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Abstract. Boosting-based methods have recently led to the state-of-the-art face detection systems. In these
systems, weak classifiers to be boosted are based on simple, local, Haar-like features. However, it can be
empirically observed that in later stages of the boosting process, the non-face examples collected by boot-
strapping become very similar to the face examples, and the classification error of Haar-like feature-based
weak classifiers is thus very close to 50%. As a result, the performance of a face detector cannot be further
improved. This paper proposed a solution to this problem, introducing a face detection method based on
boosting in hierarchical feature spaces (both local and global). We argue that global features, like those de-
rived from Principal Component Analysis, can be advantageously used in the later stages of boosting, when
local features do not provide any further benefit, without affecting computational complexity. We show,
based on statistics of face and non-face examples, that weak classifiers learned in hierarchical feature spaces
are better boosted. Our methodology leads to a face detection system that achieves higher performance than
the current state-of-the-art system, at a comparable speed.
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1 Introduction

In pattern recognition terms, face detection is a two-class (face/non-face) classification problem. As the face
manifold is highly complex, due to the variations in facial appearance, lighting, expressions, and other factors
[2, 12], face classifiers that achieve good performance are very complex too.

The learning-based approach constitutes the most effective one for constructing face/non-face classifiers
[9, 13, 6, 8]. Recently, Viola and Jones proposed a successful application of AdaBoost to face detection
[18, 17, 16]. Li et al. extended Viola and Jones” work for multi-view faces using an improved boosting
algorithm [5]. Both systems achieved a detection rate of about 91%, and a false alarm rate of 10~ for frontal
faces, with real-time performance on 320x240 images.

The appealing features of the methods (speed and good performance) can be explained by two factors. First,
AdaBoost learning algorithms are used for learning of highly complex face/non-face classifiers. AdaBoost
methods [4] learn a sequence of easily learnable weak classifiers, and boost them into a single strong classifier
via a linear combination of them. Second, the real-time feature of the systems is achieved by an ingenuous
use of techniques for rapid computation of a large number of simple Haar-like features [7, 17]. Moreover, the
simple-to-complex cascade [18] or detector-pyramid [5] structures further speed up the computation.

In spite of their evident advantages, existing systems have limitations to achieve higher performance be-
cause weak classifiers become too weak in later stages of the boosting process. Current approaches use boot-
strapping to collect non-face examples (false alarms) to re-train the detection system (e.g. as the input of the
next layer in a cascade system). However, after the power of a strong classifier has reached a certain point, the
non-face examples obtained by bootstrapping a learned strong classifier are very similar to the face patterns,
in any space of the Haar-like features. It can be empirically shown that the classification error of Haar-like
feature-based weak classifiers approaches 50%, and therefore boosting stops being effective in practice.

To address this problem, we propose a method for boosting-based face detection in which boosted weak
classifiers are learned in a hierarchy of feature spaces. The power of weak classifiers can be increased by
switching between these spaces, from local to global features, to an extent that boosting learning is still ben-
eficial. In particular, we show that Principal Component Analysis (PCA) coefficients are quite effective at
discriminating between face and non-face patterns, when embedded in a boosting algorithm at its later stages,
unlike local features that do not provide any benefit. Although more expensive in computational terms, global
features can be used only at very late stages of a cascade system, not affecting the real-time requirement. The
result is a face detection system with higher detection rate and lower false alarm rate than a state-of-the-art
system (tested on the CMU frontal face dataset), with negligible degradation in processing time. Our approach
is illustrated in Figl. The rest of paper is organized as follows: For sake of completeness, section 2 describes
the Adaboost method. Section 3 describes Adaboost learning in the Haar-like feature space, and motivates our
work based on the limitations of current methods. Section 4 introduces our approach. R esults and discussion
are presented in Section 5. Section 6 provides some concluding remarks.

( Rejected samples )

Figure 1: Face detection using both local and global features. A large majority of samples are rejected by the
earlier layers in the cascade, which use simple local Haar-like features. A very small number of very difficult
samples are verified by the later stages using PCA features.
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2 AdaBoost Learning

The basic form of discrete AdaBoost [4] is for two class problems. A set of N labeled training examples is
defined as (z1,v1),---, (N, yn), Where y; € {41, —1} is the class label for the example z; € R™. For
face detection, z; is an image sub-window of fixed size (e.g. 20x20 pixels) containing an instance of the
face (y; = +1) or non-face (y; = —1) pattern. AdaBoost assumes that a procedure is available for learning
a sequence of weak classifiers h,,(z) (m = 1,2,..., M) from the training examples, with respect to the

distributions w§m> of the examples. A strong classifier is a linear combination of the M weak classifiers,

M
=Y amhn(), (1)
m=1

where a,,, > 0 are combining coefficients. The classification of z is obtained as §(z) = Sign[Hm(x) —
: Zfr/le am]. The AdaBoost learning procedure is aimed to compute the sets of coefficients {«a., } and classi-
fiers {hp, (z)}.

2.1 Learning Weak Classifiers

In the boosting framework, a strong high performance classifier is obtained by boosting simple weak classifiers.
A weak classifier is constructed by thresholding one of the features according to the likelihoods (histograms)
of the feature values for the positive samples and the negative samples,

K@) = 1 ife(z) > 77 @)
= 0 otherwise, 3)

where zj,(x) is feature k extracted from z, and T,SM) is the threshold for weak classifier k£ chosen to balance
between detection rate and false alarm rate. The best weak classifier is the one for which the weighted error
€7 1S minimized,

en = Zw ~V1fsign(H (2:)) # i), )
where 1[C] is one if C is true, or 0 otherwise. Defining
k* = argmine(hjt" (2)), 5)
the best weak classifier is given by
ha(z) = WM (z). (6)

2.2 Boosting Weak Classifiers into a Strong One

AdaBoost learns to boost weak classifiers h,, into a strong one H,; by minimizing the upper bound on the
classification error achieved by H ;. The bound can be derived as the following exponential loss function [10],

M) = Ze—yiHM(m) — Ze—yi EN_i amhm(z) ™)
i i

AdaBoost constructs h,,, (x) by stagewise minimization of Eq. 7. Given the current Hyy_1 (z) = fo;ll O b (),
and the newly learned weak classifier hjs, the best combining coefficient a, for the new strong classifier
Hy(xz) = Hyr—1(x) + aprhar(z) minimizes the cost

aym =argm§nJ(HM,1(w) + ahp(x))- (8)
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Figure 2: The four types of simple Haar-like features defined on a sub-window z. The rectangles are centered
at (z,y), with size dx x dy. A feature is defined as the weighted sum of the pixels in the rectangles; the weight
is +1 for pixels in the white area and —1 for pixels in the black area.

The minimizer is

1—e€
an = log —, (©)

where €, is the weighted error, defined in Eq. 4.
Each example is re-weighted after each round of boosting learning, i.e. w
classification performance of H,,,

(M

i Vs updated according to the
w(z,y) = w™ D (2,y) exp (—amyhum(z))

exp (_yHM(Z')) ) (10)
which will be used for calculating the weighted error or another cost for training the weak classifier in the next

round. In this way, a more difficult example will be associated with a larger weight so that it will be more
emphasized in the next round of learning.

3 AdaBoost Learning in Haar-like Feature Space

In the early stage of face detection, the weak classifiers, which perform simple classification, are derived based
on histograms of four basic types of Haar-like features, shown in Fig. 2. A total of 45891 such features can be
derived for a sub-window of size 20 x 20, for all admissible locations and sizes. Such features can be computed
very efficiently [11] from the integral image defined in [18]. The task of face detection is to classify every
possible sub-window. A vast number of sub-windows result from the scan of the input image. For efficiency
reasons, it is crucial to discard as many non-face sub-windows as possible at the earliest stages, so that as
few sub-windows as possible are further processed by later stages. Following a simple-to-complex strategy
[1, 3], the detector cascade [17] quickly eliminates non-faces and greatly improves the efficiency, as opposed
to applying a full detector to every sub-window.

However, the power of classification of the described system is limited when the weak classifiers derived
based on simple local features become too weak to be boosted, especially in the later stages of the cascade
training. Empirically, we have observed that when the discriminating power of a strong classifier reaches a
certain point, e.g. a detection rate of 90%, and a false alarm rate of 10—, non-face examples collected by
bootstrapping become very similar to those of face examples in terms of the simple local Haar-like features.
The histograms of the face and non-face examples for any feature can hardly be differentiated, and the empir-
ical probability of misclassification of the weak classifiers approaches 50%. At this stage, boosting becomes
ineffective because the weak learners are too weak to be boosted. This issue has been discussed in the past by
Probably Approximately Correct (PAC) learning theory [15]. A specific example of this fact is illustrated in
Fig. 3, for the training set described in Section 5.

One way to address this problem is via the derivation of a stronger weak classifier in another feature space,
which is more powerful and complementary with the local Haar-like feature space. We propose to boost in PCA
coefficient space. As we show in the next section, weak classifiers in this global feature space have sufficient
classification power for boosting learning to be effective in the later stages of a cascade system.
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Figure 3: Left: Histogram of the face and non-face examples for the 5th haar-like feature selected by boosting
learning. The error rate is significantly lower than 50%; Right: Histogram of the face and non-face examples
for the 1648th haar-like feature selected by boosting learning. The error rate is close to 50%.

4 AdaBoost Learningin PCA Feature Space

When the local Haar-like features reach their limit, we would like to use another representation that is more
discriminative between face and non-face examples. A fruitful alternative is to recourse to a global representa-
tion in the late stages of cascade boosting learning, such that these two feature spaces, one local and one global,
complement each other.

Principal Component Analysis (PCA) is a classic technique for signal representation, used in the past for
face recognition [14]. PCA can be summarized as follows. Given a set of face examples in RN represented
by column vectors, the mean face vector is substracted to obtain the vectors x; € RY (i = 1,...,m). The
covariance matrix is then computed as C = i x;x; . Linear PCA diagonalizes the covariance matrix
by solving the eigenvalue problem Av = Cv, i.e.

Ax;-v)=(x;-Cv) Vi=1,...,m, (11)

The eigenvalues are then sorted in descending order, and the first A/ < N principal components vy (1 < k <
M) are used as the basis vector of a lower dimensional subspace, forming the transformation matrix T (Fig. 4).
The projection of a point x € RY into the M -dimensional subspace can be calculated as § = (6,...,0x) =
x T € R™. Its reconstruction from 7 is x = 224:1 0 v, and constitutes the best approximation of the
X1,. .., Xy iNany M-dimensional subspace in the minimum squared error sense.

In Adaboost learning, each weak classifier is constructed based on the histogram of a single feature derived
from PCA coefficients (6y,...,0r). At each round of boosting, one PCA coefficient -the most effective to
discriminate the face and non-face classes- is selected by Adaboost. Note that the boosting algorithm select
features derived from PCA based on their ability to discriminate face and non-face samples, rather than on the
rank of their eigenvalues. Therefore, some PCA features corresponding to small eigenvalues may be selected
in the earlier stages than those with larger eigenvalues. As we mentioned earlier, the distributions of the two
classes in the Haar-like feature space almost completely overlap in the later stages of the cascade training. In
that case, we propose to switch features spaces and construct weak classifiers in the PCA space. Empirically,
we have found that in such space, the distributions of the face and non-face classes have smaller overlap, given
the same set of non-faces obtained by bootstrapping, and used for training in later classifiers in the cascade.
This situation is illustrated in Fig. 5. We can observe that the two classes are better separated, and therefore
we can expect that weak classifiers based on the PCA coefficients are “boostable”. One question regarding
cascade boosting in hierarchical feature spaces is at which stage of the cascade we should decide to switch
from Haar-like to PCA features (we refer to such stage as the switching stage). It is well-known that PCA
features are much more expensive in computationl terms than the Haar-like features. On one extreme. if we
used PCA features in the very early stages of boosting, we would have to extract PCA features from a very
large number of sub-windows, and the speed of the face detection system would be unacceptably slow. On
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Figure 4: 15 out of total 400 eigenfaces ranked according to the eigenvalues (from left to right, up to down,
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Figure 5: Left: Histogram of the face and non-face examples for the 1648th haar-like feature selected by
boosting learning, whose error rate is almost 50% (same as Fig. 3(right)). Right: Histogram of the face and
non-face examples for the PCA features selected at the same stage of boosting, whose error rate is significantly
lower than 50%.
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the other extreme, if we used PCA features in the very late stages of boosting, the performance improvement
gained from their usage would be limited. Therefore, we determine the switching stage based on the tradeoff
between speed and performance improvement. In experiments, we compare the performance of boosting in the
single Haar-like feature space, and boosting in the hierarchical feature space, based on the comparable speed
of the two systems.

5 Reaults

For training purposes, a total of 11,341 face examples were collected from various sources, covering out-of-
plane rotation in the range [—20°,+20°]. All faces were manually aligned by the eyes position. For each
aligned face example, five synthesized face examples were generated by a random in-plane-rotation in the
range [—20°, +20°], random scaling in the range [—10%, +10%)], random mirroring and random shifting to
+1/-1 pixel. This created a training set of 56,705 face examples. The face examples were then cropped and
re-scaled to 20 x 20 pixels. For non-face examples, over 102° instances were collected for training from over
100,000 large images containing no faces.

In our experiments, two face detection systems were used. The first one was trained using only the Haar-like
features. We refer to this system as S-Boost as it was only applied in a Single feature space. The second system
was trained using both Haar-like features and PCA features. We refer to it as H-Boost due to the Hierarchical
feature spaces we use. We compared the two classifiers on the complete CMU frontal face test set, which is
publicly available 1. The test set is composed of 130 images containing 510 faces, and has been also used to
report results by the state-of-the-art systems [9, 17].

A face detection system can make two types of errors:; a false alarm (FA), when the system accepts an
non-face sample, and a false rejection (FR), when the system rejects a face sample. The performance of the
face detection system is often measured in terms of these two errors, as follows:

number of FAs

FAR =
number of non-face samples

x 100%, (12)

number of FRs

FRR =
number of face samples

x 100%. (13)

Furthermore, the Receiver Operating Curve (ROC) is the set of operating points yielding the maximal
detection rate (100% — FRR) for a given false alarm rate (FAR).

Fig. 6 shows the ROC curves for both classifiers. Since changing the switching stage of H-Boost will affect
both the system performance and speed, the mean and standard deviation were used to measure the performance
of H-Boost, which were obtained by running the system 10 times with slightly different switching stages. We
can see that H-Boost performs consistently better than S-Boost. On one hand, the detection rate of H-Boost
is always higher than that of S-Boost, given the same number of false alarms. On the other hand, for a given
detection rate, the false alarms of H-Boost are always fewer than those of S-Boost. The results suggest that
the higher performance of H-Boost reflects the benefit of the usage of the PCA features in the late stages of
boosting, which are more effective to discriminate face and non-face examples. Note that the processing speed
of the mean curve for H-Boost is comparable with that of S-Boost (see details later in this section).

In order to combine FAR and FRR into one number, the error rate is defined as ER = m Fig.
7 and Fig. 8 show the curves of the error rate as a function of the number of the selected weak classifiers in
the switching stage from Haar-like features to PCA features. The switching stage for Fig. 7 and Fig. 8 is the
12th stage of the cascade. We can see that as the number of selected weak classifiers increased, the error rate
always decreased. However, from the 265th weak classifier on, the error rate decreased only marginally for
S-Boost, which indicates that any further selected weak classifiers could not discriminate face and non-face
samples well. As a result, the selected weak classifiers contribute very little to the final strong classifier. On
the contrary, switching from Haar-like space to PCA space decreased the error rate significantly. For H-Boost,
boosting learning continued selecting weak learners in PCA space that discriminate face and non-face samples

Lhttp://www-2.cs.cmu.edu/ har/faces.html
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Figure 6: Comparison of ROC curves for S-Boost and H-Boost on the CMU test set. The curve of H-Boost
shows the mean and standard deviation of the detection rate for a given false alarm rate. The speeds for S-Boost
and the mean curve in H-Boost are comparable.

well, thus the error rate continues to decrease. We have obtained similar results on an separate testing set,
composed of 2,000 face samples and 10,000 non-face samples which were not used in the training stages, as
shown in Fig. 8.

Next, we compare the speed of both face detection systems. The speed of H-Boost corresponds to that of
the mean curve in Fig. 6. We computed the speed of S-Boost and H-Boost using a Pentium-P4 2.6GHz, 512MB
RAM computer. Since the face detector scans across the image at multiple scales and locations, the choice of
the starting scale and the step size affects the detector speed significantly (refer to [17] for details). Using a
starting scale of 1.2 and a step size of 1.25, both systems can process 15 frames per second for 320x 240-pixel
images.

There are two facts that make the computational complexity of H-Boost comparable to that of S-Boost.
First, a large majority of sub-windows are rejected by the first several layers in the cascade, so only a very
small number of sub-window candidates will be verified by the later stages using PCA features. Second, the
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Figure 7: Left: The error rate (on training set) as a function the number of the selected weak classifiers using
only Haar-like features. Right: The error rate (on training set) as a function of the number of the selected weak

classifiers using both Haar-like features and PCA features.
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Figure 8: Left: The error rate (on testing set) as a function of the number of the selected weak classifiers using

only Haar-like features. Right: The error rate (on testing set) as a function of the number of the selected weak
classifiers using both Haar-like features and PCA features.

number of selected PCA features is far less than that of the Haar-like features selected at the same stage.
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6 Conclusions

The paper introduced a hovel boosting-based face detection algorithm in hierarchical feature spaces. Motivated
by the fact that the weak learners based on the simple Haar-like features are too weak in the later stages of the
cascade, we propose to boost PCA features in the later stages. The global PCA feature space complements
the local Haar-like feature space. The algorithm selects the most effective features from PCA features using
boosting, instead of ranking them according to their eigenvalues. The experiments on the CMU face test set
showed that the proposed metholdogy can achieve better performance than a current state-of-the-art, single
feature, Adaboost-based detection system, at a comparable speed.
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