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Abstract. I show how conditional Gaussians, whose means are conditioned by a random variable,
can be estimated and their likelihoods computed. This is based upon how regular Gaussians have
their own parameters and likelihood computed. After explaining how to estimate the parameters
of Gaussians and conditional Gaussians, I explain how to calculate their likelihoods even if there
are missing elements in the data or, in the case of the conditional Gaussian, even if the conditioning
variable is missing.
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1 Parameter Estimation

1.1 Gaussians

In machine learning, the Gaussian is a common distribution for modeling a wide variety of data. It
consists of two parameters: the mean vector u and the covariance matrix X, which are referred to as
the first moment and the second moment, respectively. If data X is distributed in such a manner, we
note it as:

X ~N(ux,Sx) (1)
If ux and ¥ x are not known but if we do have data X = {z1,...,znx} drawn from this distribution,
we can estimate their values:
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where (3) is a biased estimator of ¥ x. Alternatively, we can have an unbiased estimator of ¥ x:
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where (4) divides by (N — 1) instead of by N. The same result for Sx in (3) can be obtained by:
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The advantage of (5) over (3) is that both ux and X x can be estimated in the same pass over the
data, instead of two.

1.2 Conditional Gaussians

The conditional Gaussian is a less common distribution used for modeling the dependency between
data X and data Y. If we define X as being dependent upon Y, then we have a distribution whose
first moment is no longer the mean of X but, rather, the mean of X conditioned by the given value
y from Y: ux = pux + Bx y, using regressions in Bx upon y. Its second moment is still the variance
Y x (albeit, estimated differently, as explained below):

X ~ N(ux,x). (6)

Hence, whereas a Gaussian has two parameters to estimate, p and ¥, a conditional Gaussian has three
parameters: u, B, and ¥. These parameters are learned in a two-stage procedure. First, we need to
estimate the joint mean and joint covariance of X and Y. Let W be the combination of data X and
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Y (that is, for each pair of data vectors x and y, w is the data vector which is the concatenation of
the two). Then we estimate uw and Xy :

| N

NW%w:N;w (7)
1< 1 &

EWzSW:N;(w—u‘;)(w—u‘;)T:N;wa—u‘)u‘)T (8)

Let us partition @ according to the portion obtained from X and that obtained from Y:
_ | o{X}
o[ 5] ©)

Let us also partition Sy, according to that related only to X, that related only to Y and those
related jointly to X and Y, as follows

Sw = [ Sw{YX} Swi{v?}

and let [Sw{Y?}]~ be the pseudo-inverse of Sy {Y?}. Then the parameters ux, Bx, and Xx for the
conditional Gaussian are estimated as:

Bx ~ Bx = Sw{XY}[Sw{Y?}]~ (11)
px ~ Fx = w{X} - Bxw{Y} (12)
Yx ~ Sx = Sx — BxSw{VX}. (13)

Note that while only the first moment, ux, is conditioned upon Y, the estimates for both the
first and second moments, ux and X x, respectively, are dependent upon Y. Specifically, Sw{XY}
and [Sw{Y?}]™ are used for calculating all three of the estimates; furthermore, w{Y} is used in the
estimate of px.

2 Mixtures

For many problems, the type of distribution is not known. While it is simple to estimate the mean
and covariance for a Gaussian distribution, the resulting distribution may not truly represent the
distribution. Consider the data:

X ={-15-14,-14,-13,7,7,8,8,8,9,9}.

Here, z = 0, Sx = 1218 giving the estimated Gaussian N(0, 1238). However, this indicates that the
expected value for this data is 0, but no value even near 0 occurs in the data. It appears, rather, that
either this data comes from a totally different distribution or that it covers two different Gaussians.
See [1, Figure 1.4].

While we would prefer to determine the single distribution from which this data comes, it is easier
to cluster the data into different regions and to then say that each one comes from its own distribution.

In this case, we can divide that data as:
X1 ={-15,-14,-14,-13}
and

X, ={7,7,8,8,8,9,9},
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which would then have more reasonable Gaussian estimates of NV'(—14,3) and N (8, 2), respectively.
There would, furthermore, be a distribution over the Gaussians themselves. That is, as four of the data
points in X were considered to come from X; and seven were considered to come from X5, the two
separate Gaussians would get priors, or weights, of 17 4 and =~ 11> respectively. So, for M Gaussians with
. . M
respective means i, ... , ppr; covariances X, . .. ,EM, and weights wy, ... ,wpr, where ) .7, w; =1,
Gaussian mixtures are:

M
D wil (s, 55) (14)
i=1
Similarly, we can have conditional Gaussian mixtures:
Z wiN (ui, X;), where u; = p; + B; v, (15)

with a different regression matrix B; as well for each mixture. Finally, let §x, represent the parameters
for mixture ¢ of X, x the parameters for all the mixtures of X, and 0y the parameters for Y.

3 Likelihoods

In this section I make the assumption that the elements of the covariance matrix for each mixture of X
are zero off of its diagonal. In other words, the dimensions of the data X; are uncorrelated with each
other. Therefore, the covariance matrix Y x, can be represented by its diagonal elements, contained in
the variance vector o2 %, Put more simply, each dimension of X; has its own one- dlmensmnal Gaussian.

3.1 Gaussian Mixtures
3.1.1 Observed X

Given a data sample x from X, denote the P elements in the vector as z[1],... ,z[P]. Likewise, the
elements of the mean vector and of the varlance vector of N (u;,0?), the Gaussian of mixture 4, are
denoted as p;[1],...,ui[P] and o?[1],...,02[P], respectively. As each dimension is independent of
each other, the likelihood is computed independently for each dimension:

| exp( 0.5(a(p]—pii[p])” )

o7 [p]

L(X[p] = z[p]|0x, 16
(XIp] = olpllox, — (16)
The likelihoods for each dimension are then multiplied together:
P
L(X = 2lx,) = [] £(XIp) = 2lpll6x.) (17)
p=1

If there are mixtures of Gaussians, then we use a weighted sum of the likelihoods using (17) and w;
for each mixture i:

L(X =z|0x) = sz X = z|fx,). (18)
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3.1.2 Partially-observed X

If any dimensions of z are missing, those dimensions need to be integrated out. Here we take advantage
of the property of the Gaussian that, since it is a probability distribution, the integral over all of its
domain is 1:

| cextiox) axpl =1, (19)
hence, expanding (18), using (17), as:
M P
L(z|ox) = sz 11 /(=] 6x.), (20)
_ 1 , Z[p] missin
where f(z[pl,0x;) = { C(XTp] = o[gllfx,) . alp] observed

3.2 Conditional Gaussian mixtures
3.2.1 Observed Y

Given data samples z and y for a mixture of conditional Gaussians, we compute the likelihood as in
(18) except that each mean u; is offset, or shifted, according to the value y and the regression weights
Bi:

u; = p; + B;y. (21)

u; is then substituted for u; in (16) to compute the conditional likelihood for a single dimension, single
mixture, and all mixtures of a conditional Gaussian, respectively:

exp (—0-5(w[p]—ui[p])2)
— _ _ g3 [p]
‘C(X[p] - CL’[p]lY - yaniagY) - o) (22)
2ma; [p]
P
L(X =zlY =y,0x,;,0y) = H L(X[p] = [p]|Y =y,0x,,0v) (23)
p=1
M
LX =z|Y =y,0x,0y) = Y wl(X=alY =y,0x,,0y). (24)
i=1

These are analogous to (16), (17), and (18), respectively. Thus, computing a likelihood with a condi-
tional Gaussian with given data sample x and y is only slightly more complicated per mixture than
having a regular Gaussian: there is an additional (matrix) multiplication and (vector) addition to
compute each u;[p].

If any dimensions of z are missing in the conditional Gaussian, those dimensions can easily be
integrated out. Regardless of whether y is observed or missing, we also have, similarly to (19):

[ Xl ox, ) axipl = 1, (25)

hence, expanding (24), in the case of observed y, as:

‘C('TlY =Y, 0X70Y)

Zwi Hf(m[p]anHY=y;0Y); (26)

_ _ 1 , [p] missing
where f(z[p],0x;,Y =y,0y) = { L(X[p] = z[p]|]Y =y,0x,,0y) ,z[p] observed
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3.2.2 Non-observed Y

However, suppose that we only have data sample x for a mixture of conditional Gaussians and that
the sample y is missing. In other words, we do not know what the distribution is to be conditioned
upon. The only items we have for y is its mean py and variance 0%, that is, its prior distribution.
Let us, then, consider the likelihood for the first dimension of z in a given mixture i. Using this prior
distribution, we can still shift its mean as follows (where B;[p] is row p of B;):

ui[1] = wi[1] + By[1] py (27)

but need to also account for the variance of the unknown y in updating the variance of z, using the
covariance between X;[1] and Y

o) = Billloy (28)
6;11] = o7+ oxip,y) Billl- (29)

We then use the updated variance to calculate the likelihood of the first dimension (p = 1) for the
given mixture i:

—0.5(z[1]—u;[1])>
exp |2l

2m62[1]

LX[1] =z1]|]Y =y,0x,,0y) = (30)

Having now seen the value for z[1], the distribution for ¥ needs to be updated before using it to
compute the likelihood for z[2]. That is, the difference between z[1] and u;[1] will give an indication
of where the hidden y may really be. For example, say that all elements of B;[1] are positive and that
z[1] > p4[1]; then we would expect y to be higher than the prior py. We, therefore, update the mean
and variance for y as follows, letting fy = {jiy, 62 }:

. (z[1] = pi[1])

By = py +0o(x;[1,Y) &771] (31)
“ o(y,Xx[1]),:
0'%/ = 0'%/ - U'(X,-[l],Y) % (32)

Using (33), (34), (35), (36), (37), and (38), as follows, we then continue iteratively through the
dimensions 2,... ,P of x for mixture . We first compute three items, in a similar manner to (27),
(28), and (29), respectively: wu;[p]; the updated covariance between X;[p] and Y; and the updated
variance for Y:

uilpl = pilp] + Bilp] fiy (33)
Goxamly) = Bilpléy (34)
67lp] = o}lpl+ 6(x.tpl,y) Bilpl- (35)

We can then compute the likelihood for this dimension of z, as well as the updated distribution of Y,
in a similar manner to (30), (31), and (32), respectively:

exp (*O-S(z[p]*uz'[plf)
_ _ ) _ 571p]
'C(X[p] - iL‘[p”Y - y70Xi70Y) - ) (36)
2762 (p]
A ~ A T\D] — My
by = fy +0(x;[p,Y) 7( [p]&g 7] ) (37)

2= 6 - by St (38)
Y Y (Xi[pl,Y) 52[p]
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The likelihood of the mixture is then

P
L(X = |V =y,0x,,0v) = [[ £(X[p] = 2[p]|Y = y,0x,,0v), (39)
p=1
and the likelihood of all the mixtures is
M
LIX =]V =y,0x,0y) =Y wl(X =z|Y =y,0x,,0y). (40)
=1

Note that for p = 1, by = fy; in other words, the computation of the likelihood for each mixture
starts with the prior for Y and then updates it according to x.

Hence, computing a likelihood with a conditional Gaussian with z given but y hidden involves
a lot more computations due to inferring Y’s updated distribution given dimensions 1,...,P —1
of the observed z (inferring the distribution after dimension P is not necessary for the likelihood
computation).

If any elements of x are hidden in addition to y’s being hidden, then (40) is expanded:

M P

E(X = IL'lY, 0X;0Y) = sz H f(m[p]anz|Y7 éy), (41)
=1  p=1
. B 1 , x[p] missing
where f(z[p],0x,|Y,0y) = { L(X[p] = z[p]|Y, 0x,,0v) ,x[p] observed

With hidden y, note that, if z[p] is missing, the subsequent updates in (37) and (38) are not done
in that iteration as fiy and 63 are only updated for observed dimensions of z.

4 Conclusion

I myself have used conditional Gaussians in the context of Bayesian network based automatic speech
recognition [2, 3]. In such a context, conditional Gaussians have been shown to be useful in condi-
tioning the standard feature x upon an “auxiliary” feature y, thus enabling some of the correlation of
the dimensions of X to be further modeled via the mutual conditioning upon Y. Furthermore, it is of
potential benefit to use observations for y in estimating the parameters but to hide the observations
for Y in calculating the likelihood.

For further information on Gaussians and their estimates, see [4] and [5, Chapter 2]. For further
information on conditional Gaussians, see [6]. For further information on updating distributions using
other random variables’ observations, see [7].
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