REPORT

IDIAP RESEARCH

Dalle Molle Institute
for Perceptual Artificial
Intelligence o P.O.Box 592 e
Martigny e Valais @ Switzerland

phone +41 —27—721 77 11
fax 441 -27-721 77 12
e-mail secretariat@idiap.ch

internet http://www.idiap.ch

VARIANCE REDUCTION
TECHNIQUES IN BIOMETRIC
AUTHENTICATION

a

Norman Poh Hoon Thian * Samy Bengio

IDIAP-RR 03-17

MARCH 2003

SUBMITTED FOR PUBLICATION

2 IDIAP, CP 592, 1920 Martigny, Switzerland






IDIAP Research Report 03-17

VARIANCE REDUCTION TECHNIQUES IN BIOMETRIC
AUTHENTICATION

Norman Poh Hoon Thian Samy Bengio

MARcH 2003

SUBMITTED FOR PUBLICATION

Abstract. In this paper, several approaches that can be used to improve biometric authentication
applications are proposed. The idea is inspired by the ensemble approach, i.e., the use of several
classifiers to solve a problem. Compared to using only one classifier, the ensemble of classifiers has
the advantage of reducing the overall variance of the system. Instead of using multiple classifiers,
we propose here to examine other possible means of variance reduction (VR), namely through
the use of multiple real samples, synthetic samples, different extractors (features) and biometric
modalities. It is found empirically that VR via modalities is the best technique, followed by VR
via real samples, VR via extractors, VR via classifiers and VR via synthetic samples. This order
of effectiveness is due to the corresponding degree of independence of the combined objects (in
decreasing order). The theoretical and empirical findings show that the combined experts via VR,
techniques always perform better than the average of their participating experts. Furthermore,
in practice, most combined experts perform better than any of their participating experts.
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1 Introduction

Biometric authentication (BA) is the problem of verifying an identity claim using a person’s be-
havioural and physiological characteristics. BA is becoming an important alternative to traditional
authentication methods such as keys (“something one has”, i.e., by possession) or PIN numbers
(“something one knows”, i.e., by knowledge) because it is essentially “who one is”, i.e., by biometric
information. Therefore, it is not susceptible to misplacement, forgetfulness or reproduction. Examples
of biometric modalities are fingerprint, face, voice, hand-geometry and retina scans [1].

However, to date, biometric-based security systems (devices, algorithms, architectures) still have
room for improvement, particularly in their accuracy, tolerance to various noisy environments and
scalability as the number of individuals increases. The focus of this study is to improve the system
accuracy by directly minimising the noise via various variance reduction techniques.

Biometric data is often noisy because of deformable templates, corruption by environmental noise,
variability over time and occlusion by the user’s accessories. The higher the noise, the less reliable
the biometric system becomes.

Advancements in biometrics show two emerging solutions: combining several biometric modali-
ties [2—4] (often called multi-modal biometrics) and combining several samples of a single biometric
modality [5]. These techniques are related to variance reduction, in that, they exploit the assumed
independence of each modality (i.e., independent samples or biometric modality). In this work, we
examine several other ways to exploit this (partial) independence, namely via extractors and synthetic
samples. In short, all these methods can be termed as follows: Variance Reduction (VR) via classifiers,
VR via extractors, VR via samples and VR via different biometric modalities.

To our opinion, VR techniques are potential to improve the accuracy of BA systems because
better classifiers or ensemble methods, feature extraction algorithms and biometric-enabled sensors
are emerging. VR techniques can be used to combine these new algorithms with existing algorithms
to obtain improved results. The added overhead cost will be computation time and possibly hardware
cost in the case of adding new sensors (as opposed to other VR techniques which do not require any
extra hardware).

For the sake of clarity, we decided to present the concept of variance reduction in Section 2 that
follows immediately after this introduction because it is the principal motivation of improving the BA
system in this paper. This is followed by Section 3 which presents the general framework of a BA
system. Section 4 then explores different VR techniques in the context of BA and also discusses existing
works in the literature. Section 5 explains the databases used and it is followed by experimental results
in Section 6 and conclusions in Section 7.

2 Variance Reduction: A Theoretical Explanation

This section presents a theoretical justification of variance reduction'. A person requesting an access
can be measured by his or her biometric data. Let this biometric data be x. This measurement can
be done in several methods, to be explored later. Let i denote the i-th extract of x by a given method.
For the sake of comprehension, one method to do so is to use multiple samples. Thus, in this case, 4
denotes the i-th sample. If the chosen method uses multiple biometric modalities, then i refers to the
i-th biometric modality. Let the measured relationship be denoted as y;(x). It can be thought as the
i-th response (of the sample or modality, for instance) given by a biometric system. Typically, this
output (e.g. score) is used to make the accept/reject decision. An explanation of the BA system will
follow in Section 3. y;(x) can be decomposed into two components, as follows:

yi(x) = h(x) + ni(x), (1)

LA similar explanation of this section can be found in [6, Chap. 9], where variance reduction is due to averaging
classifier scores. In this section, we have decided to discuss variance reduction due to different samples for easy compre-
hension. This concept will be generalised to VR via modalities, features and synthetic features as well. Also, note that
even though the discussion here is related to regression problems, it can be extended to classification problems, such as
BA.
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where h(x) is the “target” function that one wishes to estimate and 7;(x) is a random additive noise
with zero mean, also dependent on x. h(x) can be viewed as the ideal function that consistently gives
1 when x corresponds to the client and —1 when corresponds to the impostor.

In other words, the score y;(x) can be viewed as a random variable translated by its mean value
h(x) and distorted by n;(x), which in turns, can also be viewed as a random variable with zero mean.
It can then be easily observed that the expected value of y;(x) is h(x).

For the moment, let N be the number of trials, (e.g., the number of samples, assuming that the
chosen method uses multiple samples hereinafter). The mean of y over N trials, denoted as (x) is:

1 N
= N;yi(x)- (2)

With enough samples, the expected value of y;(x), denoted as E[y;(x)], which approximates the “true”
measure, can be written as:

Elyi(x)] = E[h(x)]+ Eni(x)]
= h(x). (3)
By using one sample for an access, the variance, by definition, is:
VAR[y:i(x)] = E[(yi(x) - Elyi(x)])’]
= Bl(yi(x) - h(x)))”]
= En:(x)7, (4)

where we made use of Equation 3 and Equation 1.
When N samples are available and they are used separately, the average of variance made by each
sample, independently, is:

N
VARAv(x) = NZVAR[%( )l
1 1;1
- N;E[m(x)Q], (5)

where Equation 4 is used.
However, by combining N samples for an access via averaging, the variance of average is:

VARcom(x) = E[(§(x)—h(x
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Equation 6 assumes that all n;(x) has zero mean in general and are uncorrelated, i.e., E[n;(x)] = 0 and
Eni(x)nj(x)] = 0 for V; ji # j. In reality, the n;(x) are in general correlated. To compensate these
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false assumptions, it is necessary to introduce an inequality into Equation 6. Doing so and making
use of Equation 5, Equation 6 becomes:

LN
VARcom(x) < W;E[W(X)Q]

< %VARAv(X), (7)

where we have written VARcoa(x) (the variance of average) in terms of VAR 4v(x) (the average of
variance).

Basically, Equation 7 shows that by averaging N scores, the average of variance can be reduced
by a factor of N (when the assumption is true) or less (when the assumption is violated) with respect
to the variance of average.

From Equation 7, one can deduce that VARconm(x) < VAR v (x) in all situations. To measure
ezplicitly the factor of reduction, we introduce a, which can be defined as follows:

VAR 4y (x)

“= VARCOM (X) ) (8)

Since VARcom(x) < VARay(x) and VAR[:] > 0, one can conclude that a must be greater
than one. Another logical explanation for this observation is as follows: if the error made by each
score is correlated, i.e., it makes exactly the same error in the extreme case V;;,y;(x) = y;(x),
then %Ef\; yi(x) = §(x). As a consequence, VAR[y;(x)] = VAR4v(x) = VARconm(x), which
again implies that a = 1. Therefore, in averaging scores, if one does not gain, one does not lose in
the combination neither compared to the average performance of using N trials. Furthermore, from
Equation 7, it can also be concluded that « is smaller than or equal to N. This leads to the conclusion
that 1 < a < N.

Ideally, it would have been interesting to show that VARcoa (x) < VAR[y;(x)], for any i. Un-
fortunately, it is not the case here. In practice, however, as will be shown in Section 6, this can
happen.

Figure 1 illustrates the effect of averaging scores in a two-class problem, such as in BA where
an identity claim could belong either to a client or an impostor. Let us assume that the genuine
user scores in a situation where 3 samples are available but are used separately, follow a normal
distribution of mean 1.0 and variance (VAR 4y (x) of genuine users) 0.9, denoted as N(1,+/0.9), and
that the impostor scores (in the mentioned situation) follow a normal distribution of A(—1,+/0.6)
(both graphs are plotted with “+7). If for each access, the 3 scores are used, according to Equation 8,
the variance of the resulting distribution will be reduced by a factor (which is the value a defined in
Equation 8) of 3 or less. This reduction factor is derived from Equation 7. Both resulting distributions
are plotted with “o”. Note the area where both the distributions cross before and after. The later
area is shaded in Figure 1. This area corresponds to the zone where minimum amount of mistakes
will be committed given that the threshold is optimal®. Decreasing this area implies an improvement
in the performance of the system.

3 BA: Framework and Performance Evaluation

The discussion in Section II assumes that N ways are available. In particular, N are the number
of samples or modalities. In either case, this is often not the situation. In fact, N could be the
number of different classifiers, different features, synthetic samples or different biometric modalities.
Furthermore, y;(x) is also vaguely described as a score emitted by a “BA system”. This sections
discusses the generic framework (i.e., software architecture) of a BA system, and its performance
measurement.

20ptimal in the Bayes sense, when (1) the cost and (2) probability of both types of errors are equal.
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Figure 1: Averaging score distributions in a two-class problem

3.1 A Generic BA Framework

The fundamental problem of BA can be viewed as a binary classification task given a biometric data.
One can model such a classification task as a function f in y = f(x), where x is a given biometric
data, f is the BA system and y is a similarity measurement (e.g., output of a neural network, distance
measure from a given template)®. If y is greater than a pre-defined threshold, the biometric data is
accepted as belonging to the claimed identity. Otherwise, it is rejected. In this way, BA is a task of
deciding if a biometric data belongs to a claimed identity or not. Improving a BA system in this sense
is to minimise the number of errors committed by the system. The lower this number is, the better
the system performs.

In this section, a biometric-independent framework (see Figure 2) is proposed. This framework
consists of a serial concatenation of sensors, extractors, classifiers and supervisors. First, a user’s
biometric data is captured using sensors. Examples of sensors are Charged Couple Device (CCD)
cameras, Infrared-Red (IR) cameras, fingerprint scanners and microphones. Each sensor has its own
standard data representation. A set of operations, often based on signal- and image-processing al-
gorithms, constitute the building blocks of extractors. Extractors have two functions: to detect and
to extract user-discriminant information. Each extractor produces its own type of vectors or feature
vectors, also called templates in a more generic setting. Experts or classifiers are used to categorise
these produced vectors. Classifiers are a set of pattern-matching algorithms, which may be learning-
based (e.g. Multi-Layer Perceptron, Support Vector Machine, etc) or template-based (dynamic time
warping, Euclidean distance, normalised correlation, etc). Classifiers’ role is to map a vector to an
associated identity. They do so with a certain degree of confidence commonly called a score or a

3y € RT is often called a distance; y € [0, 1] is often viewed as a probability; and y € R is called a score.
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Figure 2: A generic biometric taxonomy and its fusion scheme

confidence measure. It could be a scalar value or a vector when more information is supplied. In some
cases, a score can be interpreted as the estimated a posteriori probability of the claimed class label
given the feature. When there are several classifiers, a supervisor merges different scores to obtain
the final decision. To make the final decision, a score is compared with a pre-defined threshold. If the
final decision is a match, then the system accepts the identity claim. If the decision is a non-match,
then the system rejects the identity claim. Finally and optionally, if the decision is inconclusive, a
fall-back procedure should be activated.

The serial concatenation process of sensors, extractors, classifiers and supervisors shows that error
may accumulate along the chain because each module depends on its previous module. In a separate
study done by Jain and Pankanti [7], they used the terms information limited behaviour, representation
limited behaviour and invariance limited behaviour to describe the errors of the first three components
(sensors, extractors and classifiers). Note that the supervisor itself can also introduce errors. To our
opinion, the term “limitation” is easier to be understood as errors due to sensors, extractors and
classifiers, respectively. Unfortunately, in practice, such errors cannot be easily measured. However,
one knows that if one can improve any one of the components in this serial process, one can improve
the whole biometric system.

3.2 Performance measurement in BA

There are two types of errors in BA: false acceptance (FA) and false rejection (FR). Given a pre-
defined threshold, if a score belongs to a impostor but is greater than or equal to the threshold, the
system will wrongly accept the impostor’s claim. In this case, the system is said to commit a FA. On
the other hand, if a score belongs to a client but is smaller than the pre-defined threshold, the system
will wrongly reject the client’s claim. In this case, the system is said to commit a FR. The error rates
of FA and FR are commonly called false acceptance rate (FAR) and false rejection rate (FRR), which
are defined as:

ber of FA
FAR = jhber o1 8 x 100%, (9)
number of impostor accesses

ber of FR
FRR — num er‘o S % 100%, (10)
number of client accesses
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respectively. Note that FAR and FRR change according to the pre-defined threshold. Another com-
monly used measurement is called the Half Total Error Rate (HTER) that can be defined as:

FAR + F
HTER = w. (11)

Note that HTER assumes the class prior probabilities of clients and impostors to be equal, i.e., 0.5
and the cost of FR and FA to be equal to 1. By varying the decision threshold, one obtains different
values of FAR and FRR. This is often plotted on a curve [8] (such as ROC or DET curves, not shown
here).

3.3 Threshold Selection

There are several important concepts associated with the way one measures the performance of BA
systems. The first concept is about error measurement. HTER is an example of such measures. Other
measures could take into account prior information specific to the application.

Since most of these measures are based on the selection of a threshold, the second concept regards
how this threshold is selected. If it is selected on the same data set as the one used to compute
the performance (we say that it is an a posteriori selected threshold), the performance will appear
optimistically biased. On the other hand, if the threshold is selected on a separate data set (we say
that it is an a priori selected threshold), then the performance will be more realistic.

The third concept concerns the criterion used to select the threshold. Various criteria could be
used and they should reflect the prior information specific to each application. The most used criterion
is the so-called Equal Error Rate (EER) which corresponds to FAR = FRR. In practice, one searches
the threshold where FAR is closest to FRR by minimising [FAR — FRR| %.

4 Exploring Various Variance Reduction Techniques

This section explores various variance reduction techniques that can be applied to the BA problem.
Figure 3 shows several possible approaches to improve a biometric authentication system. Figure 3(a)
is the usual mono-modal biometric approach. One can improve the system by using multiple classifiers
(3b) which can also be called the ensemble method, multiple extractors with concatenated features
(3c), multiple extractors with separate features (3d), multiple real samples (3e), multiple synthetic
samples (3f), and multiple biometric modalities (3g). Each of the approaches are explained in more de-
tails in this section. Exploiting such parallel structure is the key approach towards variance reduction
and thus can increase the accuracy of the system.

VR via classifiers is a kind of ensemble method. Ensemble methods are learning algorithms
that construct a set of classifiers and then classify new data points by taking a (weighted) vote of
each classifier prediction. The main idea is that ensembles are often much more accurate than the
individual classifiers that make them up, provided that the individual classifiers are accurate and
diverse (which includes complementary).

Dietterich [9] groups ensemble methods into: (i) Bayesian voting, (ii) manipulation of the training
examples (e.g. bagging [10,11], cross-validated committee and boosting [12]), (iii) manipulation of the
input features (e.g. sub-tasking), (iv) manipulation of the output targets (e.g. ECOC [13]) and (v)
injection of randomness, also known as learning with noise. Biometric features are very susceptible
to noise and different deformation. Therefore, these techniques are important considerations in our
framework. Kittler et al [14] have convincingly shown that a modified version of ECOC called multi-
seed ECOC improves face recognition on the XM2VTS database. These are all known methods to
improve BA systems.

4The experiments carried out in this paper used the “plotdet” software that can be downloaded from
http://www.idiap.ch/~marietho.
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Figure 3: Different possible VR techniques in BA

The main idea of VR via extractors is that given a raw biometric data, several features are
extracted. For example, one can extract the following information from speech features: Linear Pre-
dictive Coding Coefficients or Mel Frequency Cepstrum Coefficients [15]. In face verification, common
features are principal components, linear discriminant components [16] or more recently independent
components [17]. Each feature is often classified by an associated classifier. Since these features are
different, one can expect the corresponding trained classifiers to commit different errors. On the often
false assumption that features are not correlated, the classifiers are therefore not correlated. In the
hope that each classifier operating on different feature space makes different errors, the combined
classifier should be able to reduce the errors.

There are basically two variations of VR via extractors: with concatenated features (see Figure 3c)
and separate features (3d). In the first case, the extracted features are normalised to the same
range, concatenated and fed to a common classifier for training and matching. Often the curse of
dimensionality [6] is an obstacle to this approach. In the second case, each feature set is treated
separately by its own classifier. A decision fusion scheme is required to merge the scores coming from
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these classifiers.

These techniques work because different features usually capture different or complementary infor-
mation. Since they are extracted from the same sample, they are probably dependent (on the sample).
Regardless of the degree of dependency, VR via extractors can yield improvement in accuracy due to
reasons justified earlier.

In the work of Brunelli and Falavigna [18], two speech experts (using respectively static and
temporal derivative features) and three face experts (using respectively eye, nose and mouth areas
of the face) are used for person verification. The weighted product approach was used to fuse the
opinions, with the weights found automatically via a heuristic approach. The static and dynamic
feature experts obtained an identification rate of 77% and 71%, respectively. Combining the two
speech experts increased the identification rate to 88%. The eye, nose and mouth experts obtained
an identification rate of 80%, 77% and 83% respectively. Combining the three facial experts increased
the identification rate to 91%. The work shows that VR via extractors with separate features
improve the accuracy of a BA system.

For the problem of face verification, Marcel and Bengio [19] have shown that instead of using just
face images, one can use normalised face colour histogram as an additional feature to the existing
normalised face image to train client specific classifiers. This yields an improved classification result.

Luettin [20] investigated the combination of speech and (visual) lip information using feature vec-
tor concatenation. In order to match the frame rates of both feature sets, speech information was
extracted at 30 fps (frames per second) instead of the usual 100 fps. In text-dependent configura-
tion, the fusion process resulted in a minor performance improvement. However, in text-independent
configuration, the performance slightly decreased. This could probably be due to the curse of dimen-
sionality explained earlier. These works [19,20] showed that VR via extractors with concatenated
features may also improve the accuracy of a BA system.

In this report, we decided to use VR via extractors with separate features for the following reasons:
it is better understood; its use has already been justified in Section II; and it is often computationally
less expensive compared to its counterpart with concatenated features.

VR via real samples has been demonstrated by Kittler et al [5]. In their work, they combined
multiple snapshots of a single biometric property using a Bayesian framework. It is observed that as
more and more samples are used, the classification error decreases until a point where it is “saturated”,
i.e., further increase of samples will not decrease the classification error further.

We have shown that VR via synthetic samples [21] is also a viable solution when real samples
are not available due to some reasons. For instance, the data transfer bandwidth is limited or taking
several biometric samples are inconvenient. This approach works only if such transformation can
be found. For face images, geometric transformations can be readily applied without the loss of
information. Other image-to-image transformations, i.e., quotient image and methods based on the
symmetric property of faces can also be used to normalise the face image against lighting variations.
The only constraint is that such transformation itself must not require many training data.

Several studies have shown that VR via different modalities is superior, on average, to any
single-modal biometrics. The following are some strategies proposed in the literature:

e Jain et al [22] have proposed a multi-source biometric system design that integrates face and
fingerprints to make a personal identification.

e Ross et al [2] have used hand-scan, fingerprint and face-scan to improve the overall result.

e Poh [23] used eye features and voice features extracted via wavelets to verify a person’s identity.
Both the face and voice experts are combined using the AND operation. Experiments showed
that combining both experts improved the accuracy of the system.

e Dieckmann et al [24] used three experts (frontal face expert, dynamic lip image expert and
text-dependent speech expert). A hybrid fusion scheme involving majority voting and opinion
fusion was utilised. Two of the experts had to agree on the decision and the combined opinion
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had to exceed a pre-defined threshold. The hybrid fusion scheme provided better performance
than using the underlying experts alone.

e Jourlin et al [25] used a form of weighted summation fusion to combine the opinions of two
experts: a text-dependent speech expert and a text-dependent lip expert. It was shown that
fusion led to better performance than using the underlying experts alone.

e Sanderson [26] used face and noisy speech information and combined both modalities using
adaptive weights and various fusion methods. The resultant system provides a good trade-off in
both clean and noise conditions.

The above list is certainly not exhaustive. Most multi-modality approaches yield improvement
in results. This is a common and promising approach to improve a BA system. According to the
VR justification presented in Section II, different biometric modalities provide nearly uncorrelated
biometric data comparing to other VR techniques. Indeed, empirical results later in this study does
support this argument.

5 Databases and Feature Extraction

There are already many works done based on different databases. In this work, the VR techniques
are applied on the XM2VTS and LSIIT databases. The XM2VTS database [27] provides a real world
data corpus with large amount of data (200 clients). LSIIT database [23] is used to complement what
XM2VTS is lacking: providing a small database (30 clients), with multiple audio-video samples for
each access while allowing multiple runs of experiments in a reasonable amount of time.

5.1 XM2VTS database
5.1.1 Description of the database

The XM2VTS database [27] contains synchronised video and speech data from 295 subjects, recorded
during four sessions taken at one month intervals. On each session, two recordings were made, each
consisting of a speech shot and a head shot. The speech shot consisted of frontal face and speech
recordings of each subject during the pronunciation of a sentence.

The video was captured at a colour sampling resolution of 4:2:0 with 16 bit audio at a frequency
of 32 kHz. The video data was compressed at a fixed ratio of 5:1 in the proprietary DV format. When
capturing the database the camera settings were kept constant across all four sessions. The head was
illuminated from both left and right sides with diffusion gel sheets being used to keep this illumination
as uniform as possible. A blue background was used to allow the head to be easily segmented out.

The database is divided into three sets: a training set, an evaluation set and a test set. The
training set was used to build client models, while the evaluation set (Eval) was used to compute the
decision thresholds (as well as other hyper-parameters) used by classifiers. Finally, the test set (Test)
was used to estimate the performance.

The 295 subjects were divided into a set of 200 clients, 25 evaluation impostors and 70 test
impostors. There exists two configurations or two different partitioning of the training and evaluation
sets. They are called Lausanne Protocol I and II, denoted as LP1 and LP2 in this paper. Thus,
besides the data for training the model, the following four data sets are available for evaluating the
performance: LP1 Eval, LP1 Test, LP2 Eval and LP2 Test. Note that LP1 Eval and LP2 Eval
are used to calculate the optimal thresholds that will be used in LP1 Test and LP2 Test, respectively.
Results are reported only for the test sets, in order to be as unbiased as possible (using an a priori
selected threshold). Table 1 is the summary of the data. In both configurations, the test set remains
the same. However, there are three training data per client for LP1 and four training data per client
for LP2. More details can be found in [28].
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Table 1: The Lausanne Protocols of XM2VTS database

Data sets Lausanne Protocols
LP1 LP2

Training client accesses 3 4

Evaluation client accesses 600 (3 x 200) | 400 (2 x 200)

Evaluation impostor accesses 40,000 (25 x 8 x 200)

Test client accesses 400 (2 x 200)

Test impostor accesses 112,000 (70 x 8 x 200)

5.1.2 Feature Used for the XM2VTS Database

For the face data, a bounding box is placed on a face according to eyes coordinates located manually.
This assumes a perfect face detection®. The face is cropped and the extracted sub-image is down-
sized to a 30 x 40 image. After enhancement and smoothing, the face image has a feature vector of
dimension 1200.

In addition to these normalised features, RGB (Red-Green-Blue) histogram features are used. To
construct this additional feature set, a skin colour look-up table must first be constructed using a large
number of colour images which contain only skin. In the second step, face images are filtered according
to this look-up table. Unavoidably, non-skin pixels are captured as well. The resultant features will be
submitted to a classifier to discriminate its degree of relevance. For each colour channel, a histogram
is built using 32 discrete bins. Hence, the histograms of three channels, when concatenated, form a
feature vector of 96 elements. More details about this method, including experiments, can be obtained
from [19].

Another feature set derived from Discrete Cosine Transform (DCT) coefficients [29,30] has also
given good performance. The idea is to divide images into overlapping blocks. For each block, a
subset of DCT coefficients are computed. The horizontal, vertical and diagonal (with respect to
a reference block of) DCT coefficients can also be derived. It has been shown that these features
are comparable (in terms of performance in the context of BA) to features derived from Principal
Component Analysis [29].

For the speech data, the feature set used in the experiments are Linear Filter-bank Cepstral
Coefficients (LFCC) [15]. These features are obtained from DCT transformation of Short Term Fourier
Transform coefficients for each frame of a fixed size window. It is often necessary to remove non-speech
frames [15], because they do not contain any discriminative or useful information for the purpose of
BA. This problem is called segmentation of speech/non-speech. This segmentation is done in this case
using two competing Gaussians trained in an unsupervised way by maximising the likelihood of the
data given a mixture of the 2 Gaussians. One Gaussian will end up modelling the speech and the
other will end up modelling the non-speech feature frames [31]. In general, the segmentation given by
this technique is satisfactory.

5.2 LSIIT database

The LSIIT database® contains face images and voice passwords of 30 clients. It is used to simulate
a BA scenario of a multi-modal biometric system in a secured workplace with a small population of
users.

A generic PC web cam is used for sampling a 320 x 240 RGB image. Within this area of viewing,
a face image is cropped out to the dimension of 150 x 225. The cropped out image is saved in the

5Hence, even if this is often done in the literature, the final results using face scores could be optimistically biased
due to this manual detection step. Note on the other hand that due to the clean and controlled quality of XM2VTS,
automatic detectors often yield detection rates around 99%.

6The LSIIT database can be obtained from http://hydria.u-strasbg.fr/~norman/BAS.
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24-bit bitmap (BMP) format. When taking the photo, the person is requested to move his face into
the area of interest where the cropped face image is expected. The recorded image contains an upright
frontal image.

Each voice password is sampled for a duration of three seconds at 8kHz on a mono-channel micro-
phone. The data is saved in a wave (WAV) file format of approximately 24K bytes. The password of
each client could be any short word such as his or her name. The voice-scan is taken in the laboratory
environment to model a typical indoor environment. No effort is made to make the problem more
challenging or particularly easier.

Contrary to the XM2VTS database, there are only 30 clients. Furthermore, there is only one
session. However, with this session, 10 face images and 10 recordings of speech were recorded. There
are only two data sets: training and test sets. 5 samples are randomly selected for training and
the remaining 5 samples are used for testing. Note that there is no data set reserved for tuning the
threshold parameters as in the XM2VTS database. Due to the lack of the third data set, the HTERs
obtained on this test data set are a posteriori. Therefore, the HTERS on both of the databases are
not comparable.

For the face verification task, Principal Component Analysis (PCA) [32] and Linear Discriminant
Analysis (LDA) [33] features have been used for this database. LDA and PCA are linear transfor-
mations which, in our case, reduced the face image from 150 x 225 pixels to 50 and 144 real values,
respectively. The number of components in the PCA is determined such that the eigen-value ratio
retains approximately 95% of the variance of the face data. Due to lack of intra-class data, the LDA
features are derived directly from the PCA features. The speech information is extracted using Morlet
wavelets. The speech features consist of wavelet coefficients in different scales that are truncated and
sub-sampled into a fixed length feature. More details can be obtained from [4,23].

6 Empirical Results

In order to analyse the effects due to VR techniques, we first present the baseline experimental results.
This is followed by results obtained by various VR techniques.

6.1 Baseline Performance on The XM2VTS Database

Three types of face features, one type of speech features and two classifiers are used here. The features
are:

1. FH: It is a normalised face image concatenated with its RGB Histogram (thus the abbreviation
FH)

2. DCTs: It is a set of face features derived from a subset of DCT-derived coefficients. The DCT
algorithm used overlapping windows (block of sub-image) having the size of 40 x 32 pixels. (s

indicates the use of this small image comparing to the bigger size image with the abbreviation
b).

3. DCThb: Similar to DCTs except that it uses overlapping windows having the size of 80 x 64.

4. LFCC: The Linear Filter-bank Cepstral Coefficient (LFCC) speech features were computed with
24 linearly-spaced filters on each frame of Fourier coefficients sampled with a window length of
20 milliseconds and each window moved at a rate of 10 milliseconds. 16 DCT coefficients are
computed to decorrelate the 24 cepstrum coefficients obtained from the linear filter-bank.

Two different types of classifiers were used for these experiments: a Multi-Layer Perceptron
(MLP) [6] and a Bayes Classifier using Gaussian Mixture Models (GMMs) to estimate the class
distributions [6]. While in theory both classifiers could be trained using any of the previously defined
feature sets, in practice only some specific combinations appear to yield reasonable performance.
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Whatever the classifier is, the hyper-parameters (e.g. the number of hidden units for MLPs or the
number of Gaussian components for GMMs) are tuned on the evaluation set LP1 Eval. The same set
of hyper-parameters are used in both LP1 and LP2 configurations of the XM2VTS database.

For each client-specific MLP, the samples associated to the client are treated as positive patterns
while all other samples not belong to the client are treated as negative patterns. This is commonly
called the one-against-all strategy. All MLPs reported here were trained using the stochastic version
of the error-backpropagation training algorithm [6].

For the GMMs, two competing models are often needed: a world and a client-dependent model.
Initially, a world model is first trained from an external database (or a sufficiently large data set)
using the standard Expectation-Maximisation algorithm [6]. The world model is then adapted for
each client to the corresponding client data of the training set of the XM2VTS database using the
Maximum-A-Posteriori adaptation [34] algorithm.

The baseline experiments based on DCT coefficients were reported in [30] while those based on
normalised face images and RGB histograms (FH features) were reported in [19]. Details of the
experiments, coded in terms of pairs of (features, classifiers), are given below:

1. (FH,MLP) Features are normalised Face concatenated with Histogram features. The client-
dependent classifier used is an MLP with 20 hidden units. The MLP is trained with geometrically
transformed images [19].

2. (DCTs,GMM) The face features are DCT-derived coefficients with each overlapping window
(block of sub-image) having the size of 40 x 32 pixels There are 64 Gaussian components in the
GMM. The world model is trained using all the clients in the training set [30].

3. (DCTb,GMM) Similar to (DCTs,GMM), except that the features used are DCT-derived coef-
ficients with the overlapping window-size of 80 x 64. The corresponding GMM has 512 Gaussian
components [30].

4. (DCTs,MLP) Features are the same as those in (DCTs,GMM) except that an MLP is used in
place of a GMM. The MLP has 32 hidden units [30].

5. (DCTb,MLP) The features are the same as those in (DCTb,GMM) except that an MLP with
128 hidden units is used [30].

6. (LFCC,GMM) This is the Linear Filter-bank Cepstral Coefficients (LFCC) obtained from the
speech data of the XM2VTS database. The GMM has 500 Gaussian components and this is the
best known model currently available.

The baseline experiments are shown in Table 2.

As can be seen, among the face experiments, (DCTb,GMM) performs the best across all config-
urations while (DCTb,MLP) performs the worst. Regardless of strong or weak classifiers, as long as
their correlation is weak, they can be used in the VR techniques. Note that in the LP2 configurations,
(FH,MLP), (DCTbh,GMM) and (LFCC,GMM) are the only results currently available.

6.2 VR via Different Modalities

From the 5 baseline experiments on the face and 1 baseline experiment on the speech in LP1 config-
uration, we combined each baseline face experiment with the single speech baseline. In LP2, only 2
face baseline experts and 1 speech baseline expert are available. Therefore, in total, there are 5 and 2
experiments that can be performed on LP1 and LP2, respectively. Note that all scores are normalised
to unit variance (i.e., a score is subtracted by its mean and divided by its standard deviation based
on the evaluation set). The scores are combined using the average operation defined in Equation 2.
The “Average HTER” in Table 3 is calculated by taking the average HTER of its corresponding
participating baseline expert taken from Table 2. Two important observations can be made here: (i)
the combined experts are better than the average of their participating experts, and (ii) the combined
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Table 2: Baseline performance of different modalities evaluated on the XM2VTS database based on
a priori selected thresholds

Data sets (Features, FAR | FRR | HTER
classifiers)
Face LP1 Test (FH,MLP) 1.751 | 2.000 1.875
Face LP1 Test | (DCTs,GMM) | 4.454 | 4.000 4.227
Face LP1 Test | (DCTh,GMM) | 1.840 | 1.500 1.670
Face LP1 Test (DCTs,MLP) | 3.219 | 3.500 3.359
Face LP1 Test | (DCTb,MLP) | 4.443 | 8.000 6.221
Voice LP1 Test | (LFCC,GMM) | 1.029 | 1.250 1.139
Face LP2 Test (FH,MLP) 1.469 | 2.250 1.860
Face LP2 Test | (DCTb,GMM) | 1.039 | 0.250 0.644
Voice LP2 Test | (LFCC,GMM) | 1.349 | 1.250 1.300

experts happen to be better than any of their participating experts. Therefore, VR via different
modalities is a promising approach.

6.3 VR via Samples

For experiments on VR via samples, (see Table 4), we decided to use the LSIIT database because
it has 5 test samples and each sample is not necessarily taken in the order of time sequence. The
face feature is extracted using the PCA algorithm. The speech feature is extracted using wavelets
transformation. As more and more samples are used for testing (from 1 to 5), the HTER for each
modality decreases, but the rate of decrease is also smaller each time. This indicates that continuing
to add more samples may not help, because the HTER may be ‘saturated”, i.e, variance cannot be
decreased further. Given the small size of the database, 0 HTER error rate is reached for the face
features.

6.4 VR via Synthetic Samples

To illustrate the concept of VR via synthetic samples, the trained (FH,MLP) baseline model is reused.
However, for each original test and evaluation face image, 329 synthetically transformed face images
(using translation, scaling and mirroring operations) are added into the evaluation and test set. The
resultant 330 scores are simply averaged, according to the variance reduction theory discussed earlier.
The results are shown in Table 5. Each odd line (labelled “Original”, i.e., the baseline found in Table 2)
in Table 5 should be compared to its corresponding even line (labelled “Averaged”, i.e., with synthetic
samples). For both data sets LP1 Test and LP2 Test, VR via synthetic samples always outperforms
the original baseline. Although generating synthetic samples does not give additional information,
surprisingly it does help in reducing variance of scores obtained from the MLP. If training with noise
may help in generalisation, testing with noise can also probably be helpful. This phenomenon can be
explained by VR via synthetic samples described earlier. Further details can be obtained from [21].

6.5 VR via Extractors

In this section, both the LSIIT and XM2VTS databases are used. Experiments on VR via extractors
are repeated 10 times on the LSIIT face database. The LDA and PCA features are used to provide two
different types of features. 5 samples are used for training and the remaining 5 samples are used for
testing. These results are shown in Table 6. x and ¢ in Table 6 are, respectively, mean and standard
deviation of the HTER values above. The column labelled “Combined” shows the HTER based on the
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Table 3: Performance of VR via modalities of the XM2VTS database based on a priori selected
thresholds

Data sets (Features, FAR | FRR | HTER | Average
classifiers) HTER
LP1 Test (FH,MLP) 0.299 | 0.500 | 0.399f 1.507

(LFCC,GMM)
LP1 Test | (DCTs,GMM)

(LFCC,GMM)
LP1 Test | (DCTh,GMM)

(LFCC,GMM)
LP1 Test | (DCTs,MLP) | 0.181 | 1.000 | 0.5917 2.249
(LFCC,GMM)
LP1 Test | (DCTb,MLP) | 0.494 | 0.500 | 0.4977 3.680
(LFCC,GMM)
LP2 Test (FH,MLP) 0.052 | 0.250 | 0.151F 1.580
(LFCC,GMM)
LP2 Test | (DCTb,MLP) | 0.045 | 0.250 | 0.1477 0.972
(LFCC,GMM)
1 indicates better performance that the participating experts

0.574 | 0.500 | 0.5377 2.683

0.291 | 0.750 | 0.520f% 1.405

Table 4: Performance of VR via real samples evaluated on the LSIIT database using a posteriori
selected thresholds

No. of Face Voice
samples used | HTER | HTER
1 7.184 6.897

2 2.701 4.828

3 1.207 4.540

4 0.000 2.126

5 0.000 2.414

average of normalised scores obtained from two MLP classifiers (for LDA and PCA features), while
the column labelled “Average” shows the HTER based on the average HTER of the two face experts.
Both the classifiers happen to have 8 hidden units. These numbers of hidden units are selected by
validation on the test set, hence all results become optimistically biased but the overall behaviour can
still be analysed.

It can be observed that in this particular case, the average HTER of the combined expert (forth
column of Table 6) is lower than any of the two participating experts, even though the VR justification
in Section IT modestly asserts that the combined HTER, will always be lower than the average HTER
of the two experts. Furthermore, the standard deviation of the combined expert is also lower than
any of its two underlying expert. This means that the scores of the combined expert are more stable.
This is another advantage of using VR techniques.

In the second experiment using this approach, we used the more realistic XM2VTS database.
However, several runs of the experiment is not possible as in the case of the LSIIT database. The 5
baseline face experts in LP1 configuration shown in Table 2 were used. As for the LP2 configuration,
the 2 face experts are also used. These two sets of experiments are carried out on the LP1 Eval, LP1
Test, LP2 Eval and LP2 Test data sets. However, only the LP1 Test and LP2 Test results, which give
a priori HTERs, are shown in Table 7.
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Table 5: Performance of VR via synthetic samples evaluated on the XM2VTS database based on a
priori selected thresholds

Data sets | Models FAR | FRR | HTER
LP1 Test | Original | 1.751 | 2.000 1.875
LP1 Test | Averaged | 1.474 | 1.750 1.612
LP2 Test | Original | 1.469 | 2.250 1.860
LP2 Test | Averaged | 1.285 | 1.750 1.518

Table 6: Performance of VR via extractors evaluated on 10 runs of experiments of the LSIIT database
using a posteriori selected thresholds

Experiments HTER

LDA PCA | Combined | Average
1 3.460 | 15.069 1.333% 9.264
2 6.621 | 17.471 3.368t 12.046
3 3.655 | 10.310 1.437% 6.983
4 6.598 | 20.862 3.253t 13.730
5 4.034 | 16.057 2.529% 10.046
6 0.161 | 16.724 0.805 8.443
7 1.345 | 14.172 3.333 7.759
8 3.989 | 15.483 2.023t 9.736
9 0.046 | 15.287 1.437 7.667
10 0.667 | 14.460 1.333 7.563
I3 3.058 | 15.590 2.085 9.324
o 2.442 | 2.675 0.965 2.162

T indicates better performance that the participating experts

Two observations can be made: (i) the HTER of all 5 combined experts are better than the
average of their participating experts, and (ii) out of 5 combined experts, 3 have lower HTER, than
their participating experts (see Table 2 for comparison).

6.6 VR via Classifiers

VR via classifiers can be viewed as an ensemble algorithm. The simplest ensemble, with well-
founded theory according to Bishop [6, Chap. 9], is to average the output of classifiers trained
on the same feature type. This is also in accordance to the demonstration shown in Section II. The
baseline experts of Table 2 that meet this criterion are the pairs {(DCTs,GMM), (DCTs,MLP)} and
{(DCTb,GMM), (DCTb,MLP)}, which are available in XM2VTS LP1 protocol only. For this reason,
experiments are carried out on LP1 only. The combined experts are shown in Table 8.

Similar observations can be made: (i) all combined experts are better than the average experts;
and (ii) 1 out of 2 combined expert is better than its participating experts.

6.7 Comparison of various VR Techniques

Among various VR techniques, which one is better? Based on the experiments already done, it is
possible to calculate the factor of reduction of a given combined expert with respect to the average
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Table 7: Performance of VR via extractors evaluated on the XM2VTS database based on a priori
selected thresholds

Data sets (Features, FA FR | HTER | Average

classifiers) HTER

LP1 Test (FH,MLP) 2.033 | 1.250 | 1.6417 3.051
(DCTs,GMM)

LP1 Test | (FHEL,MLP), | 1.495 | 0.750 | 1123t | 1.773
(DCTh,GMM)

LP1 Test (FH,MLP), 1.450 | 1.500 | 1.4757% 2.617
(DCTs,MLP)

LP1 Test (FH,MLP), 1.146 | 2.750 1.948 4.048
(DCTb,MLP)

LP2 Test (FH,MLP) 0.792 | 1.000 0.896 1.252
(DCTh,GMM)

T indicates better performance than the participating experts

Table 8: Performance of VR via different classifiers evaluated on the XM2VTS database based on a
priori selected thresholds

Data sets (Features, FA FR | HTER | Average

classifiers) HTER

LP1 Test | (DCTs,GMM), | 3.245 | 2.500 | 2.8737 |  2.949
(DCTs,MLP)

LP1 Test | (DCTb,GMM), | 2.046 | 3.750 | 2.898 4.790
(DCTb,MLP)

T indicates better performance than the participating experts

HTER of its participating experts. Let us call this factor 8, which can be defined formally as follows:

mean; (HTER;)
B=—"HTER, (12)
where 7 is the index to each participating expert and HTER, is the HTER of the combined expert.
Note that £ is analogous to a defined in Equation 8. They are however not the same because
« measures the factor of variance reduction while § measures the factor of reduction in terms of
HTER. This will give a relative measure to quantify empirically the importance of each class of VR
techniques. (3 can easily be calculated from Tables 3, 7, 8 and 5 by using the average HTER and the
HTER of the combined experts, all based on the XM2VTS database. Note that for the experiments
on VR via real samples (Table 6), experiments are based on the LSIIT database, different from the
rest of the experiments. Furthermore, it uses a posteriori selected thresholds, different from the rest
of the results that use a priori selected thresholds. As a result, VR via real samples may be overly
optimistic, i.e., its 8 value may appear slightly higher than it would have been on unseen data. The
results are shown in Table 9. The third column in Table 9 shows the number of data that is used
to calculate the corresponding mean, standard deviation (fourth column) and median (fifth column).
It can be observed that VR techniques via modalities (first line) has the highest 8 value. However,
from its variance, one can observe that its HTERs fluctuate very much. This is due to the possible
inaccuracy when the HTER of combined expert becomes very small.
Both the median and mean of 3 show that VR via modalities is the best VR technique. VR via
real samples is the second most effective VR technique. Again, this should be interpreted with care
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Table 9: Comparison of various VR techniques based on all experiments carried out

VR Table No. mean(f3) median(3)
techniques of data + std.dev.
Modalities 3 7 5.680+ 2.683 4.996
Real samples 67 10 5.222 £+ 2.234 4.836
Extractors 7 5 1.730 £ 0.249 1.774
Classifiers 8 2 1.340 + 0.443 1.340
Synthetic samples 5 2 1.230 £ 0.00004 1.230
T indicates performance taken from the LSIIT database using a posteriori selected thresholds

because its HTERs are obtained a posteriori. Fortunately, between VR via real samples and VR via
extractors, there is a considerable gap of g difference, i.e., between the mean of 5.680 and the mean of
1.730 of VR via modalities and VR via extractors, respectively. The next most effective VR technique
is VR via extractors, followed by VR via classifiers and VR via synthetic samples.

This order of reduction factor is in fact not a coincidence. It reveals their degree of independence.
Higher £ can be interpreted as higher independence. The degree of independence due to modalities is
higher than that due to real samples, the degree of independence due to real samples is higher than
that due to features, and etc.

Interestingly, from the application point of view, VR via modalities also has the highest overhead
cost, i.e., cost of adding a new modality, software, computation time, etc. VR via real samples has it’s
own overhead cost as well: more access time needed to scan multiple biometric samples. For the rest
of VR techniques, the computation cost also decreases from VR via extractors to VR via classifiers. In
a nutshell, from the point of view of VR techniques, the accuracy of a BA system can be boosted by
means of adding more computation cost. Fortunately, this cost increases only linearly in the number
of units added in the VR techniques.

7 Conclusion

Variance reduction (VR) is an important technique to increase accuracy in regression and classification
problems. In this study, several approaches are explored to improve Biometric Authentication systems,
namely VR via modalities, VR via extractors, VR via classifiers, VR via real samples and VR via
synthetic samples. A brief survey is made on the literature according to these techniques. The
experiments carried out on the XM2VTS database have shown that the combined experts due to VR
techniques always perform better than the average of their participating experts. Furthermore, most
combined experts outperform the best participating expert based on the HTER. It is shown empirically
that VR via modalities is the best VR techniques, followed by VR via real samples, VR via extractors,
VR via classifiers and VR via synthetic samples. This can be explained by the independence of the
scores due to these VR techniques. The higher the degree of independence of a given VR, technique, the
higher the reduction factor, i.e., the ratio between the average HTER of the participating experts and
the HTER of the combined expert. As new and more powerful extraction and classification algorithms
become available, they can all be integrated into the VR framework. Therefore, VR techniques are
potentially very useful for biometric authentication.
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