R|q_k d_j)$ of a document d_j being relevant to a query q_k as a score to rank the documents [6, 10, 37]. The probability is hard to estimate and the problem can be tackled only by means of simplifying assumptions. The basic hypothesis, underlying most of the probabilistic models, is that the term distribution in relevant documents is different from the term distribution in non-relevant ones. This is known as *cluster hypothesis* [27] and, when it holds, provides a criterion to discriminate between relevant and non-relevant documents.

Documents and queries are typically represented as sets of binary indexes. The probability $p(R|q_k d_j)$ is not estimated directly, but through the Bayes Theorem:

$$p(R|q_k d_j) = \frac{p(R|q_k)p(d_j|Rq_k)}{p(d_j|q_k)}. \quad (2.10)$$

This formula provides an estimation of the a posteriori probability of relevance given the information contained in document description d_j .

The term $p(d_j|q_k)$ is typically determined as the joint probability distribution of the n terms within the collection. The other terms are obtained through counts performed over a set of training queries: the distribution of the number of relevant documents per query is used to estimate $p(R|q_k)$, while the term distribution in documents relevant to the training queries is used to estimate $p(d|Rq_k)$. This is the fundamental limit of the model since it is very difficult to build a set of training queries actually representative of all possible queries. The obtained estimations are easily fitted to the training set and the model has poor performance over queries non represented in the training set. For this reason, the vector model is, at the present time, more successfully applied.

2.2.5 Retrieval

The retrieval step is the last module in the system. It takes as input the indexed documents, resulting from all previous steps, and the query. It gives as output a ranking, in which the documents should be ordered according to their relevance to the query. The retrieval step is referred to as the online part of the system as it is performed for each submitted query. All preceding operations compose the offline part of the system: they are performed once, as far as the database does not change.

Retrieval consists of several steps (see figure 2.3). The query is first represented in the same way as the documents through preprocessing, normalization and indexing. The query can then be modified, through *query expansion*, to make the retrieval process more effective [34]. A document/query *matching measure* is then used to rank the documents [30, 31]. The ranking of the documents can then be processed to merge contiguous segments which have similar ranking. This last operation, called *recombination*, is performed only when the database has been segmented automatically.

The following subsections show in more detail the above steps. Query representation is shown in section 2.2.5.1, query expansion is described in section 2.2.5.2, matching measures are introduced in section 2.2.5.3 and recombination is presented in section 2.2.5.4.

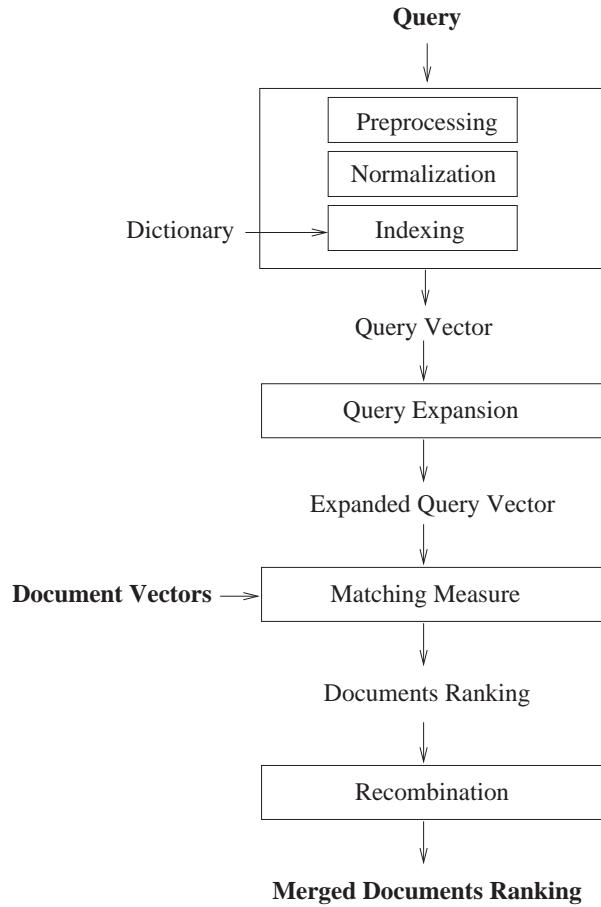


Figure 2.3: Structure of the Retrieval Process

2.2.5.1 Preprocessing, Normalization and Indexing

Preprocessing, normalization and indexing are performed as shown in section 2.2.3. The query text is processed as a document text. The same dictionary must be used to index both documents and queries, so that the document and query vectors belong to the same space.

2.2.5.2 Query Expansion

The queries formulated by the users are, on average, shorter than documents. This leads to more noisy term distribution. The presence (absence) of a term does not necessarily mean that it is more (less) representative of the information need than others and this can result in significant over-estimation (under-estimation) of its weight in the query representation. This might cause a mismatch between the term distribution in the relevant documents and in the query. Query expansion attempts to solve this problem. It considers the query provided by the user as a tentative and changes it to make the retrieval operation more effective.

Statistics about terms occurring in relevant documents are required to expand the query. To estimate such statistics, a set of relevant document is extracted with a preliminary retrieval process using the initial query (as shown on figure 2.4). There are two ways to identify relevant documents from the resulting ranking: either the user manually inspects the top-scoring documents and indentify some of them as relevant (*relevance feedback*) [34], or the system automatically assumes that the

n top-scoring documents are relevant (*blind relevance feedback*) [13, 16, 25]. The set of documents identified as relevant is typically incomplete and can even contain non-relevant documents in the case of blind relevance feedback.

The set R of documents retained as relevant allows to identify terms that are likely to help the retrieval process if included in the query (*term selection*). After they have been added to the query, such terms, as well as the original query terms, are assigned new weights (*term re-weighting*). This leads to the *expanded query*. Most re-weighting strategies favor the original query terms, as R suffers from the weaknesses mentioned above. The most common techniques to select and re-weight terms are *Rocchio Query Expansion* [32], *Offer Weight* (OW) [28] and *Local Context Analysis* (LCA) [41].

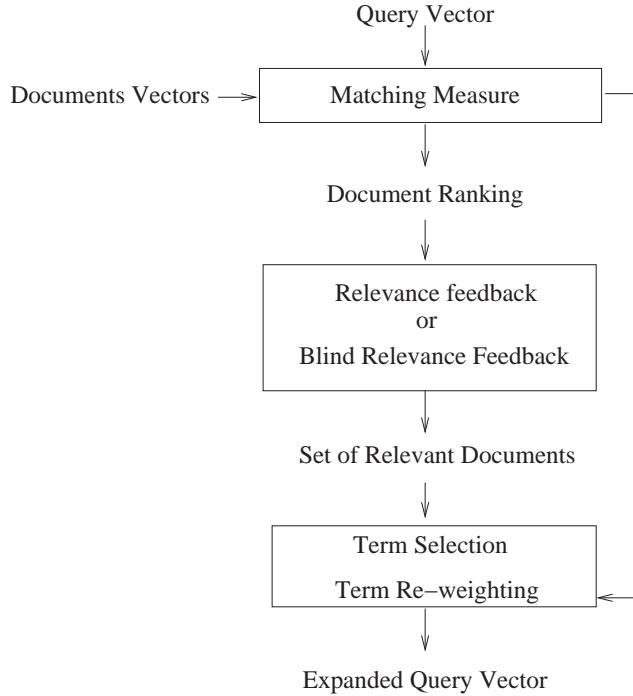


Figure 2.4: Structure of the Query Expansion Process

Rocchio Query Expansion This technique performs term selection and re-weighting in a single step: the expanded query vector is defined as the weighted sum of the initial query vector and the average of the document vectors belonging to R [32].

$$q' = \alpha \cdot \mathbf{q} + \frac{1}{R} \sum_{\mathbf{d} \in R} \mathbf{d} \quad (2.11)$$

where α is the weight of the original query in the sum. It must be set manually: when R is not reliable, α must be high and vice versa. This formula makes the query closer to the region of the space where relevant documents are. Although simple, this technique can improve significantly the retrieval performance.

Offer Weight Offer Weight is based on the Binary Independence Retrieval (BIR) model [37]. In this model, the RSV, for a given document i , is:

$$RSV_i = \sum_{k=1}^T b_{i,k} \cdot OW_k \quad (2.12)$$

where, $b_{i,k}$ is 1 if term k is in document i and 0 otherwise and OW_k is the *Offer Weight* of term k :

$$OW_k = \log \left(\frac{P(k \in d|d \in R) P(k \notin d|d \in \bar{R})}{P(k \in d|d \in \bar{R}) P(k \notin d|d \in R)} \right)$$

where, $P(k \in d|d \in R)$ (respectively $P(k \notin d|d \in R)$) is the probability that term k is present (respectively not present) in a document, given that this document is relevant and $P(k \in d|d \in \bar{R})$ (respectively $P(k \notin d|d \in \bar{R})$) is the probability that term k is present (respectively not present) in a document, given that this document is not relevant.

The offer weight of a term k measures how helpful the presence of term k is to discriminate relevant from non-relevant documents. The parameters of the OW are estimated as follows:

$$P(k \in d|d \in R) = \frac{r_k}{r} \text{ and } P(k \in d|d \in \bar{R}) = \frac{n_k}{n}$$

where,

r	is the number of	relevant documents
r_k	“	relevant documents containing term k
n	“	documents in the whole database
n_k	“	documents containing term k in the whole database

This leads to the following complementaries:

$$P(k \notin d|d \in R) = 1 - \frac{r_k}{r} \text{ and } P(k \notin d|d \in \bar{R}) = 1 - \frac{n_k}{n}$$

The OW hence corresponds to the following expression:

$$OW_k = \log \frac{r_k(n - n_k - r + r_k)}{(r - r_k)(n - n_k)}$$

The offer weight is the criterion for term selection. Terms with higher OW are more likely to be present in relevant documents than in non-relevant ones, they are hence added to the query. Re-weighting is also based on OW : the term-weights are multiplied by an increasing function of their OW [28].

Local Context Analysis LCA has been introduced by Xu and Croft [41]. This technique selects and re-weights terms based on their co-occurrences with the initial query terms. Renals et al. [26] proposed LCA in the following form:

$$LCA(e) = idf_e \sum_{t \in Q} idf_t \sum_{i \in R} tf_{t,i} \cdot tf_{e,i}$$

where e is a potential expansion term, Q is the set of initial query terms and R is the set of documents identified as relevant.

Terms co-occurring with more query terms than others have an higher LCA value. Hence, co-occurrence with all query terms is taken into account, which is more effective than considering term-by-term co-occurrence with single query terms separately. Term selection and term re-weighting then favor terms with higher LCA .

Rocchio Query Expansion was the first technique presented in the literature, followed by OW and LCA. These two are more flexible, as different strategies can be adopted to select and re-weight terms. Based on its probabilistic framework and its performance, OW is generally preferred.

2.2.5.3 Matching Measures and Ranking

In the Vector Space Model, the documents are ranked according to a matching measure. A matching measure is a function that should associate good scores to couples of vectors representing documents with similar content. As mentioned above, the only information extracted from documents is based on their physical properties (e.g. term distribution) [18]. For this reason, all matching measures presented in the literature take into account only the similarity of such properties. This is reasonable as two documents about the same topic are likely to use the same terms. However, it is also an important limit because the same topic can be expressed with different terms.

In the ranking process, the matching measure between each document vector and the query is first computed. The documents are then ranked according to their matching with the query. Hence, documents better matching the query are considered more relevant.

Many matching measures can be interpreted as a scalar product:

$$RSV_d = \sum_{k=1}^T q_k \cdot d_k \quad (2.13)$$

where $\mathbf{q} = (q_1, \dots, q_T)$ and $\mathbf{d} = (d_1, \dots, d_T)$ are the query and document vector respectively.

As mentioned in section 2.2.4, terms which best describe the document (or query) content should be assigned higher weights. Such terms would thus have an high influence on the scalar product. This allows the matching measure to be linked to content similarity. The most common weighting strategy is $tf \cdot idf$ (see equation 2.7).

Since queries are typically short, they lead to noisy tf estimates. To remove part of such noise, the queries can be binarized, i.e. only term presence or absence is taken into account. This often lead to better results [33]. The RSV formula is then:

$$RSV_d = \sum_{k=1}^T b_{q,k} \cdot tf_{d,k} \cdot idf_k \quad (2.14)$$

where $tf_{d,k}$ is the term frequency of term k in document d , idf_k is the inverse document frequency of term k and $b_{q,k}$ is the binary weight of term k in the query.

Since $b_{q,k}$ is 1 if term k is present in query and 0 otherwise, this formula can be rewritten:

$$RSV_d = \sum_{k \in Q} tf_{d,k} \cdot idf_k \quad (2.15)$$

where Q is the set of query terms.

In [29], two weaknesses of this formula are highlighted: first, the document length is not taken into account and long documents are favored [36]. This is correct only if the longer a document is, more it is relevant. But a document can also be long simply due to repetition. To deal with this problem, the formula can be modified as follows:

$$RSV_d = \sum_{k \in Q} \frac{tf_{d,k} \cdot idf_k}{(1 - b) + b \cdot NDL(d)} \quad (2.16)$$

where $NDL(d)$ is the normalized document length of document d (length of document d divided by the average length of a document) and b is an hyper-parameter ($b \in [0, 1]$). When $b = 0$, the document length is not considered. On the contrary, using $b = 1$ is equivalent to replacing the number of occurrences of a term (tf) with the fraction of the length that the term represents in the document ($\frac{tf}{DL}$).

The second problem is that $tf \cdot idf$ weighting has a linear dependency on term frequency tf . A term occurring twice in the document is not necessarily twice as much important as a term occurring

once. Better results can be obtained by smoothing the tf factor in case of multiple occurrences:

$$RSV_d = \sum_{k \in Q} \frac{(K + 1) \cdot tf_{d,k} \cdot idf_k}{K + tf_{d,k}} \quad (2.17)$$

where K is a hyper-parameter ($K \in [0, +\infty]$).

The combination of those two modifications leads to the so-called OKAPI formula [31]:

$$RSV_d = \sum_{k \in Q} \frac{(K + 1) \cdot tf_{d,k} \cdot idf_k}{K \cdot ((1 - b) + b \cdot NDL(d)) + tf_{d,k}} \quad (2.18)$$

This formula is widely applied in state-of-the-art systems.

2.2.5.4 Recombination

Automatic segmentation of the database (see section 2.2.2) can lead to many short documents, whose boundaries are not necessarily consistent with their content. For this reason, a relevant fraction of the text can be split across several documents. Such a fragmented part would be more valuable to the user if presented as a single unit.

Recombination deals with such a problem: it takes as input the ranking of the documents, as segmented by the segmentation module, and gives as output a ranking of *merged* documents. The process is performed in two steps. First, it should be decided which documents to merge. This decision is based on the proximity in time and in the ranking. Inter-document similarity and difference between RSV can also be used. Second, the new documents resulting from merging should be assigned a RSV and ranked. The RSV can either be a function of the RSV of the original segments [16, 26] or can be computed as the matching between the new document and the query. As well as providing a better segmentation to the user, recombination can also improve the retrieval process (e.g. a small segment appearing near many relevant segments is likely to be relevant, even if its matching with the query is low).

2.3 Evaluation

Given a query, an IR system should ideally output a ranking in which all relevant documents appear before non-relevant ones. The performance of a system is measured by evaluating how close it is to this ideal condition. To perform such a task, there are different measures: each of them evaluates different aspects of the system. Depending on the task the system is supposed to perform, some measures can be more appropriate than others [3, chap. 3][27, chap.7]. However, the choice of a measure rather than another can be argued and performance evaluation is still an open problem [12].

The following subsections are organized as follows. Section 2.3.1 introduces *Precision* and *Recall*, the two fundamental measures in IR, Section 2.3.2 defines the *Precision versus Recall* curve and presents different measures that can be extracted from it, Section 2.3.3 shows how measures defined for a single query can be averaged to evaluate the system performance over a set of queries.

2.3.1 Precision and Recall

Precision P and *Recall* R are the two fundamental measures when dealing with the evaluation of an IR system, many other measures can be derived from them [3]. P and R are defined as follows:

$$P = \frac{|H_q \cap S_q|}{|S_q|} \quad (2.19)$$

$$R = \frac{|H_q \cap S_q|}{|H_q|} \quad (2.20)$$

where q is a given query, S_q is the set of documents identified as relevant by the system and H_q is the set of actually relevant documents (i.e documents judged as relevant by human assessors). P is the fraction of retrieved documents that are actually relevant and can be interpreted as the probability that a retrieved document is actually relevant. R is the fraction of actually relevant documents that have been identified as such by the system and can be interpreted as the probability of retrieving a relevant document.

Precision and Recall measure different aspects of the system, none of them gives an exhaustive description of the performance. To know recall (precision) does not give any information about precision (recall). Different systems can have very different P (respectively R) at the same R (respectively P) level. Both measures are hence necessary to evaluate a system, as a good system should achieve both high precision and high recall.

In the context of a system relying on the vector space model, the output is not a set S_q of documents identified as relevant by the system but a ranking. In this case, P and R are computed at each position n in the ranking, considering that the n best ranked documents form the set $S_q(n)$ of retrieved documents:

$$P(n) = \frac{|H_q \cap S_q(n)|}{|S_q(n)|} \quad (2.21)$$

$$R(n) = \frac{|H_q \cap S_q(n)|}{|H_q|} \quad (2.22)$$

Along the ranking, the variations of $P(n)$ and $R(n)$ are not independent. When n increases, more relevant documents are selected and $R(n)$ increases. On the other hand, when n is higher, the probability of including non-relevant documents in $S_q(n)$ tends to be higher also, leading to a lower value of $P(n)$.

2.3.2 Precision versus Recall Curve

As mentioned above, $R(n)$ and $P(n)$ are roughly inversely proportional. A good system should be able to achieve good precision levels, even at high recall levels. To evaluate this, the *precision versus recall curve* is plotted.

Instead of plotting directly the $P(n), R(n)$ couples for all n values, P is often first interpolated as a function of R .

$$P(r) = \max_{n:R(n) \geq r} (P(n)) \quad (2.23)$$

where r is an arbitrary recall level and $P(r)$ is the interpolated precision value at such recall level. The interpolation allows to obtain P at any R level. Typically, precision is interpolated at 11 standard recall values ($r = 0, 10, 20, \dots, 100\%$).

Comparing plots is not as convenient as to compare single values. Different single value summaries are hence defined. Each of them gives a partial but meaningful information about the curve. The most common measure is called *average precision* and is defined as follows:

$$\text{avg}P = \frac{1}{|H_q|} \sum_{n \in \text{rel}} P(n) \quad (2.24)$$

where rel is the set of positions in the ranking corresponding to relevant documents.

Another measure is the *break-even point* (BEP). Recall and precision are computed at position $|H_q|$ in the ranking, where $|H_q|$ is the number of documents in the set H_q . At this position, $P(n)$ and $R(n)$ are equal and their value is called BEP. BEP can be seen as the intersection of the precision versus recall curve and the axis bisector ($R = P$).

A last measure is precision at position n , this measure is simply $P(n)$ at a fixed n . This corresponds to the precision when the set S_q of selected documents is composed of the n top-ranked documents. This measure is important if, for example, the system displays to the user only the first n documents of the ranking.

These three measures are not the only ones and many others can be defined [3, 27]. Each measure focuses on different aspects of the performance. Some aspects can be more important than others, depending on the task the system is supposed to perform.

2.3.3 Averaging over Queries

All above presented measures have been defined to evaluate the system performance for a single query. But system evaluation involves a query set Q , which should be representative of all the queries that can be submitted to the system. The results obtained for each query must thus be averaged to evaluate the system performance. There are two main techniques to perform such a task: *micro-averaging* and *macro-averaging*.

In micro-evaluation, every individual document has the same influence on the measures obtained. Precision and recall are expressed as follows:

$$P_{micro} = \frac{\sum_{q \in Q} |H_q \cap S_q|}{\sum_{q \in Q} |S_q|} \quad (2.25)$$

$$R_{micro} = \frac{\sum_{q \in Q} |H_q \cap S_q|}{\sum_{q \in Q} |H_q|} \quad (2.26)$$

Then, P_{micro} and R_{micro} can be used to obtain precision versus recall curve as well as the single value measures described before (section 2.3.2).

In macro-evaluation, every individual query has the same influence on the measures obtained. This is achieved by averaging over queries. Interpolated precision at a given recall level, average precision and BEP are expressed as follows:

$$P(r) = \frac{1}{|Q|} \sum_{q \in Q} P_q(r) \quad (2.27)$$

$$AvgP_{macro} = \frac{1}{|Q|} \sum_{q \in Q} AvgP_q \quad (2.28)$$

$$BEP_{macro} = \frac{1}{|Q|} \sum_{q \in Q} BEP_q \quad (2.29)$$

where $P_q(r)$, $AvgP_q$ and BEP_q are respectively interpolated precision at recall r , average precision and break-even point computed for the individual query q .

Macro-evaluation is generally preferred in IR literature, whereas micro-evaluation is used in document categorization. In SDR, the macro-averages of BEP and $AvgP$ are used in most works. However, these measures have been introduced in the context of text retrieval where the number of documents in the database is constant. On the contrary in SDR, the number of documents varies due to segmentation and recombination, this can influence the measure and this aspect has not been extensively studied yet. Evaluation in IR, and even more in SDR, is not as well defined as in other domains and it remains an open problem.

2.4 Conclusion

In this chapter, the state-of-the-art in SDR has been presented. The structure of an SDR system has been shown and the measures used for performance evaluation have been introduced.

The state-of-the-art approach to the SDR problem involves three main steps: recognition, segmentation and retrieval. At recognition step, a large vocabulary ASR system transcribes the speech data into digital text. Transcribing into a stream of words rather than a stream of phonemes has been shown more effective for the retrieval task. At segmentation step, the transcriptions are split into documents, which are the basic information units of retrieval. Segmentation typically uses a sliding

window to perform this task. At retrieval step, the documents that are relevant to a given query are retrieved. Retrieval is done using an IR system based on the VSM.

This approach to the SDR problem has shown to lead to good results with broadcast news data. However, the use of other kinds of data, such as corporate meetings, phone dialogs or academic lectures, might pose new problems: e.g. the recording conditions can lead the recognizer to introduce much more noise, the lack of structure can make the segmentation process more difficult, etc..

The evaluation of SDR relies on standard IR measures. However, there is a significant difference between SDR systems and standard IR systems that can affect the evaluation process: an SDR system splits the database into documents during segmentation (and eventually modifies this split during recombination), while a standard IR system typically works with a manually segmented database and never modifies the provided segmentation. The variation in the number of documents affects all IR measures: the results obtained over two different segmentations of the same database are hence difficult to compare. Having an IR measure independent from the segmentation would be of great interest.

Chapter 3

Experiments and Results

3.1 Introduction

The use of Information Retrieval (IR) systems over Automatic Speech Recognition (ASR) transcriptions has been proven effective to retrieve spoken data [11]. In this approach, the IR system considers the spoken documents transcribed by the ASR system as a common digital text. However, a corpus of ASR transcriptions is very different from a corpus of clean texts on which IR systems usually work. The output of an ASR system is affected by recognition errors: some original words have been replaced by others (substitution errors), new words have been inserted (insertion errors) and some original words have been lost (deletion errors). These errors are frequent (often, more than 25% of the words are recognized incorrectly) and an ASR transcription can hence be referred to as a *noisy text*. The effect of this noise on the retrieval process can be investigated by comparing the retrieval performance over a noisy and a clean version of the same data.

In our work, this comparison is done using a broadcast news database (TDT2) [5] with a set of retrieval queries (TREC SDR queries). The clean corpus is composed of manually produced transcriptions and the noisy corpus is composed of ASR transcriptions. Some standard IR measures (Precision, recall, break-even point, etc) have been used to evaluate the results of an SDR system on both corpora.

The following sections are organized as follows: section 3.2 presents the experimental setup and the data used, section 3.3 shows the performances obtained with both clean and noisy data and compare them and final section 3.4 draws some conclusions.

3.2 Experimental Setup

The SDR task is to find segments of a speech database that are relevant to an information need expressed through a query. In our case, we consider a fully automatic approach, i.e. the user provides only the query as opposed to interactive approaches (e.g. relevance feedback, see section 2.2.5.2).

In this context, an SDR system has two inputs: a database of speech recordings and a set of queries. We used *Topic Detection and Tracking 2* (TDT2) [5] database and the queries collected for *TREC SDR* evaluation (i.e. benchmark queries used at the Spoken Document Retrieval session of the Text Retrieval Conference in 1999 and 2000) [11].

The TDT2 database is composed of 600 hours of broadcast news, which is sufficiently large to have a non-trivial retrieval task (i.e. for a given query, the relevant documents should represent only a small percentage, less than 2% for TREC queries, of the whole collection). Moreover, in TDT2, both reference transcriptions and ASR transcriptions are available, which allows one to investigate the effect of recognition errors on the retrieval performance. The query set contain 100 elements. These queries were used at the TREC-9 conference with a predefined split into training and test set. We used the same split to compare our results with those obtained over the same data.

The following subsections are organized as follows, section 3.2.1 presents TDT2 and section 3.2.2 outlines the queries used.

3.2.1 TDT2 Database

The TDT2 database [5] is composed of 600 hours of broadcast news in American English. TDT2 has been designed to include six months (from January 4 to June 30, 1998) of material drawn on a daily basis from four sources (two TV channels, CNN and ABC, and two radio stations, PRI and VOA). Each day an audio segment of fixed length has been recorded from each source. The length varies between 30 and 60 minutes depending on the source.

For each audio segment, two different transcriptions are available: the first one has been manually produced (closed-caption) and the other one is obtained with an Automatic Speech Recognition (ASR) system¹. The closed-caption is considered as clean text, even if it is affected by a Word Error Rate (WER) of $\sim 10\%$. The ASR output has a $\sim 30\%$ WER and plays the role of a noisy text.

Moreover, each of the recordings has been manually segmented into *news stories* that are used as documents (i.e segment of speech containing homogeneous content, as defined in section 2.2.2). The manual segmentation allows one to perform the retrieval task without taking into account the automatic segmentation problem.

There are approximately 21,500 documents in the manual segmentation provided with the database. Their length distribution (see figure 3.1) shows the distinction between two classes of documents: the short ones (around 50 words) and the long ones (around 160 words). This is important when considering the retrieval process because most matching measures are influenced by length variability (see section 2.2.5.3).

3.2.2 TREC SDR Queries

In order to evaluate an IR system, it is necessary to have a set of queries with related relevance judgments. During the TREC SDR evaluation, two sets of 50 queries have been collected for TDT2: a training set (also called TREC-8) and a test set (also called TREC-9). The use of such sets allows one to compare the results obtained by other groups following the same protocol.

The distribution of the number of relevant documents per query (see figure 3.2) shows that there are never more than 1.1% of the documents that are relevant to a given query. The task is hence difficult because the probability of retrieving randomly a relevant document is less than 1.1%.

In general, queries are shorter than documents and this applies to TREC queries: the average query-length is 6.3 words while the average document-length is 178.7 words. This is important because matching measures and query expansion techniques consider this characteristic (see sections 2.2.5.3 and 2.2.5.2).

3.3 Experiments and Results

The presence of noise in the data is likely to affect the effectiveness of IR systems. In this work, we compare the performance of a system when dealing with clean and noisy data. The difference of effectiveness is measured through precision, recall and other derived measures. The system we used is based on the Vector Space Model (VSM) and its structure is similar to the one described in section 2.2. Recognition and segmentation modules are simulated by the use of transcriptions and segmentation provided with TDT2 while the other modules (normalization, indexing and retrieval) have been implemented.

The following sections are organized as follows, section 3.3.1 presents the results obtained with clean transcriptions and section 3.3.2 shows the results obtained with the noisy transcriptions and compares them with the preceding ones.

¹A state-of-the-art ASR system of Dragon Systems trained on Hub4 database

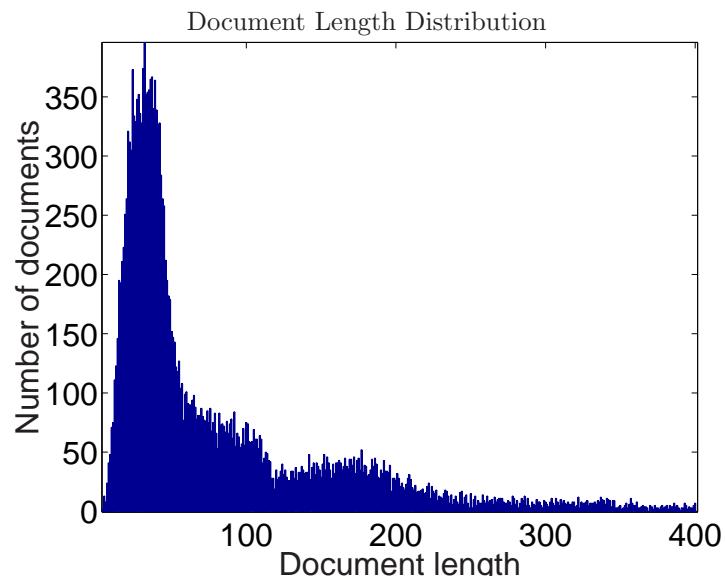


Figure 3.1: Document Length Distribution. There are two classes of documents: the short ones (around 50 words) and the long ones (around 160 words).

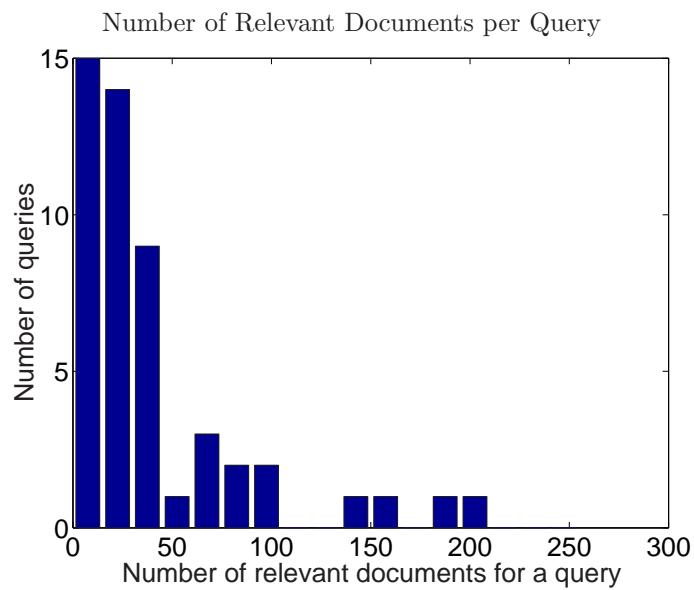


Figure 3.2: Relevant Documents per Query Distribution. There are never more than 1.1% of the documents that are relevant to a given query.

3.3.1 Clean Text

The clean documents used in these experiments are closed-captions segmented with TDT2 manual segmentation (as explained in section 3.2.1). We perform different measurements at different steps (normalization, matching measure and query expansion) of the process. This allows us to have a reference to evaluate the effect of the noise on different modules of the system.

In a system based on the VSM, the documents are represented by vectors. Each component of a vector is a function of the frequency of an index term in the documents (see section 2.2.4). Normalization performs the extraction of the index terms (see section 2.2.3). It is hence important to measure the number of index terms and their frequencies after normalization as they influence all the following retrieval process.

The document/query matching measure corresponds to the RSV, the criterion to rank the documents in order of relevance. The document with the highest (lowest) matching with the query are identified as relevant (non-relevant) (see section 2.2.5.3). Using a matching measure rather than another can affect significantly the system performance. We used the OKAPI formula (equation 2.18), which is widely applied in the literature. OKAPI is an evolution of the $tf \cdot idf$ matching measure and we evaluate the improvement of the performance it is supposed to give.

Query expansion is a step that aims at modifying the query to make it more effective. However, there is not a single technique to perform query expansion and the performances of each technique depends on the task. For this reason, we compared the performance obtained with different techniques.

The following sections are organized as follows, section 3.3.1.1 presents the effect of normalization, section 3.3.1.2 describes the effectiveness of the OKAPI formula compared to the standard $tf \cdot idf$ matching measure and section 3.3.1.3 shows the results obtained with different query expansion techniques.

3.3.1.1 Normalization Effect

As explained in section 2.2.3, normalization removes any variability which is not helping the retrieval process. To perform this task, the stream of words (i.e. the ASR output or the closed caption text) of each document is stopped and stemmed. Stopping is performed using a generic stoplist of 389 words. Once these words have been removed, the remaining words are replaced with their stems using Porter algorithm [24]. The documents are then available in their normalized form, i.e a stream of index terms.

Compared to the document collection before normalization, the total number of words in the database has been reduced by 51% after stopping (see table 3.1), while stemming results in a lexicon with 34% less terms (see table 3.2).

	Before Stopping	After Stopping	Reduction
Number of words	3,862,325 words	1,880,460 words	51%

Table 3.1: Corpus Reduction by Stopping

	Before Stemming	After Stemming	Reduction
Number of terms	57,141 words	37,961 words	34%

Table 3.2: Lexicon Reduction by Stemming

The distribution of document frequencies df (i.e the number of documents in which a term appear) is also measured, as it is used in most matching measures to give more or less weight to a term. In fact, the terms with lower document frequency are given more weight in document representation, rare terms being considered as more discriminant. As shown on figure 3.3, rare terms represent an

important part of the lexicon: for example, 50% of the terms in the lexicon are present in 3 documents or less. However, this distribution should be examined cautiously as it is affected by errors that occur during manual transcription. These typing errors typically result in a term that differ from the exact one by one letter, which leads to many terms that occur once in the database (e.g. in one document *president* has been transcribed into *prdsident*).

3.3.1.2 Matching Measure Effectiveness

The document/query matching measure is used to compute the RSV of a document. The RSV should ideally be higher for relevant documents than for non-relevant ones. Different matching measures try to achieve that goal with different effectiveness. We compared two of them: a simple $tf \cdot idf$ approach (equation 2.15) and the OKAPI formula (equation 2.18).

The OKAPI formula should lead to better results as it is an improvement of the $tf \cdot idf$ formula which takes document length into account and smoothes the tf factor. The results (table 3.3 and figure 3.4) show that this is clearly verified: the system using the OKAPI matching measure performs significantly better than the one using the simple $tf \cdot idf$ approach (Both AvgP and BEP are $\sim 75\%$ higher). The OKAPI matching measure will hence be used for all the following experiments.

	Baseline	OKAPI
AvgP	19.1%	35.6%
BEP	20.6%	35.4%

Table 3.3: AvgP and BEP using baseline and OKAPI matching measure

3.3.1.3 Query Expansion Effectiveness

Query expansion (QE) is an optional step that attempts to make the query more effective. To perform such a task, a set R of documents identified as relevant is first extracted from a preliminary ranking, then this set is used to identify terms that can be added to the original query. As we use blind relevance feedback, R corresponds to the documents at the $|R|$ first positions in the ranking. Three main techniques are available to select the expansion terms and obtain the new query: Rocchio QE, LCA and OW (see section 2.2.5.2). Each of them has been tested.

The results (see table 3.4 and figure 3.5) show that all QE techniques increase the performance significantly compared to the system without QE. However, no technique is significantly better than the others: Rocchio QE, LCA and OW lead to similar performance.

	no QE	Rocchio	LCA	OW
AvgP	35.6%	42.1%	42.6%	41.1%
BEP	35.4%	41.3%	40.5%	39.0%

Table 3.4: AvgP and BEP for different Self QE techniques on clean text

In blind relevance feedback, the size of the set R used to identify expansion terms is typically small because the only documents that can be reliably identified as relevant are those appearing at the very top positions of the ranking. This can be a problem: when R is too small, this can result in the selection of terms that are fitted to the documents present in the set.

Parallel QE attempts to solve this problem. In this case, the preliminary ranking is obtained using another corpus (the *parallel corpus*, which is independent from the *self corpus*, i.e. the corpus on which the system works). If the parallel corpus contains more relevant documents, the system is likely to output a ranking in which the same precision level is achieved at lower positions in the ranking. This allows the extraction of a bigger set R .

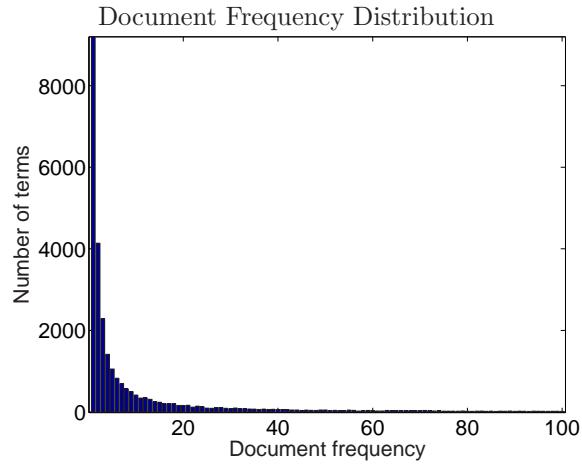


Figure 3.3: Document Frequency Distribution for clean text (Truncated at $df=100$). Rare terms represent an important part of the lexicon: 50% of the terms in the lexicon are present in 3 documents or less.

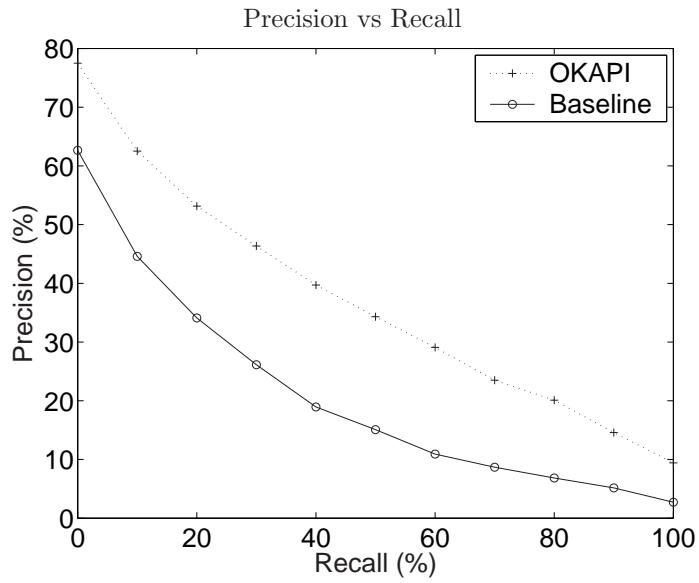


Figure 3.4: Precision vs Recall using baseline and OKAPI matching measure on clean text. The system using the OKAPI matching measure performs significantly better than the one using the simple $tf \cdot idf$ approach.

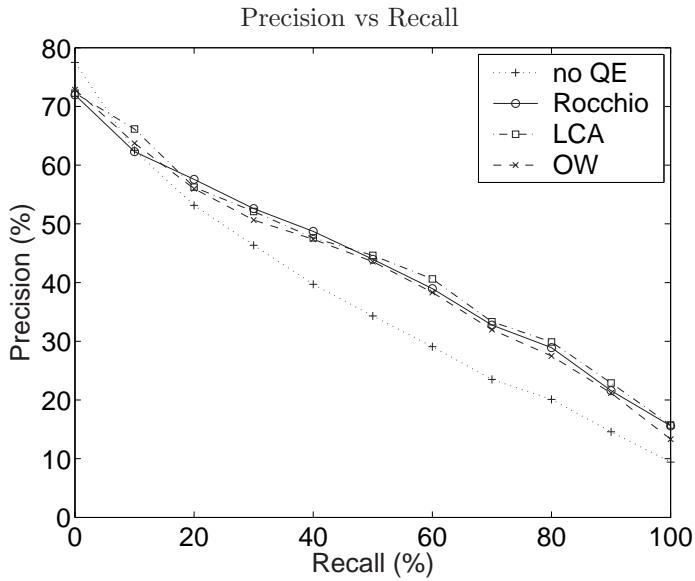


Figure 3.5: Precision vs Recall for different Self QE techniques on clean text. All QE techniques have similar performances and they lead to significantly better results than the system without QE

In our case, we use a parallel corpus of newswire (TDT2 newswire) covering the same period as our spoken database (TDT2). As the same kind of topics are present in the two corpora, we suppose the density of relevant documents to be the same ($\sim 1\%$ depending on the query). As the parallel corpus is bigger than TDT2 (~ 14 million words compared to ~ 4 million words), it should hence contain more relevant content.

Parallel QE (table 3.5 and figure 3.6) has a lower performance than self QE (table 3.4 and figure 3.5). The assumption that TDT2 newswire contains more relevant content might then be wrong. Another possibility can be that the system does not identify relevant documents in the parallel corpus as well as it does in the self corpus. This is certainly the case as the OKAPI formula parameters cannot be tuned for the parallel corpus (no relevant judgment are available for this corpus). However, Parallel QE is still improving the performance compared to a system without QE.

	no QE	Rocchio	LCA	OW
AvgP	35.6%	38.6%	40.1%	41.2%
BEP	35.4%	38.8%	39.7%	40.9%

Table 3.5: AvgP and BEP for different Parallel QE techniques on clean text

This means that the parallel-expanded query (i.e. the query expanded with the parallel corpus) is more effective than the original one. Hence, self QE performance should be improved if parallel QE is performed before, i.e. if the input of self QE is the parallel-expanded query rather than the original query. The results obtained (table 3.6) show that parallel QE followed by self QE is performing better than self QE alone.

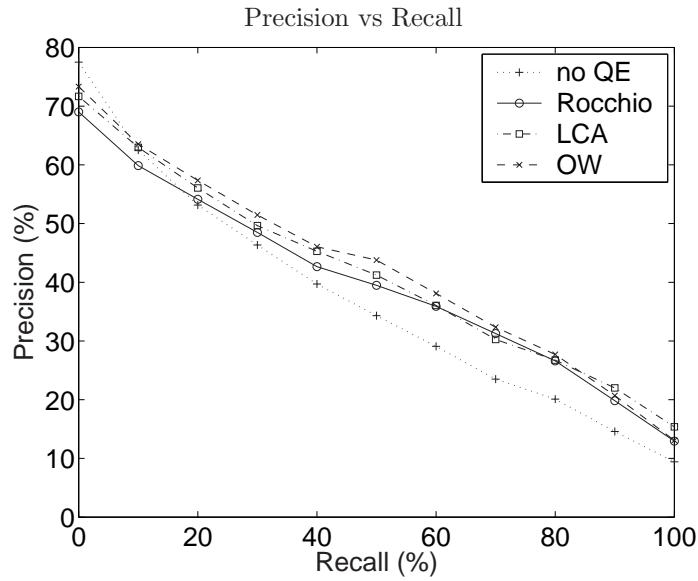


Figure 3.6: Precision vs Recall for different Parallel QE techniques on clean text. Parallel QE improve the performance compared to a system without QE.

	no QE	self QE	parallel + self QE
AvgP	35.6%	42.6%	45.2%
BEP	35.4%	40.5%	42.9%

Table 3.6: AvgP and BEP when using parallel QE before self QE on clean text (LCA is used for both Parallel and Self QE)

3.3.2 Noisy Text

The noisy text corresponds to ASR transcriptions ($\sim 30\%$ WER) as provided with TDT2. They have been segmented into documents using the database manual segmentation (see section 3.2.1). The same experiments have been done using the noisy documents to compare with the results obtained on clean text.

The following sections are organized as follows, section 3.3.2.1 presents the effect of normalization, section 3.3.2.2 describes the effectiveness of the OKAPI formula compared to the standard $tf \cdot idf$ matching measure and section 3.3.2.3 shows the results obtained with different query expansion techniques.

3.3.2.1 Normalization Effect

Normalization is performed the same way as with clean text. Its effect is the same: stopping reduces the total number of words by 50% (table 3.7), while stemming results in a lexicon with 38% less terms (table 3.8). However, the total number of words is not the same due to insertion and substitution errors introduced by the recognizer. The lexicon size is also modified due to the limited vocabulary of the recognizer. The noisy documents can only contain words that are present in the ASR vocabulary ($\sim 38,000$ different words), in consequence, index terms can only be stems of these words.

	Before Stopping	After Stopping	Reduction
Number of words	3,841,053 words	1,859,893 words	50%

Table 3.7: Corpus Reduction by Stopping

	Before Stemming	After Stemming	Reduction
Number of terms	37,696 words	23,099 words	38%

Table 3.8: Lexicon Reduction by Stemming

The document frequency distribution (figure 3.7) obtained with noisy documents is similar to the one obtained with the clean ones except in the case of $df = 1$. The fact that the number of terms occurring in one document is much bigger in the case of clean text is certainly due to errors in the human transcriptions rather than out of vocabulary problem in the ASR system. As mentioned in section 3.3.1.1, the errors present in the closed-caption transcription are typically typing errors which result in words appearing once in the database.

3.3.2.2 Matching Measure Effectiveness

The performances of the retrieval process when using a simple $tf \cdot idf$ matching measure and the OKAPI formula have been compared. OKAPI formula takes the document length into account and smoothes the tf factor. As for clean documents, the length varies across documents (see section 3.2.1) and the tf factor is also overestimated in case of repetitions. OKAPI formula should also improve the system performance compared to the simple $tf \cdot idf$ formula in the case of noisy documents.

Results (table 3.9 and figure 3.8) show this improvement. Moreover, the effect of noise on the retrieval process can be measured: using the OKAPI formula average precision is 12% lower for noisy documents than for clean ones (31.2% vs 35.6%), while BEP is 7% less (33.1% vs 35.4%).

3.3.2.3 Query Expansion Performance

Query expansion has shown to be effective in the case of clean text. For noisy text, the same experiments are presented, i.e. self QE and parallel QE have been tested alone and parallel QE followed by

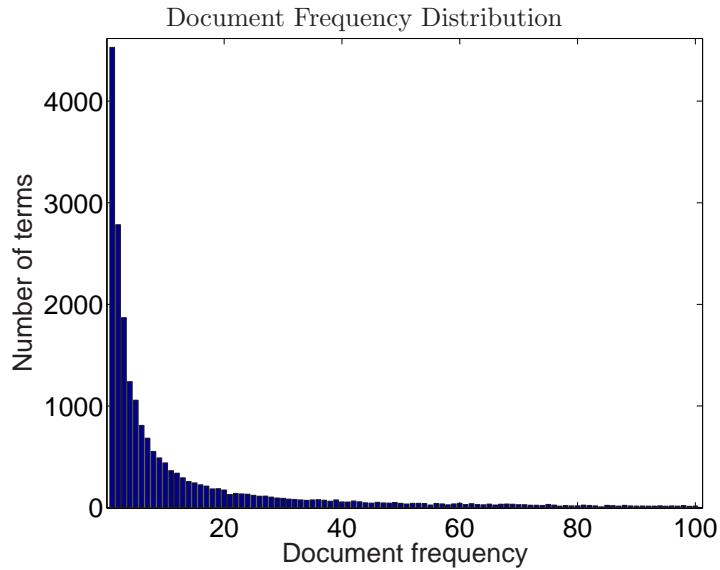


Figure 3.7: Document Frequency Distribution for noisy text (Truncated at $df=100$). Most terms occur only in few documents.

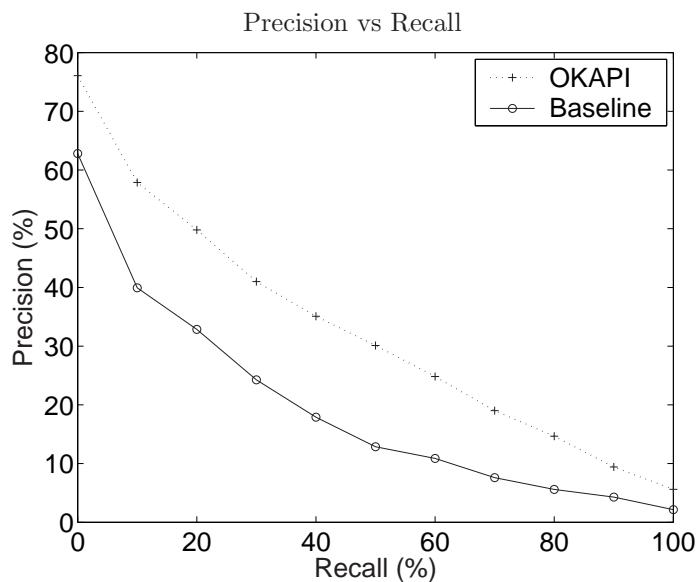


Figure 3.8: Precision vs Recall using baseline and OKAPI matching measure on noisy text. As for clean text, the performance is significantly better when using the OKAPI formula.

	Baseline	OKAPI
AvgP	17.8%	31.2%
BEP	20.4%	33.1%

Table 3.9: AvgP and BEP using baseline and OKAPI matching measure

self QE is also evaluated.

In the case of self QE, the set R of documents identified as relevant is extracted from the spoken database. This means that this set R is also affected by recognition errors. However, the selection of expansion terms from the set should be robust to the noise as the set R contains different documents that should not contain the same errors. The results obtained (table 3.10 and figure 3.9)

	no QE	Rocchio	LCA	OW
AvgP	31.2%	38.5%	40.2%	37.1%
BEP	33.1%	38.6%	39.5%	37.7%

Table 3.10: AvgP and BEP for different Self QE techniques on noisy text

The parallel expanded query is more effective than the self expanded query if a better preliminary ranking is obtained with the parallel corpus. As for clean text, this better ranking is not obtained and parallel QE does not lead to performance as good as self QE (table 3.11 and figure 3.10). However, parallel QE improves the process when compared with the system without QE.

	no QE	Rocchio	LCA	OW
AvgP	31.2%	34.2%	38.1%	36.8%
BEP	33.1%	33.6%	37.6%	37.3%

Table 3.11: AvgP and BEP for different parallel QE techniques on noisy text

As the parallel expanded query performs better than the original one, this query is used to make the preliminary ranking of self QE. The measures show that the improvement obtained with this approach is not significant contrary to the results on clean documents.

	no QE	self QE	parallel + self QE
AvgP	31.2%	40.2%	41.2%
BEP	33.1%	39.5%	40.1%

Table 3.12: AvgP and BEP when using parallel QE before self QE on clean text (LCA is used for both Parallel and Self QE)

As for clean documents, the performance improvement obtained with QE is important (AvgP is 32% higher, 41.2% vs 31.2%, and BEP is 20% higher, 40.1% vs 33.1%, when parallel QE followed by self QE is compared to the results without query expansion).

The effect of noise on the final system, including OKAPI formula, QE expansion on parallel corpus followed by query expansion on the self corpus is still significant (see table 3.13). However, the quality of clean transcription (10% WER) and noisy transcription (30% WER) are very different and even a noisy transcription affected by recognition errors allows one to achieve satisfying results.

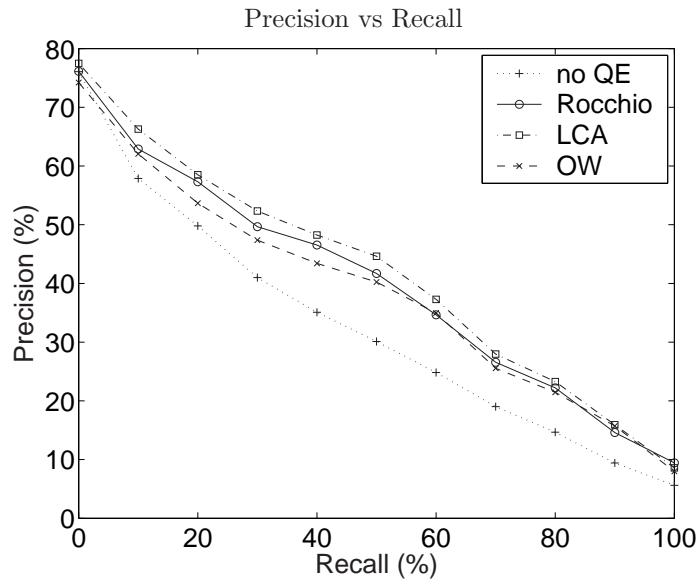


Figure 3.9: Precision vs Recall for different Self QE techniques on noisy text. QE improve significantly the performance. All QE techniques lead to similar results.

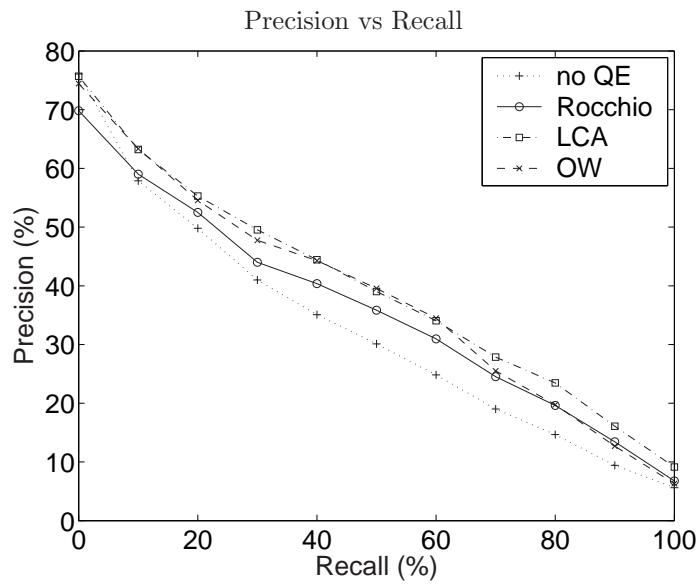


Figure 3.10: Precision vs Recall for different parallel QE techniques on noisy text. The parallel expanded query perform, on average, better than the original one.

	Clean	Noisy	Relative Difference
AvgP	45.2%	41.2%	9%
BEP	42.9%	40.1%	7%

Table 3.13: Comparison of noisy and clean results when using parallel QE and self QE

3.4 Conclusion

The use of an IR system over noisy texts has been experimented in this work. An SDR system based on the VSM has been used to compare the performance obtained over clean and noisy transcriptions of a speech database. The database used is TDT2 (600 hours broadcast news), the clean version of the corpus is composed of manual transcriptions (closed-captions), while the noisy version is the output of an ASR system. The effect of noise has been measured at the main steps of the retrieval process (normalization, matching measure and query expansion).

Normalization has a similar effect on clean and noisy data (The reduction of the total number of words by stopping is $\sim 50\%$ and the reduction of the lexicon size by stemming is $\sim 35\%$). The only observed difference is that the limited vocabulary of the ASR system leads to a smaller lexicon.

At the retrieval step, the performances obtained with the OKAPI matching measure are lower with noisy data (31.2% vs 35.6% in average precision), but the OKAPI formula is leading to better results than $tf \cdot idf$ over both clean and noisy texts ($\sim 75\%$ improvement in average precision in both cases). The different query expansion techniques have led to significant improvement with both clean and noisy data. Parallel QE has been shown less useful with the noisy documents.

The best performance achieved on noisy data is obtained when using OKAPI formula and both self and parallel QE (41.2% average precision). The results obtained in this work are comparable with those published at the TREC-9 conference (where average precision values vary from 43.2% and 46.2% over the same noisy data [13, 16, 25]). The better results obtained by the other groups are probably due to the corpus used for query expansion which is significantly bigger than ours for all of them.

As mentioned in section 3.2.1, 3 words out of 10 are mis-recognized in the noisy corpus (i.e 30% WER) while less than 1 word out of 10 is mis-transcribed in the clean corpus. Compare to this significant difference of quality in the transcription, the difference of performance is quite limited (average precision is 9% lower for noisy data when using OKAPI formula and both self and parallel QE). Some recognition errors might have only a limited impact, while others should be more important. This point should be investigated in the future.

Chapter 4

Conclusions and Future Work

The topic of this thesis is Spoken Document Retrieval (SDR). State-of-the-art SDR systems use ASR to transcribe speech data into digital text and then perform retrieval on it. The ASR process is not perfect and introduces a significant amount of noise (i.e. words that are incorrectly recognized). An SDR system has been implemented to investigate the effect of this noise on the main step of the retrieval process.

It has been shown at normalization step that stopping has the same effect on clean and noisy data (corpus reduction is $\sim 50\%$ in both cases). This means that recognition errors occur as frequently on stop-words as on content words. Also, the effect of stemming is similar (lexicon reduction is $\sim 35\%$ in both cases) which means that the vocabulary of the clean text and the vocabulary of the noisy transcription have a similar distribution of inflected forms per stem. The only significant difference observed is in the dictionary size: the lexicon is smaller in the noisy text due to the limited vocabulary of the ASR system and to the presence of errors in the closed-caption transcription resulting in many spurious words appearing once in the database.

The matching measure we used is the OKAPI formula. It has been shown that with both clean and noisy data the OKAPI formula performs significantly better than the wide-spread $tf \cdot idf$. Compared to $tf \cdot idf$, OKAPI takes into account the document length and reduces the influence of term repetition. This relies on the hypotheses that longer documents are not richer in content and that a repetition is not as important as the first occurrence of a term. These hypotheses are verified in both cases.

The last step of the retrieval process we investigated is Query Expansion (QE). Two kinds of expanded query have been considered: self-expanded and parallel-expanded. Compared to the approach without QE, both techniques lead to a significant improvement over clean and noisy text. The selection of good expansion terms is possible even from noisy documents, as shown in the case of self QE over noisy data. This happens, in our opinion, because the redundancy across the documents used for QE improves the robustness with respect to recognition errors. The parallel-expanded query has been shown less effective for noisy data than for clean one. The parallel QE results are however data-dependent and other results might have been obtained with a different parallel database.

In all the experiments, clean data leads to better results. However, the transcription errors introduced by the ASR system degrade only slightly the retrieval effectiveness (e.g. $\sim 7\%$ degradation for break-even point), even if the clean and noisy corpora are very different (10% vs 30% WER). The noise seems to have a limited impact on the performance. At the error rate of our data, an IR system developed for clean text is effective over noisy data.

Several interesting issues remain open and can be subject of future work. The information contained in speech is not limited to a text transcription. Dialog dynamics, speaker turns, etc are neglected by the approach based on the simple transcription. Introducing such information could help the retrieval process. Furthermore, most research has been done on broadcast news, which is only a specific kind of data. Broadcast news data have good recording conditions, a topic-based structure, read speech without hesitation, emotion, etc. These characteristics help both the recognition and

the retrieval steps. Using other types of data such as academic lectures, phone dialogs or corporate meetings can pose interesting problems.

Bibliography

- [1] Akiko Aizawa. An Information-Theoretic Perspective of Tf-Idf Measures. *Information Processing and Management*, Vol.39, No.1, 45–65, 2003.
- [2] J. Ajmera, I. McCowan, and H. Bourlard. Robust HMM-based Speech/Music Segmentation. *Proceedings of ICASSP*, 2002.
- [3] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. *Modern Information Retrieval*. ACM Press / Addison-Wesley, 1999.
- [4] D. Beeferman, A. Berger, and J. Lafferty. Statistical Models for Text Segmentation. *Machine Learning Journal Special Issue on Natural Language*, 1999.
- [5] C. Cieri, D. Graff, M. Liberman, N. Martey, and S. Strassel. The TDT-2 Text and Speech Corpus. *Proceedings of DARPA Broadcast News Workshop*, 1999.
- [6] F. Crestani, M. Lalmas, C.J. Van Rijsbergen, and Campbell I. Is This Document Relevant?... Probably: A Survey of Probabilistic Models in Information Retrieval. *ACM Computing Surveys*, 30(4), 1998.
- [7] S. Dumais. Enhancing Performance in Latent Semantic Indexing Retrieval. *Behavior Research Methods, Instruments and Computers*, 1991.
- [8] C. Fox. Lexical Analyis and Stoplist. In *Information Retrieval: Data Structures and Algorithms*. Prentice Hall, 1992.
- [9] W.B. Frakes. Stemming Algorithms. In *Information Retrieval: Data Structures and Algorithms*. Prentice Hall, 1992.
- [10] N. Fuhr. Probabilistic Models in Information Retrieval. *The Computer Journal*, 35 (3): 243-255, 1992.
- [11] J. S. Garofolo, C. G. Auzanne, and E. Voorhees. The TREC Spoken Document Retrieval Track: A Success Story. *Proceedings of Content-Based Multimedia Information Access Conference*, 2000.
- [12] J. S. Garofolo, E. M. Voorhees, C. G. Auzanne, and V. M. Stanford. Spoken Document Retrieval: 1998 Evaluation and Investigation of New Metrics. *Proceedings of the ESCA ETRW workshop*, 1998.
- [13] J. L. Gauvain and G. Adda Y. de Kercadio L. Lamel, C. Barras. The LIMSI SDR system for TREC-9. *Proceeding of TREC-9*, 2000.
- [14] D. Hand, H. Mannila, and P. Smyth. *Data Mining*. MIT Press, 2001.
- [15] F. Jelinek. *Statistical Aspects of Speech Recognition*. MIT Press, 1997.
- [16] S.E. Johnson, P. Jourlin, K. Sprck Jones, and P.C. Woodland. Spoken Document Retrieval for TREC-9 at Cambridge University. *Proceeding of TREC-9*, 2000.

- [17] Guillaume Lathoud, Iain A. McCowan, and Darren C. Moore. Segmenting Multiple Concurrent Speakers Using Microphone Arrays. *Proceedings of Eurospeech 2003*, 2003.
- [18] H.P. Luhn. The Automatic Creation of Litterature Abstracts. *IBM Journal of Research and Developpement*, 2(2):159–165.
- [19] H.P. Luhn. The Automatic Derivation of Information Retrieval Encodements from Machine-Readable Texts. *Information Retrieval and Machine Translation*, 3(2):1021–1028, 1961.
- [20] C.D. Manning and H. Schütze. *Foundations of Statistical Natural Language Processing*. MIT Press, 1999.
- [21] I. McCowan, S. Bengio, D. Gatica-Perez, G. Lathoud, F. Monay, D. Moore, P. Wellner, and H. Bourlard. Modeling Human Interaction in Meetings. *Proceedings of International Conference on Acoustics, Speech and Signal Processing*, 2003.
- [22] C. Ng, R. Wilkinson, and J. Zobel. Experiments in Spoken Document Retrieval using Phoneme N-grams. *Speech Communication*, 32:61–77, 2000.
- [23] K. Ng. Towards Robust Methods for Spoken Document Retrieval. *Proceedings of ICSLP 1998*, 1998.
- [24] M. F. Porter. An Algorithm for Suffix Stripping. *Program*, 14(3):130–137, 1980.
- [25] S. Renals and D. Abberley. The THISL SDR system at TREC-9. *Proceedings of TREC-9*, 2001.
- [26] S. Renals, D. Abberley, D. Kirby, and T. Robinson. Indexing and Retrieval of Broadcast News. *Speech Communication*, 32:5–20, 2000.
- [27] C. J. Van Rijsbergen. *Information Retrieval, 2nd edition*. Butterworths, 1979.
- [28] S. Robertson. On Term Selection for Query Expansion. *Journal of Documentation*, 46:359–364, 1990.
- [29] S. Robertson and K. Sparck Jones. Simple Proven Approaches to Text Retrieval. *Tech. Rep. TR356, Cambridge University Computer Laboratory*, 1997.
- [30] S. Robertson, S. Walker, and M. Beaulieu. Experimentation as a way of life: Okapi at TREC. *Information Processing and Management*, 2000.
- [31] S. Robertson, S. Walker, M. Hancock-Beaulieu, A. Gull, and M. Lau. Okapi at TREC 3. *Proceedings of Text REtrieval Conference*, 1992.
- [32] J.J. Rocchio. Relevance Feedback in Information Retrieval. In *The SMART Retrieval System: Experiments in Automatic Document Processing*, pages 313–323. Prentice Hall.
- [33] G. Salton and C. Buckley. Term Weighting Approaches in Automatic Text Retrieval. *Information Processing and Management*, 24(5):513, 1988.
- [34] G. Salton and C. Buckley. Improving Retrieval Performance by Relevance Feedback. *Journal of the American Society of Information Science*, 41:288–297, 1990.
- [35] G. Salton, A. Wong, and C.S. Yang. A Vector Space Model for Automatic Indexing. *Communications of the ACM*, 18, 1975.
- [36] A. Singhal, G. Salton, M. Mitra, and C. Buckley. Document Length Normalization. *Information Processing and Management*, 32(5):619–633, 1996.

- [37] K. Sparck-Jones, S. Walker, and S. Robertson. A Probabilistic Model of Information Retrieval: Development and Status. *Cambridge University Technical Report TR-446*, 1998.
- [38] P. Srinivasan. Thesaurus construction. In *Information Retrieval: Data Structures and Algorithms*. Prentice Hall, 1992.
- [39] S. Wartik. Boolean Operations. In *Information Retrieval: Data Structures and Algorithms*. Prentice Hall, 1992.
- [40] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. *Managing Gigabytes: Compressing and Indexing Documents and Images*. Morgan Kaufmann Publishers, 1999.
- [41] J. Xu and W. B. Croft. Querying expansion using local and global document analysis. *Proceedings of the 19th International Conference on Research and Development in Information Retrieval*, 1996.

Acknowledgments

The authors wish to thank the Swiss National Science Foundation for supporting this work through the National Center of Competence in Research (NCCR) on Interactive Multimodal Information Management (IM2).