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Chapter 1

Introduction

Audio databases are collected in several application domains (broadcast news, video conferences, etc),
and, as their size increases, the problem of their management becomes more and more important [14,
40]. It is not possible to take full advantage from a data collection without effective indexing and
retrieval techniques. Part of the audio databases consists of speech recordings and Spoken Document
Retrieval (SDR) aims at accessing the information these recordings contain. An SDR system finds
segments of the speech recordings that are relevant to an information need expressed through a query.

SDR is a recent research area relying on two well established domains: Automatic Speech Recog-
nition (ASR) [15] and Information Retrieval (IR) [3]. ASR systems transcribe speech into digital
texts, while IR systems retrieve documents relevant to a query from a text collection. The main
development in SDR took place in the last decade. Major contributions were given in the framework
of the SDR track at the TREC conferences between 1997 and 2000 [11]. In this framework, the ASR
and IR communities were brought together, allowing them to share their systems and expertise. The
resulting SDR systems have been compared using the same data and experimental setup.

Some fundamental questions have found an answer during TREC evaluations: the use of tran-
scriptions of speech at word rather than at phoneme level has been shown more effective [22, 23].
It has also been established that the presence of a significant word error rate (typically, more than
25% of the words are not correctly transcribed) still allows satisfying performance with an IR system
[13, 16, 25]. These results have defined the state-of-the-art approach to the SDR problem, which will
be used in this work.

The aim of this thesis is to measure the effect of the noise (i.e. the recognition errors) on the
retrieval performance. To perform such a task, a state-of-the-art SDR system has been implemented.
At each step of the retrieval process, the performances obtained over both noisy and clean data are
compared using some standard IR measures (precision, recall, etc).

The rest of this thesis is organized as follows, chapter 2 presents the state-of-the-art in SDR, chapter
3 shows experiments and results and chapter 4 draws some conclusions and delineates possible future
works.

3
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Chapter 2

State of the Art

2.1 Introduction

This chapter presents the state-of-the-art in SDR. The aim of SDR is to find automatically segments
of a speech database that are relevant to an information need expressed through a query. The evident
advantage of automatic processing is the possibility of dealing with huge audio databases, whose
complete manual examination is unfeasable in a reasonable amount of time.

The main development in SDR took place in the last decade [11] and some systems are yet running
in real world applications [26]. The process of most state-of-the-art SDR systems can be split into
three main steps: transcription, segmentation and retrieval. At transcription step, the speech data is
transcribed into digital text. At segmentation step, the ASR transcriptions are split into documents,
which are the basic information units of retrieval. At retrieval step, the set of documents and the
query are taken as input and a ranking is given as output [3]. In this ranking, the documents that are
relevant to the query should appear before non-relevant ones.

The evaluation of an SDR system, as any other IR system, is done by measuring how close the
ranking is to the ideal answer (all relevant documents appear before non-relevant ones). To perform
such a task, there are different measures (precision, recall, break-even point, etc). Depending on the
task, some of them can be more appropriate than others [27].

The rest of this chapter is organized as follows, section 2.2 presents the structure of an SDR system,
section 2.3 outlines the evaluation of such a system and section 2.4 draws some conclusions.

2.2 Structure of an SDR System

The structure of an SDR system is composed of five modules (see figure 2.1): recognition, segmenta-
tion, normalization, indexing and retrieval. Recognition transcribes the speech signal into a stream
of phonemes or a stream of words. Segmentation splits the stream into segments, called documents.
Ideally, each document should be homogeneous in content, i.e. according to any query, the content of
a document should either be completely relevant or completely non-relevant. In other words, any frag-
ment of a document should have the same relevant judgment as the whole document. Normalization
removes any variability that is not helpful for retrieval. Indexing gives each document a representation
suitable for the retrieval process. Retrieval takes as input the query and the documents and ranks the
documents according to their Retrieval Status Value (RSV). The RSV is a measure of relevance such
that relevant documents should precede non-relevant ones in the ranking.

The modules before the retrieval compose the so-called offline part of the system. The reason is
that they are performed only once for a given database. The retrieval module is often referred to as
the on-line part of the system because it is performed each time a query is submitted.

Transcribing the speech data into a stream of phonemes rather than into a stream of words at the

5
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Figure 2.1: Structure of an SDR system

recognition step changes significantly the retrieval process. The use of a phoneme transcription has
been shown less effective [11, 22], this paper will hence focus on the word-based approach.

2.2.1 Speech Recognition

Automatic Speech Recognition is the problem of transcribing a speech signal into a digital text.
The signal is converted into a sequence O = (o1, o2, . . . , om) of observation vectors (see [15] for the
commomnly applied techniques) and the recognition task can be thought of as finding a word sequence
Ŵ maximizing the a-posteriori probability:

Ŵ = arg max
W

p(W |O) (2.1)

where W = (w, w, . . . , wn) is a sequence of words belonging to a fixed vocabulary V . By applying
Bayes theorem, Equation (2.1) can be rewritten as follows:

Ŵ = arg max
W

p(O|W )p(W )
p(O)

(2.2)

and since O is constant during recognition:

Ŵ = arg max
W

p(O|W )p(W ). (2.3)
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The right side of Equation (2.3) shows the role of the different sources of information in the recognition
problem. The term p(O|W ) is the probability of the observation sequence O being generated by a
model of sentence W . This probability is estimated with HMMs.
If W is composed of n words and the size of the dictionary is |V |, then the number of possible word
sequences is |V |n. Even for small values of |V | and n, this amounts to a huge number, making the
task of the recognizer difficult. Moreover, n is not known in advance and such amount must be thus
summed over all possible values. The term p(W ) provides an a-priori probability of the word sequence
W being written and it is often estimated using a Statistical Language Model [20]. A good SLM can
significantly constrain the search space so that all the sentences that are unlikely to be written (from
a linguistic point of view) have a low probability.

The performance of a recognizer depends on the data. Systems transcribing single speaker ut-
terances recorded without noise can achieve recognition rates close to 100%. In more realistic cases
(multiple speakers, background noise, etc.), the performance is severely degraded. In this work, we
use broadcast news where there are several speakers recorded in a clean environment and reading
rather than speaking spontaneously. The recognition rate of our transcriptions is ∼70% [5].

2.2.2 Segmentation

After the recognition, the database is available as a continuous stream of words. Retrieval systems
are useful when they allow the access to specific parts of the data that are not easy to find by manual
inspection. For this reason, it is necessary to segment the stream into smaller units, called documents.

The document is the basic unit of the retrieval process, i.e. the system does not consider fragments
of the database smaller than a document. The first boundaries available to perform segmentation are
those provided by the recording sessions. They are sufficient in some applications (e.g. an answering
machine messages retrieval) but, in other cases, further segmentation is needed (e.g. broadcast news
retrieval, as a one-hour program contains a large variety of different stories).

In this case, there are three possibilities: the segmentation can be performed using only the speech
signal, only the transcription or both. Segmentation based on the speech signal allows to find bound-
aries such as speaker turns [17], speech/non-speech changes [2], or dialog annotation based boundaries
(monologue/dialog segmentation, consensus/disagreement detection, etc) [21]. These features can pro-
vide information about changes in content along the stream: a segment between two speaker changes
is more likely to be homogeneous in content than a succession of several speaker interventions, a non
speech period is likely to precede a new topic, etc.. Segmentation based on the transcription gives the
possibility to use techniques such as topic detection, which detects topic transitions through changes
in the words used [4]. However, segmentation is generally performed with a temporal sliding window
[16, 26]. This technique is simple but leads to good results. In this case, the documents are segments
of a fixed duration, extracted periodically from the speech signal.

Once the segmentation step is completed, the original stream of words is converted into a set of doc-
uments. The system cannot retrieve units smaller than the documents. In other words, segmentation
defines the level of granularity of the retrieval system.

2.2.3 Preprocessing and Normalization

The data variability, which is not useful to model the document content is removed through prepro-
cessing and normalization. Preprocessing removes punctuation and other non alphabetical characters
(e.g. digits, the ‘@’ character), transforming each document into a stream of words [8]. Normalization
removes any variability in the stream of words which is not helping the retrieval process. In the case
of Spoken Document Retrieval, the text is the output of a recognizer and contains no punctuation,
therefore, the preprocessing step is not required.

Normalization is composed of stopping [8] and stemming [9]. Stopping is the elimination of words
supposed to be useless to represent document content. There are usually functional words (e.g.
articles, conjunctions, pronouns) and other words of common use (e.g. to say, to be, good). The list of
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words to be removed is called stoplist and its elements stopwords. A stoplist can be generic or domain
specific. In the last case, stopwords are words widely used in a specific context (e.g. music in the case
of a musician biographies database). The effect of stopping (see figure 2.2) is a significant reduction
of the total number of words in the database (usually by 30-50%).

Stemming is the substitution of each inflected form of a word with a common representation: the
stem. The stem is the part of the word that remains unchanged after removing affixes and suffixes.
For example, connected, connection and connects will be replaced by connect. Stemming supposes
that the use of an inflected form depends on the sentence construction and that only the stem is
meaningful for representing the document content. The most applied stemming algorithm has been
developed by Porter [24]. It is a good trade-off between simplicity and effectiveness [9]. The effect of
stemming is a reduction of the lexicon1 size (generally by more than 30%).

the economical problem introduced by the new administrators

economical problem introduced new administrators

economi problem introduc new administr

Stopping

Stemming

Figure 2.2: An example of normalization

After stopping and stemming, the documents are streams of terms. There is a fundamental differ-
ence between terms and words. Terms are used to index the documents and they correspond to the
initial words only when stopping and stemming are not applied. However, this happens very rarely
as stopping and stemming have been shown to improve the retrieval performance [40].

2.2.4 Indexing

At the indexing step, the documents are available as streams of terms. Such a representation is not
suitable for the retrieval process and must be changed. This task is performed during the indexing.
Since the early times of IR development, the indexing approaches based on the physical properties of
the documents have been shown to be the most effective [18, 19]. By physical property, it is meant any
property that can be measured (e.g. frequency of term in the documents, number of words between
two terms in the text, etc). Approaches trying to extract semantic information in the same way a
human can do were not able to achieve satisfying results [3].

Indexing uses a finite set of terms, the dictionary. The dictionary is usually the list of all different
terms contained in the database, but it can also be predefined. The dictionary can include compound
words, such as Los Angeles, Computer Science or rule-of-thumb, if they are bringing more information
than their individual parts [38]. On the other hand, their collection requires a heavy manual effort (a
reliable automatic approach to extract compound words is not available). Moreover, the compound
words are often database dependent, so that their extraction must be repeated for each database.
Compound words are not often included in the dictionary because the improvement they introduce is
not always worth the effort they require [3]. Usually, indexing does not take into account the order of
the terms in the document. This is called bag of terms approximation.

There are essentially three indexing approaches, corresponding to three models: the binary model [39],
the vector space model (VSM) [35] and the probabilistic model [6]. The binary model is based on

1The lexicon is the set of all unique terms in the database
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boolean algebra and has been the first retrieval model proposed. The other models are more recent
and lead to better performance. State-of-the-art systems are mostly based on the VSM, which offers
several advantages with respect to the probabilistic model. The retrieval section (2.2.5) hence focus
on the VSM. The three models with their advantages and disadvantages are described in the following
subsections.

2.2.4.1 The Binary Model

The binary model is based on set theory and Boolean algebra. It considers only presence or absence
of terms in the document. A document is represented with a list of binary variables corresponding to
each dictionary term. Each variable is set to 1 if the associated term is present in the document and
to 0 otherwise:

di = (b1,i, . . . , bT,i) (2.4)

where T is the dictionary size and bk,i is the binary weight of term k in document i:

bk,i =
{

0 if term k is present in document i
1 if term k is not present in document i

(2.5)

In this model, a query is a boolean function (e.g. (termi and not(termj)) or termk) and the system
retrieves all documents satisfying the condition expressed by the function. The main advantage is that
this model is easy to understand. On the other hand, the user is expected to know boolean algebra
and it can be difficult to express complex information needs trough logic functions.

2.2.4.2 The Vector Space Model

In the VSM, each document is represented by a vector, each component being associated with a term.
The component is typically a function of the frequency of the term in the documents. This leads to
the following representation, for a given document i:

di = (w1,i, . . . , wT,i) (2.6)

in which, ∀k, wk,i = f(τk, i) where τk is the vector (tfk,1, . . . , tfk,N ), tfk,i is the number of occurrences
of term k in document i and N is the number of documents in the database. The most common
weighting function f is called tf · idf [1, 33] and is defined as follows:

wk,i = tfk,i.idfk (2.7)

in which,

idfk = log

(
N

Nk

)
(2.8)

where Nk is the number of documents in the database containing term k.
The term frequency gives more weight to terms occurring more frequently in the document, based

on the hypothesis that a term occurring several times is more representative of the document content.
However, the tf factor alone is not sufficient. For example, a high frequency term occurring in most
documents of the collection is not helpful to distinguish relevant documents from others. The inverse
document frequency idf gives more weight to terms occurring in few documents, rare words being
considered more discriminant [7]. The tf · idf weighting can be used for both queries and vectors.

In the VSM, the queries can be expressed in natural-language. The retrieval is performed by
measuring the matching between the vector representing the query and the vectors representing the
documents. The matching measure can generally be interpreted as a scalar product:

RSV (q,di) =
T∑

k=1

qk.wk,i (2.9)
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where q = (q1, . . . , qT ) is the query vector.
Contrary to the binary model, the RSV is not binary: the matching measure is continuous, giving

better values to documents better matching the query. Using a continuous RSV allows the user
to be aware of two aspects of the output: how reliable the system judgment is and how well the
considered document is answering the information need. Moreover, the query can be expressed in
natural-language, which makes the query formulation task more intuitive. However, the vector space
model does not allow to exclude a word or to require a word to be present in the retrieved documents,
whereas it is possible within the binary model.

2.2.4.3 The Probabilistic Model

Probabilistic IR models use the probability p(R|qkdj) of a document dj being relevant to a query qk

as a score to rank the documents [6, 10, 37]. The probability is hard to estimate and the problem can
be tackled only by means of simplifying assumptions. The basic hypothesis, underlying most of the
probabilistic models, is that the term distribution in relevant documents is different from the term
distribution in non-relevant ones. This is known as cluster hypothesis [27] and, when it holds, provides
a criterion to discriminate between relevant and non-relevant documents.
Documents and queries are typically represented as sets of binary indexes. The probability p(R|qkdj)
is not estimated directly, but through the Bayes Theorem:

p(R|qkdj) =
p(R|qk)p(d|Rqk)

p(dj |qk)
. (2.10)

This formula provides an estimation of the a posteriori probability of relevance given the information
contained in document description dj .

The term p(dj |qk) is typically determined as the joint probability distribution of the n terms within
the collection. The other terms are obtained through counts performed over a set of training queries:
the distribution of the number of relevant documents per query is used to estimate p(R|qk), while the
term distribution in documents relevant to the training queries is used to estimate p(d|Rqk). This is
the fundamental limit of the model since it is very difficult to build a set of training queries actually
representative of all possible queries. The obtained estimations are easily fitted to the training set
and the model has poor performance over queries non represented in the training set. For this reason,
the vector model is, at the present time, more successfully applied.

2.2.5 Retrieval

The retrieval step is the last module in the system. It takes as input the indexed documents, resulting
from all previous steps, and the query. It gives as output a ranking, in which the documents should
be ordered according to their relevance to the query. The retrieval step is referred to as the online
part of the system as it is performed for each submitted query. All preceding operations compose the
offline part of the system: they are performed once, as far as the database does not change.

Retrieval consists of several steps (see figure 2.3). The query is first represented in the same way
as the documents through preprocessing, normalization and indexing. The query can then be mod-
ified, through query expansion, to make the retrieval process more effective [34]. A document/query
matching measure is then used to rank the documents [30, 31]. The ranking of the documents can
then be processed to merge contiguous segments which have similar ranking. This last operation,
called recombination, is performed only when the database has been segmented automatically.

The following subsections show in more detail the above steps. Query representation is shown in
section 2.2.5.1, query expansion is described in section 2.2.5.2, matching measures are introduced in
section 2.2.5.3 and recombination is presented in section 2.2.5.4.
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Query Vector
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Figure 2.3: Structure of the Retrieval Process

2.2.5.1 Preprocessing, Normalization and Indexing

Preprocessing, normalization and indexing are performed as shown in section 2.2.3. The query text
is processed as a document text. The same dictionary must be used to index both documents and
queries, so that the document and query vectors belong to the same space.

2.2.5.2 Query Expansion

The queries formulated by the users are, on average, shorter than documents. This leads to more noisy
term distribution. The presence (absence) of a term does not necessarily mean that it is more (less)
representative of the information need than others and this can result in significant over-estimation
(under-estimation) of its weight in the query representation. This might cause a mismatch between
the term distribution in the relevant documents and in the query. Query expansion attempts to solve
this problem. It considers the query provided by the user as a tentative and changes it to make the
retrieval operation more effective.

Statistics about terms occurring in relevant documents are required to expand the query. To
estimate such statistics, a set of relevant document is extracted with a preliminary retrieval process
using the initial query (as shown on figure 2.4). There are two ways to identify relevant documents
from the resulting ranking: either the user manually inspects the top-scoring documents and indentify
some of them as relevant (relevance feedback) [34], or the system automatically assumes that the
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n top-scoring documents are relevant (blind relevance feedback) [13, 16, 25]. The set of documents
identified as relevant is typically incomplete and can even contain non-relevant documents in the case
of blind relevance feedback.

The set R of documents retained as relevant allows to identify terms that are likely to help the
retrieval process if included in the query (term selection). After they have been added to the query,
such terms, as well as the original query terms, are assigned new weights (term re-weighting). This
leads to the expanded query. Most re-weighting strategies favor the original query terms, as R suffers
from the weaknesses mentioned above. The most common techniques to select and re-weight terms
are Rocchio Query Expansion [32], Offer Weight (OW) [28] and Local Context Analysis (LCA) [41].

Documents Vectors

or
Relevance feedback

Blind Relevance Feedback

Term Selection

Term Re−weighting

Query Vector

Expanded Query Vector

Matching Measure

Document Ranking

Set of Relevant Documents

Figure 2.4: Structure of the Query Expansion Process

Rocchio Query Expansion This technique performs term selection and re-weighting in a single
step: the expanded query vector is defined as the weighted sum of the initial query vector and
the average of the document vectors belonging to R [32].

q′ = α · q +
1
R

∑

d∈R

d (2.11)

where α is the weight of the original query in the sum. It must be set manually: when R is not
reliable, α must be high and vice versa. This formula makes the query closer to the region of the
space where relevant documents are. Although simple, this technique can improve significantly
the retrieval performance.

Offer Weight Offer Weight is based on the Binary Independence Retrieval (BIR) model [37]. In this
model, the RSV, for a given document i, is:

RSVi =
T∑

k=1

bi,k.OWk (2.12)
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where, bi,k is 1 if term k is in document i and 0 otherwise and OWk is the Offer Weight of
term k:

OWk = log

(
P (k ∈ d|d ∈ R)
P (k ∈ d|d ∈ R)

P (k /∈ d|d ∈ R)
P (k /∈ d|d ∈ R)

)

where, P (k ∈ d|d ∈ R) (respectively P (k /∈ d|d ∈ R)) is the probability that term k is present
(respectively not present) in a document, given that this document is relevant and P (k ∈ d|d ∈
R) (respectively P (k /∈ d|d ∈ R)) is the probability that term k is present (respectively not
present) in a document, given that this document is not relevant.
The offer weight of a term k measures how helpful the presence of term k is to discriminate
relevant from non-relevant documents. The parameters of the OW are estimated as follows:

P (k ∈ d|d ∈ R) =
rk

r
and P (k ∈ d|d ∈ R) =

nk

n

where,
r is the number of relevant documents
rk “ relevant documents containing term k
n “ documents in the whole database
nk “ documents containing term k in the whole database

This leads to the following complementaries:

P (k /∈ d|d ∈ R) = 1− rk

r
and P (k /∈ d|d ∈ R) = 1− nk

n

The OW hence corresponds to the following expression:

OWk = log
rk(n− nk − r + rk)

(r − rk)(n− nk)

The offer weight is the criterion for term selection. Terms with higher OW are more likely to
be present in relevant documents than in non-relevant ones, they are hence added to the query.
Re-weighting is also based on OW : the term-weights are multiplied by an increasing function
of their OW [28].

Local Context Analysis LCA has been introduced by Xu and Croft [41]. This technique selects
and re-weights terms based on their co-occurrences with the initial query terms. Renals et al.
[26] proposed LCA in the following form:

LCA(e) = idfe

∑

t∈Q

idft

∑

i∈R

tft,i.tfe,i

where e is a potential expansion term, Q is the set of initial query terms and R is the set of
documents identified as relevant.
Terms co-occuring with more query terms than others have an higher LCA value. Hence, co-
occurence with all query terms is taken into account, which is more effective than considering
term-by-term co-occurrence with single query terms separately. Term selection and term re-
weighting then favor terms with higher LCA.

Rocchio Query Expansion was the first technique presented in the literature, followed by OW and
LCA. These two are more flexible, as different strategies can be adopted to select and re-weight terms.
Based on its probabilistic framework and its performance, OW is generally preferred.
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2.2.5.3 Matching Measures and Ranking

In the Vector Space Model, the documents are ranked according to a matching measure. A matching
measure is a function that should associate good scores to couples of vectors representing documents
with similar content. As mentioned above, the only information extracted from documents is based
on their physical properties (e.g. term distribution) [18]. For this reason, all matching measures
presented in the literature take into account only the similarity of such properties. This is reasonable
as two documents about the same topic are likely to use the same terms. However, it is also an
important limit because the same topic can be expressed with different terms.

In the ranking process, the matching measure between each document vector and the query is
first computed. The documents are then ranked according to their matching with the query. Hence,
documents better matching the query are considered more relevant.

Many matching measures can be interpreted as a scalar product:

RSVd =
T∑

k=1

qk · dk (2.13)

where q = (q1, . . . , qT ) and d = (d1, . . . , dT ) are the query and document vector respectively.
As mentioned in section 2.2.4, terms which best describe the document (or query) content should be
assigned higher weights. Such terms would thus have an high influence on the scalar product. This
allows the matching measure to be linked to content similarity. The most common weighting strategy
is tf · idf (see equation 2.7).

Since queries are typically short, they lead to noisy tf estimates. To remove part of such noise,
the queries can be binarized, i.e. only term presence or absence is taken into account. This often lead
to better results [33]. The RSV formula is then:

RSVd =
T∑

k=1

bq,k · tfd,k · idfk (2.14)

where tfd,k is the term frequency of term k in document d, idfk is the inverse document frequency of
term k and bq,k is the binary weight of term k in the query.
Since bq,k is 1 if term k is present in query and 0 otherwise, this formula can be rewritten:

RSVd =
∑

k∈Q

tfd,k · idfk (2.15)

where Q is the set of query terms.
In [29], two weaknesses of this formula are highlighted: first, the document length is not taken into
account and long documents are favored [36]. This is correct only if the longer a document is, more
it is relevant. But a document can also be long simply due to repetition. To deal with this problem,
the formula can be modified as follows:

RSVd =
∑

k∈Q

tfd,k · idfk

(1− b) + b ·NDL(d)
(2.16)

where NDL(d) is the normalized document length of document d (length of document d divided
by the average length of a document) and b is an hyper-parameter (b ∈ [0, 1]). When b = 0, the
document length is not considered. On the contrary, using b = 1 is equivalent to replacing the number
of occurrences of a term (tf) with the fraction of the length that the term represents in the document
( tf

DL ).
The second problem is that tf · idf weighting has a linear dependency on term frequency tf . A

term occurring twice in the document is not necessarily twice as much important as a term occuring
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once. Better results can be obtained by smoothing the tf factor in case of multiple occurrences:

RSVd =
∑

k∈Q

(K + 1).tfd,k.idfk

K + tfd,k
(2.17)

where K is a hyper-parameter (K ∈ [0, +∞]).
The combination of those two modifications leads to the so-called OKAPI formula [31]:

RSVd =
∑

k∈Q

(K + 1) · tfd,k · idfk

K · ((1− b) + b ·NDL(d)) + tfd,k
(2.18)

This formula is widely applied in state-of-the-art systems.

2.2.5.4 Recombination

Automatic segmentation of the database (see section 2.2.2) can lead to many short documents, whose
boundaries are not necessarily consistent with their content. For this reason, a relevant fraction of
the text can be split across several documents. Such a fragmented part would be more valuable to
the user if presented as a single unit.

Recombination deals with such a problem: it takes as input the ranking of the documents, as
segmented by the segmentation module, and gives as output a ranking of merged documents. The
process is performed in two steps. First, it should be decided which documents to merge. This decision
is based on the proximity in time and in the ranking. Inter-document similarity and difference between
RSV can also be used. Second, the new documents resulting from merging should be assigned a RSV
and ranked. The RSV can either be a function of the RSV of the original segments [16, 26] or can be
computed as the matching between the new document and the query. As well as providing a better
segmentation to the user, recombination can also improve the retrieval process (e.g. a small segment
appearing near many relevant segments is likely to be relevant, even if its matching with the query is
low).

2.3 Evaluation

Given a query, an IR system should ideally output a ranking in which all relevant documents appear
before non-relevant ones. The performance of a system is measured by evaluating how close it is to this
ideal condition. To perform such a task, there are different measures: each of them evaluates different
aspects of the system. Depending on the task the system is supposed to perform, some measures can
be more appropriate than others [3, chap. 3][27, chap.7]. However, the choice of a measure rather
than another can be argued and performance evaluation is still an open problem [12].

The following subsections are organized as follows. Section 2.3.1 introduces Precision and Recall,
the two fundamental measures in IR, Section 2.3.2 defines the Precision versus Recall curve and
presents different measures that can be extracted from it, Section 2.3.3 shows how measures defined
for a single query can be averaged to evaluate the system performance over a set of queries.

2.3.1 Precision and Recall

Precision P and Recall R are the two fundamental measures when dealing with the evaluation of an
IR system, many other measures can be derived from them [3]. P and R are defined as follows:

P =
|Hq ∩ Sq|
|Sq| (2.19)

R =
|Hq ∩ Sq|
|Hq| (2.20)
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where q is a given query, Sq is the set of documents identified as relevant by the system and Hq is the
set of actually relevant documents (i.e documents judged as relevant by human assessors). P is the
fraction of retrieved documents that are actually relevant and can be interpreted as the probability
that a retrieved document is actually relevant. R is the fraction of actually relevant documents that
have been identified as such by the system and can be interpreted as the probability of retrieving a
relevant document.

Precision and Recall measure different aspects of the system, none of them gives an exhaustive
description of the performance. To know recall (precision) does not give any information about preci-
sion (recall). Different systems can have very different P (respectively R) at the same R (respectively
P ) level. Both measures are hence necessary to evaluate a system, as a good system should achieve
both high precision and high recall.

In the context of a system relying on the vector space model, the output is not a set Sq of
documents identified as relevant by the system but a ranking. In this case, P and R are computed at
each position n in the ranking, considering that the n best ranked documents form the set Sq(n) of
retrieved documents:

P (n) =
|Hq ∩ Sq(n)|
|Sq(n)| (2.21)

R(n) =
|Hq ∩ Sq(n)|

|Hq| (2.22)

Along the ranking, the variations of P (n) and R(n) are not independent. When n increases, more
relevant documents are selected and R(n) increases. On the other hand, when n is higher, the
probability of including non-relevant documents in Sq(n) tends to be higher also, leading to a lower
value of P (n).

2.3.2 Precision versus Recall Curve

As mentioned above, R(n) and P (n) are roughly inversely proportional. A good system should be
able to achieve good precision levels, even at high recall levels. To evaluate this, the precision versus
recall curve is plotted.

Instead of plotting directly the P (n), R(n) couples for all n values, P is often first interpolated as
a function of R.

P (r) = max
n:R(n)≥r

(P (n)) (2.23)

where r is an arbitrary recall level and P(r) is the interpolated precision value at such recall level. The
interpolation allows to obtain P at any R level. Typically, precision is interpolated at 11 standard
recall values (r = 0, 10, 20, . . . , 100%).

Comparing plots is not as convenient as to compare single values. Different single value summaries
are hence defined. Each of them gives a partial but meaningful information about the curve. The
most common measure is called average precision and is defined as follows:

avgP =
1
|Hq|

∑

n∈rel

P (n) (2.24)

where rel is the set of positions in the ranking corresponding to relevant documents.
Another measure is the break-even point (BEP). Recall and precision are computed at position

|Hq| in the ranking, where |Hq| is the number of documents in the set Hq. At this position, P (n) and
R(n) are equal and their value is called BEP. BEP can be seen as the intersection of the precision
versus recall curve and the axis bisector (R = P ).

A last measure is precision at position n, this measure is simply P (n) at a fixed n. This corresponds
to the precision when the set Sq of selected documents is composed of the n top-ranked documents.
This measure is important if, for example, the system displays to the user only the first n documents
of the ranking.
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These three measures are not the only ones and many others can be defined [3, 27]. Each measure
focuses on different aspects of the performance. Some aspects can be more important than others,
depending on the task the system is supposed to perform.

2.3.3 Averaging over Queries

All above presented measures have been defined to evaluate the system performance for a single query.
But system evaluation involves a query set Q, which should be representative of all the queries that
can be submitted to the system. The results obtained for each query must thus be averaged to evaluate
the system performance. There are two main techniques to perform such a task: micro-averaging and
macro-averaging.

In micro-evaluation, every individual document has the same influence on the measures obtained.
Precision and recall are expressed as follows:

Pmicro =

∑
q∈Q |Hq ∩ Sq|∑

q∈Q |Sq| (2.25)

Rmicro =

∑
q∈Q |Hq ∩ Sq|∑

q∈Q |Hq| (2.26)

Then, Pmicro and Rmicro can be used to obtain precision versus recall curve as well as the single value
measures described before (section 2.3.2).

In macro-evaluation, every individual query has the same influence on the measures obtained. This
is achieved by averaging over queries. Interpolated precision at a given recall level, average precision
and BEP are expressed as follows:

P (r) =
1
|Q|

∑

q∈Q

Pq(r) (2.27)

AvgPmacro =
1
|Q|

∑

q∈Q

AvgPq (2.28)

BEPmacro =
1
|Q|

∑

q∈Q

BEPq (2.29)

where Pq(r), AvgPq and BEPq are respectively interpolated precision at recall r, average precision
and break-even point computed for the individual query q.

Macro-evaluation is generally preferred in IR literature, whereas micro-evaluation is used in doc-
ument categorization. In SDR, the macro-averages of BEP and AvgP are used in most works.
However, these measures have been introduced in the context of text retrieval where the number of
documents in the database is constant. On the contrary in SDR, the number of documents varies
due to segmentation and recombination, this can influence the measure and this aspect has not been
extensively studied yet. Evaluation in IR, and even more in SDR, is not as well defined as in other
domains and it remains an open problem.

2.4 Conclusion

In this chapter, the state-of-the-art in SDR has been presented. The structure of an SDR system has
been shown and the measures used for performance evaluation have been introduced.

The state-of-the-art approach to the SDR problem involves three main steps: recognition, segmen-
tation and retrieval. At recognition step, a large vocabulary ASR system transcribes the speech data
into digital text. Transcribing into a stream of words rather than a stream of phonemes has been
shown more effective for the retrieval task. At segmentation step, the transcriptions are split into
documents, which are the basic information units of retrieval. Segmentation typically uses a sliding
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window to perform this task. At retrieval step, the documents that are relevant to a given query are
retrieved. Retrieval is done using an IR system based on the VSM.

This approach to the SDR problem has shown to lead to good results with broadcast news data.
However, the use of other kinds of data, such as corporate meetings, phone dialogs or academic
lectures, might pose new problems: e.g. the recording conditions can lead the recognizer to introduce
much more noise, the lack of structure can make the segmentation process more difficult, etc..

The evaluation of SDR relies on standard IR measures. However, there is a significant difference
between SDR systems and standard IR systems that can affect the evaluation process: an SDR system
splits the database into documents during segmentation (and eventually modifies this split during
recombination), while a standard IR system typically works with a manually segmented database
and never modifies the provided segmentation. The variation in the number of documents affects all
IR measures: the results obtained over two different segmentations of the same database are hence
difficult to compare. Having an IR measure independent from the segmentation would be of great
interest.



Chapter 3

Experiments and Results

3.1 Introduction

The use of Information Retrieval (IR) systems over Automatic Speech Recognition (ASR) transcrip-
tions has been proven effective to retrieve spoken data [11]. In this approach, the IR system considers
the spoken documents transcribed by the ASR system as a common digital text. However, a cor-
pus of ASR transcriptions is very different from a corpus of clean texts on which IR systems usually
work. The output of an ASR system is affected by recognition errors: some original words have been
replaced by others (substitution errors), new words have been inserted (insertion errors) and some
original words have been lost (deletion errors). These errors are frequent (often, more than 25% of
the words are recognized incorrectly) and an ASR transcription can hence be referred to as a noisy
text. The effect of this noise on the retrieval process can be investigated by comparing the retrieval
performance over a noisy and a clean version of the same data.

In our work, this comparison is done using a broadcast news database (TDT2) [5] with a set of
retrieval queries (TREC SDR queries). The clean corpus is composed of manually produced transcrip-
tions and the noisy corpus is composed of ASR transcriptions. Some standard IR measures (Precision,
recall, break-even point, etc) have been used to evaluate the results of an SDR system on both corpora.

The following sections are organized as follows: section 3.2 presents the experimental setup and the
data used, section 3.3 shows the performances obtained with both clean and noisy data and compare
them and final section 3.4 draws some conclusions.

3.2 Experimental Setup

The SDR task is to find segments of a speech database that are relevant to an information need
expressed through a query. In our case, we consider a fully automatic approach, i.e. the user provides
only the query as opposed to interactive approaches (e.g. relevance feedback, see section 2.2.5.2).

In this context, an SDR system has two inputs: a database of speech recordings and a set of
queries. We used Topic Detection and Tracking 2 (TDT2) [5] database and the queries collected for
TREC SDR evaluation (i.e. benchmark queries used at the Spoken Document Retrieval session of the
Text Retrieval Conference in 1999 and 2000) [11].

The TDT2 database is composed of 600 hours of broadcast news, which is sufficiently large to
have a non-trivial retrieval task (i.e. for a given query, the relevant documents should represent only
a small percentage, less than 2% for TREC queries, of the whole collection). Moreover, in TDT2,
both reference transcriptions and ASR transcriptions are available, which allows one to investigate the
effect of recognition errors on the retrieval performance. The query set contain 100 elements. These
queries were used at the TREC-9 conference with a predefined split into training and test set. We
used the same split to compare our results with those obtained over the same data.

19
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The following subsections are organized as follows, section 3.2.1 presents TDT2 and section 3.2.2
outlines the queries used.

3.2.1 TDT2 Database

The TDT2 database [5] is composed of 600 hours of broadcast news in American English. TDT2 has
been designed to include six months (from January 4 to June 30, 1998) of material drawn on a daily
basis from four sources (two TV channels, CNN and ABC, and two radio stations, PRI and VOA).
Each day an audio segment of fixed length has been recorded from each source. The length varies
between 30 and 60 minutes depending on the source.

For each audio segment, two different transcriptions are available: the first one has been manually
produced (closed-caption) and the other one is obtained with an Automatic Speech Recognition (ASR)
system1. The closed-caption is considered as clean text, even if it is affected by a Word Error Rate
(WER) of ∼10%. The ASR output has a ∼30% WER and plays the role of a noisy text.

Moreover, each of the recordings has been manually segmented into news stories that are used
as documents (i.e segment of speech containing homogeneous content, as defined in section 2.2.2).
The manual segmentation allows one to perform the retrieval task without taking into account the
automatic segmentation problem.

There are approximately 21,500 documents in the manual segmentation provided with the database.
Their length distribution (see figure 3.1) shows the distinction between two classes of documents: the
short ones (around 50 words) and the long ones (around 160 words). This is important when consid-
ering the retrieval process because most matching measures are influenced by length variability (see
section 2.2.5.3).

3.2.2 TREC SDR Queries

In order to evaluate an IR system, it is necessary to have a set of queries with related relevance
judgments. During the TREC SDR evaluation, two sets of 50 queries have been collected for TDT2:
a training set (also called TREC-8) and a test set (also called TREC-9). The use of such sets allows
one to compare the results obtained by other groups following the same protocol.

The distribution of the number of relevant documents per query (see figure 3.2) shows that there
are never more than 1.1% of the documents that are relevant to a given query. The task is hence
difficult because the probability of retrieving randomly a relevant document is less than 1.1%.

In general, queries are shorter than documents and this applies to TREC queries: the average
query-length is 6.3 words while the average document-length is 178.7 words. This is important because
matching measures and query expansion techniques consider this characteristic (see sections 2.2.5.3
and 2.2.5.2).

3.3 Experiments and Results

The presence of noise in the data is likely to affect the effectiveness of IR systems. In this work,
we compare the performance of a system when dealing with clean and noisy data. The difference
of effectiveness is measured through precision, recall and other derived measures. The system we
used is based on the Vector Space Model (VSM) and its structure is similar to the one described in
section 2.2. Recognition and segmentation modules are simulated by the use of transcriptions and
segmentation provided with TDT2 while the other modules (normalization, indexing and retrieval)
have been implemented.

The following sections are organized as follows, section 3.3.1 presents the results obtained with
clean transcriptions and section 3.3.2 shows the results obtained with the noisy transcriptions and
compares them with the preceeding ones.

1A state-of-the-art ASR system of Dragon Systems trained on Hub4 database
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Figure 3.1: Document Length Distribution. There are two classes of documents: the short ones
(around 50 words) and the long ones (around 160 words).
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Figure 3.2: Relevant Documents per Query Distribution. There are never more than 1.1% of the
documents that are relevant to a given query.
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3.3.1 Clean Text

The clean documents used in these experiments are closed-captions segmented with TDT2 manual
segmentation (as explained in section 3.2.1). We perform different measurements at different steps
(normalization, matching measure and query expansion) of the process. This allows us to have a
reference to evaluate the effect of the noise on different modules of the system.

In a system based on the VSM, the documents are represented by vectors. Each component
of a vector is a function of the frequency of an index term in the documents (see section 2.2.4).
Normalization performs the extraction of the index terms (see section 2.2.3). It is hence important to
measure the number of index terms and their frequencies after normalization as they influence all the
following retrieval process.

The document/query matching measure corresponds to the RSV, the criterion to rank the doc-
uments in order of relevance. The document with the highest (lowest) matching with the query are
identified as relevant (non-relevant) (see section 2.2.5.3). Using a matching measure rather than an-
other can affect significantly the system performance. We used the OKAPI formula (equation 2.18),
which is widely applied in the literature. OKAPI is an evolution of the tf · idf matching measure and
we evaluate the improvement of the performance it is supposed to give.

Query expansion is a step that aims at modifying the query to make it more effective. However,
there is not a single technique to perform query expansion and the performances of each technique
depends on the task. For this reason, we compared the performance obtained with different techniques.

The following sections are organized as follows, section 3.3.1.1 presents the effect of normalization,
section 3.3.1.2 describes the effectiveness of the OKAPI formula compared to the standard tf · idf
matching measure and section 3.3.1.3 shows the results obtained with different query expansion tech-
niques.

3.3.1.1 Normalization Effect

As explained in section 2.2.3, normalization removes any variability which is not helping the retrieval
process. To perform this task, the stream of words (i.e. the ASR output or the closed caption text) of
each document is stopped and stemmed. Stopping is performed using a generic stoplist of 389 words.
Once these words have been removed, the remaining words are replaced with their stems using Porter
algorithm [24]. The documents are then available in their normalized form, i.e a stream of index
terms.

Compared to the document collection before normalization, the total number of words in the
database has been reduced by 51% after stopping (see table 3.1), while stemming results in a lexicon
with 34% less terms (see table 3.2).

Before Stopping After Stopping Reduction
Number of words 3,862,325 words 1,880,460 words 51%

Table 3.1: Corpus Reduction by Stopping

Before Stemming After Stemming Reduction
Number of terms 57,141 words 37,961 words 34%

Table 3.2: Lexicon Reduction by Stemming

The distribution of document frequencies df (i.e the number of documents in which a term appear)
is also measured, as it is used in most matching measures to give more or less weight to a term. In
fact, the terms with lower document frequency are given more weight in document representation,
rare terms being considered as more discriminant. As shown on figure 3.3, rare terms represent an



IDIAP–Com 03-08 23

important part of the lexicon: for example, 50% of the terms in the lexicon are present in 3 documents
or less. However, this distribution should be examined cautiously as it is affected by errors that occur
during manual transcription. These typing errors typically result in a term that differ from the exact
one by one letter, which leads to many terms that occur once in the database (e.g. in one document
president has been transcribed into prdsident).

3.3.1.2 Matching Measure Effectiveness

The document/query matching measure is used to compute the RSV of a document. The RSV should
ideally be higher for relevant documents than for non-relevant ones. Different matching measures try
to achieve that goal with different effectiveness. We compared two of them: a simple tf · idf approach
(equation 2.15) and the OKAPI formula (equation 2.18).

The OKAPI formula should lead to better results as it is an improvement of the tf · idf formula
which takes document length into account and smoothes the tf factor. The results (table 3.3 and
figure 3.4) show that this is clearly verified: the system using the OKAPI matching measure performs
significantly better than the one using the simple tf · idf approach (Both AvgP and BEP are ∼75%
higher). The OKAPI matching measure will hence be used for all the following experiments.

Baseline OKAPI
AvgP 19.1% 35.6%
BEP 20.6% 35.4%

Table 3.3: AvgP and BEP using baseline and OKAPI matching measure

3.3.1.3 Query Expansion Effectiveness

Query expansion (QE) is an optional step that attempts to make the query more effective. To perform
such a task, a set R of documents identified as relevant is first extracted from a preliminary ranking,
then this set is used to identify terms that can be added to the original query. As we use blind
relevance feedback, R corresponds to the documents at the |R| first positions in the ranking. Three
main techniques are available to select the expansion terms and obtain the new query: Rocchio QE,
LCA and OW (see section 2.2.5.2). Each of them has been tested.

The results (see table 3.4 and figure 3.5) show that all QE techniques increase the performance
significantly compared to the system without QE. However, no technique is significantly better than
the others: Rocchio QE, LCA and OW lead to similar performance.

no QE Rocchio LCA OW
AvgP 35.6% 42.1% 42.6% 41.1%
BEP 35.4% 41.3% 40.5% 39.0%

Table 3.4: AvgP and BEP for different Self QE techniques on clean text

In blind relevance feedback, the size of the set R used to identify expansion terms is typically
small because the only documents that can be reliably identified as relevant are those appearing at
the very top positions of the ranking. This can be a problem: when R is too small, this can result in
the selection of terms that are fitted to the documents present in the set.

Parallel QE attempts to solve this problem. In this case, the preliminary ranking is obtained using
another corpus (the parallel corpus, which is independent from the self corpus, i.e. the corpus on
which the system works). If the parallel corpus contains more relevant documents, the system is likely
to output a ranking in which the same precision level is achieved at lower positions in the ranking.
This allows the extraction of a bigger set R.
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Figure 3.3: Document Frequency Distribution for clean text (Truncated at df=100). Rare terms
represent an important part of the lexicon: 50% of the terms in the lexicon are present in 3 documents
or less.
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Figure 3.4: Precision vs Recall using baseline and OKAPI matching measure on clean text. The system
using the OKAPI matching measure performs significantly better than the one using the simple tf ·idf
approach.
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Figure 3.5: Precision vs Recall for different Self QE techniques on clean text. All QE techniques have
similar performances and they lead to significantly better results than the system without QE

In our case, we use a parallel corpus of newswire (TDT2 newswire) covering the same period as our
spoken database (TDT2). As the same kind of topics are present in the two corpora, we suppose the
density of relevant documents to be the same (∼1% depending on the query). As the parallel corpus
is bigger than TDT2 (∼14 million words compared to ∼4 million words), it should hence contain more
relevant content.

Parallel QE (table 3.5 and figure 3.6) has a lower performance than self QE (table 3.4 and figure
3.5). The assumption that TDT2 newswire contains more relevant content might then be wrong.
Another possibility can be that the system does not identify relevant documents in the parallel corpus
as well as it does in the self corpus. This is certainly the case as the OKAPI formula parameters
cannot be tuned for the parallel corpus (no relevant judgment are available for this corpus). However,
Parallel QE is still improving the performance compared to a system without QE.

no QE Rocchio LCA OW
AvgP 35.6% 38.6% 40.1% 41.2%
BEP 35.4% 38.8% 39.7% 40.9%

Table 3.5: AvgP and BEP for different Parallel QE techniques on clean text

This means that the parallel-expanded query (i.e. the query expanded with the parallel corpus) is
more effective than the original one. Hence, self QE performance should be improved if parallel QE is
performed before, i.e. if the input of self QE is the parallel-expanded query rather than the original
query. The results obtained (table 3.6) show that parallel QE followed by self QE is performing better
than self QE alone.
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Figure 3.6: Precision vs Recall for different Parallel QE techniques on clean text. Parralell QE improve
the performance compared to a system without QE.

no QE self QE parallel + self QE
AvgP 35.6% 42.6% 45.2%
BEP 35.4% 40.5% 42.9%

Table 3.6: AvgP and BEP when using parallel QE before self QE on clean text (LCA is used for both
Parallel and Self QE)
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3.3.2 Noisy Text

The noisy text corresponds to ASR transcriptions (∼30% WER) as provided with TDT2. They have
been segmented into documents using the database manual segmentation (see section 3.2.1). The
same experiments have been done using the noisy documents to compare with the results obtained on
clean text.

The following sections are organized as follows, section 3.3.2.1 presents the effect of normalization,
section 3.3.2.2 describes the effectiveness of the OKAPI formula compared to the standard tf · idf
matching measure and section 3.3.2.3 shows the results obtained with different query expansion tech-
niques.

3.3.2.1 Normalization Effect

Normalization is performed the same way as with clean text. Its effect is the same: stopping reduces
the total number of words by 50% (table 3.7), while stemming results in a lexicon with 38% less terms
(table 3.8). However, the total number of words is not the same due to insertion and substitution
errors introduced by the recognizer. The lexicon size is also modified due to the limited vocabury of
the recognizer. The noisy documents can only contain words that are present in the ASR vocabulary
(∼38,000 different words), in consequence, index terms can only be stems of these words.

Before Stopping After Stopping Reduction
Number of words 3,841,053 words 1,859,893 words 50%

Table 3.7: Corpus Reduction by Stopping

Before Stemming After Stemming Reduction
Number of terms 37,696 words 23,099 words 38%

Table 3.8: Lexicon Reduction by Stemming

The document frequency distribution (figure 3.7) obtained with noisy documents is similar to the
one obtained with the clean ones except in the case of df = 1. The fact that the number of terms
occuring in one document is much bigger in the case of clean text is certainly due to errors in the
human transcriptions rather than out of vocabulary problem in the ASR system. As mentioned in
section 3.3.1.1, the errors present in the closed-caption transcription are typically typing errors which
result in words appearing once in the database.

3.3.2.2 Matching Measure Effectiveness

The performances of the retrieval process when using a simple tf · idf matching measure and the
OKAPI formula have been compared. OKAPI formula takes the document length into account and
smoothes the tf factor. As for clean documents, the length varies across documents (see section 3.2.1)
and the tf factor is also overestimated in case of repetitions. OKAPI formula should also improve the
system performance compared to the simple tf · idf formula in the case of noisy documents.

Results (table 3.9 and figure 3.8) show this improvement. Moreover, the effect of noise on the
retrieval process can be measured: using the OKAPI formula average precision is 12% lower for noisy
documents than for clean ones (31.2% vs 35.6%), while BEP is 7% less (33.1% vs 35.4%).

3.3.2.3 Query Expansion Performance

Query expansion has shown to be effective in the case of clean text. For noisy text, the same experi-
ments are presented, i.e. self QE and parallel QE have been tested alone and parallel QE followed by



28 IDIAP–Com 03-08

Document Frequency Distribution

20 40 60 80 100
0

1000

2000

3000

4000

Document frequency

N
um

be
r 

of
 te

rm
s

Figure 3.7: Document Frequency Distribution for noisy text(Truncated at df=100). Most terms occur
only in few documents.
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Figure 3.8: Precision vs Recall using baseline and OKAPI matching measure on noisy text. As for
clean text, the performance is significantly better when using the OKAPI formula.
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Baseline OKAPI
AvgP 17.8% 31.2%
BEP 20.4% 33.1%

Table 3.9: AvgP and BEP using baseline and OKAPI matching measure

self QE is also evaluated.
In the case of self QE, the set R of documents identified as relevant is extracted from the spoken

database. This means that this set R is also affected by recognition errors. However, the selection of
expansion terms from the set should be robust to the noise as the set R contains different documents
that should not contain the same errors. The results obtained (table 3.10 and figure 3.9)

no QE Rocchio LCA OW
AvgP 31.2% 38.5% 40.2% 37.1%
BEP 33.1% 38.6% 39.5% 37.7%

Table 3.10: AvgP and BEP for different Self QE techniques on noisy text

The parallel expanded query is more effective than the self expanded query if a better preliminary
ranking is obtained with the parallel corpus. As for clean text, this better ranking is not obtained and
parallel QE does not lead to performance as good as self QE (table 3.11 and figure 3.10). However,
parallel QE improves the process when compared with the system without QE.

no QE Rocchio LCA OW
AvgP 31.2% 34.2% 38.1% 36.8%
BEP 33.1% 33.6% 37.6% 37.3%

Table 3.11: AvgP and BEP for different parallel QE techniques on noisy text

As the parallel expanded query performs better than the original one, this query is used to make
the preliminary ranking of self QE. The measures show that the improvement obtained with this
approach is not significant contrary to the results on clean documents.

no QE self QE parallel + self QE
AvgP 31.2% 40.2% 41.2%
BEP 33.1% 39.5% 40.1%

Table 3.12: AvgP and BEP when using parallel QE before self QE on clean text (LCA is used for
both Parallel and Self QE)

As for clean documents, the performance improvement obtained with QE is important (AvgP is
32% higher, 41.2% vs 31.2%, and BEP is 20% higher, 40.1% vs 33.1%, when parallel QE followed by
self QE is compared to the results without query expansion).

The effect of noise on the final system, including OKAPI formula, QE expansion on parallel corpus
followed by query expansion on the self corpus is still significant (see table 3.13). However, the quality
of clean transcritpion (10% WER) and noisy transcription (30% WER) are very different and even a
noisy transcritpion affected by recognition errors allows one to achieve satisfying results.
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Figure 3.9: Precision vs Recall for different Self QE techniques on noisy text. QE improve significantly
the performance. All QE techniques lead to similar results.
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Figure 3.10: Precision vs Recall for different parallel QE techniques on noisy text. The parallel
expanded query perform, on average, better than the original one.
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Clean Noisy Relative Difference
AvgP 45.2% 41.2% 9%
BEP 42.9% 40.1% 7%

Table 3.13: Comparison of noisy and clean results when using parallel QE and self QE

3.4 Conclusion

The use of an IR system over noisy texts has been experimented in this work. An SDR system based
on the VSM has been used to compare the performance obtained over clean and noisy transcriptions
of a speech database. The database used is TDT2 (600 hours broadcast news), the clean version of the
corpus is composed of manual transcriptions (closed-captions), while the noisy version is the output
of an ASR system. The effect of noise has been measured at the main steps of the retrieval process
(normalization, matching measure and query expansion).

Normalization has a similar effect on clean and noisy data (The reduction of the total number of
words by stopping is ∼50% and the reduction of the lexicon size by stemming is ∼35%). The only
observed difference is that the limited vocabulary of the ASR system leads to a smaller lexicon.

At the retrieval step, the performances obtained with the OKAPI matching measure are lower
with noisy data (31.2% vs 35.6% in average precision), but the OKAPI formula is leading to better
results than tf · idf over both clean and noisy texts (∼75% improvement in average precision in both
cases). The different query expansion techniques have led to significant improvement with both clean
and noisy data. Parallel QE has been shown less useful with the noisy documents.

The best performance achieved on noisy data is obtained when using OKAPI formula and both
self and parallel QE (41.2% average precision). The results obtained in this work are comparable
with those published at the TREC-9 conference (where average precision values vary from 43.2% and
46.2% over the same noisy data [13, 16, 25]). The better results obtained by the other groups are
probably due to the corpus used for query expansion which is significantly bigger than ours for all of
them

As mentioned in section 3.2.1, 3 words out of 10 are mis-recognized in the noisy corpus (i.e 30%
WER) while less than 1 word out of 10 is mis-transcribed in the clean corpus. Compare to this
significant difference of quality in the transcription, the difference of performance is quite limited
(average precision is 9% lower for noisy data when using OKAPI formula and both self and parallel
QE). Some recognition errors might have only a limited impact, while others should be more important.
This point should be investigated in the future.



32 IDIAP–Com 03-08



Chapter 4

Conclusions and Future Work

The topic of this thesis is Spoken Document Retrieval (SDR). State-of-the-art SDR systems use ASR
to transcribe speech data into digital text and then perform retrieval on it. The ASR process is not
perfect and introduces a significant amount of noise (i.e. words that are incorrectly recognized). An
SDR system has been implemented to investigate the effect of this noise on the main step of the
retrieval process.

It has been shown at normalization step that stopping has the same effect on clean and noisy data
(corpus reduction is ∼50% in both cases). This means that recognition errors occur as frequently on
stop-words as on content words. Also, the effect of stemming is similar (lexicon reduction is ∼35%
in both cases) which means that the vocabulary of the clean text and the vocabulary of the noisy
transcription have a similar distribution of inflected forms per stem. The only significant difference
observed is in the dictionary size: the lexicon is smaller in the noisy text due to the limited vocabulary
of the ASR system and to the presence of errors in the closed-caption transcription resulting in many
spurious words appearing once in the database.

The matching measure we used is the OKAPI formula. It has been shown that with both clean and
noisy data the OKAPI formula performs significantly better than the wide-spread tf · idf . Compared
to tf ·idf , OKAPI takes into account the document length and reduces the influence of term repetition.
This relies on the hypotheses that longer documents are not richer in content and that a repetition is
not as important as the first occurrence of a term. These hypotheses are verified in both cases.

The last step of the retrieval process we investigated is Query Expansion (QE). Two kinds of
expanded query have been considered: self-expanded and parallel-expanded. Compared to the ap-
proach without QE, both techniques lead to a significant improvement over clean and noisy text. The
selection of good expansion terms is possible even from noisy documents, as shown in the case of self
QE over noisy data. This happens, in our opinion, because the redundancy across the documents
used for QE improves the robustness with respect to recognition errors. The parallel-expanded query
has been shown less effective for noisy data than for clean one. The parallel QE results are however
data-dependent and other results might have been obtained with a different parallel database.

In all the experiments, clean data leads to better results. However, the transcription errors intro-
duced by the ASR system degrade only slightly the retrieval effectiveness (e.g. ∼7% degradation for
break-even point), even if the clean and noisy corpora are very different (10% vs 30% WER). The
noise seems to have a limited impact on the performance. At the error rate of our data, an IR system
developed for clean text is effective over noisy data.

Several interesting issues remain open and can be subject of future work. The information con-
tained in speech is not limited to a text transcription. Dialog dynamics, speaker turns, etc are
neglected by the approach based on the simple transcription. Introducing such information could help
the retrieval process. Furthermore, most research has been done on broadcast news, which is only a
specific kind of data. Broadcast news data have good recording conditions, a topic-based structure,
read speech without hesitation, emotion, etc. These characteristics help both the recognition and

33
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the retrieval steps. Using other types of data such as academic lectures, phone dialogs or corporate
meetings can pose interesting problems.
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