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Abstract. This paper presents a general method for incorporating prior knowledge into kernel
methods. It applies when the prior knowledge can be formalized by the description of an object
around each sample of the training set, assuming that all points in the given object share the same
desired class. Two implementation techniques of this method, based on analytical kernel jittering
and the vicinal risk minimization principle, are considered. Empirical results on one artificial
dataset and one real dataset based on EEG signals demonstrate the performance of the proposed
method.
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1 Introduction

Prior knowledge is often used in machine learning algorithms to constrain models towards reasonable
solutions. One such class of prior knowledge relates to invariances. These are transformations of
the inputs that leave the outputs unchanged. The general setting of including invariances into kernel
methods was considered in [1]. One of the widely used practical methods for incorporating invariances
into SVMs is the Virtual Support Vector method, based on generating artificial samples from the
current Support Vectors of the problem [2]. The method performed particularly well on an optical
digit recognition task. Another general way is to modify the cost function of the algorithm in order
to penalize solutions not following the invariance properties. One such method (though not really
suitable for large-scale datasets) was developed in [3]. Finally, a method called “kernel jittering” [4]
combines the generation of artificial examples with kernel modification.

In this paper, we present yet another approach to the problem, which assumes that the prior
knowledge can be formalized as a mapping of a special kind. This mapping transforms each sample
into an object in such a way that it includes the prior knowledge, similar to that done in the Tangent
Distance approach [5]. The method does not lead either to enlarged training sets or to modification
of the cost function. It simply exploits standard SVM optimization algorithms.

The rest of the paper is organized as follows. The general idea is presented in Section 2, as well
as two implementations based on “analytical jittering” and the Vicinal Risk Minimization principle.
Section 3 presents some experiments on artificial data where we illustrate the performance of the
proposed method, and on real data, where the task is to classify EEG signals for a Brain-Computer
Interface system. Section 4 completes the paper with discussion and conclusion.

2 From Samples To Objects

Suppose we have some understanding of our data that can be formalized as a transformation of the
inputs that leaves the outputs unchanged. For example, in a 2D image classification task we are often
given the evident knowledge that small rotations and translations of the raw images do not affect the
desired output class. Suppose the representation of the data (the set of features) allows us to describe
the desired transformation as a mapping that leaves the outputs unchanged. The mapping applied
to every sample produces a set of corresponding objects, which becomes a point of our consideration.
In other words, we assume that given some understanding of the data we are able to generalize each
sample into the equivalence class - the object in the input space.

In general, this can also be thought of as follows. Suppose we have an (output-independent) model
for the samples we are dealing with. The model represents our knowledge of the sample’s properties
and can be of a very general kind. Given a sample from the dataset, the model transforms it into an
object :

objecti = model|samplei (1)

If this formalization is successfully performed, it is possible to deal with objects instead of samples
when solving our particular learning problem. The approach is quite general since it gives a way to
include some prior knowledge (on the invariances, for instance) into the learning method.

In the following subsections, we describe some particular examples of implementation of the de-
scribed approach.

2.1 Analytical “Jittering”

The method of kernel jittering was proposed in [4]. It combines artificial sample generation and kernel
function modification as follows. Consider two samples, xi and xj and the corresponding non-jittered
kernel function Kij . Assume sample xj could have been any of a set of values around xj according to a
“jittering” function. Consider the transformed (“jittered”) forms of the sample xj , including itself, and
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select one (xq∗) closest to xi in the feature space according to the Euclidean distance in the feature
space:

q∗ = arg min
q

√
Kii − 2Kiq + Kqq. (2)

The new “jittered” kernel for the examples xi and xj is simply Kiq∗ . This idea can be interpreted as
follows. Believing that transformed examples belong to the same class, kernel jittering corresponds
to a kernel based on the distance between the sets generated from the examples by the allowed
transformations.

The main drawback of the jittering approach is the need to do a lot of kernel calculations while
selecting the minimal distance (2). The approach also requires that we do these calculations during
the testing phase. Moreover, the kernel matrix is no longer symmetric and can, in fact, become non
positive definite.

We argue in this paper that it is sometimes possible to implicitly define the desired transformation,
hence carrying out the “jittering” and distance minimization analytically.

Suppose we use the isotropic Gaussian RBF kernel as the “base” one:

K(xi, xj) = e
−ρ2

2σ2 , (3)

where the distance in the input space is defined by ρ2 = ‖xi − xj‖2 and σ2 is the variance of the
kernel. Then, distance minimization in the feature space (2) is equivalent to distance minimization in
the input space. The jittered kernel is then the RBF kernel with the minimized distance.

Let us now consider the analytical jittering process. We restrict ourselves to jitterings that can be
described analytically. This assumption restricts the set of possible invariances, since a lot of real-life
invariant transformations can not, unfortunately, be formalized.

Having proposed to define a geometrical object in the input space that corresponds to the set
generated by jittering the sample, we can now consider distances between the samples and objects
or between two geometrical objects. In the following subsections we propose some examples of such
analytical jittering.

2.1.1 Linear Transformation

Consider the linear transformation
x 7→ αx + βe, (4)

where α ∈ R1 or α ∈ [a, b], a, b ∈ R1, β ∈ [c, d], c, d ∈ R1, and e is a unit vector.
In this case and considering β = 0, the desired distance is given by

ρ2(x, L(xi)) = (x− α∗xi)2, α∗ =
(x, xi)

x2
i

, (5)

which is simply the distance between x and the line L(xi) corresponding to the directing vector xi. If
the possible scalings of xi are bounded to the segment [axi, bxi], the distance is given by

ρ2(x, L(xi)) = (x− |α∗|[a,b]xi)2, α∗ =
(x, xi)

x2
i

(6)

where |g|[a,b] is defined as a if g < a, b if g > b, and g otherwise.
When β 6= 0 it becomes slightly more complicated. The distance between x and a two-dimensional

manifold given by
x 7→ Gx = {xt + bp; t ∈ [a, b], p ∈ [c, d]} (7)

has to be computed. In 3D it is a flat parallelogram with the vertexes formed by vectors axi − ce,
axi + ce, bxi − ce, bxi + ce. This problem can be solved analytically.
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2.1.2 Translations

The second example is a particular case of translation invariance, i.e. the desired transformation is

x 7→ Px = {~eiti + x; ti ∈ [−tlimi , tlimi ]}, (8)

where ~ei are the basis vectors of the input space RN and tlimi is the maximum allowed translation in
dimension i, with i = 1, 2, ...N . It corresponds to the mapping into a parallelepiped whose “center” is
vector x and all the edges are parallel to the axes.

The distance between a vector x and a parallelepiped Px′ is given by minimization of

ρ2(x, Px′) = min
~t

(x− Px′(~t))2, (9)

over the set of parameters ~t = {t1, t2, ...tN} and can be calculated as follows:

ρ2(x, Px′) =
N∑

j=1

((xj − x′j)− |xj − x′j |[−tlim
i ,tlim

i ])
2, (10)

where xj , x′j are the components of the corresponding vectors.

2.1.3 Object to Object Distances

Using the sample-to-object distances, we take into account some prior knowledge but still use a
non symmetric kernel matrix. For the considered examples, the segment-to-segment and box-to-box
distances are derived analytically. However, in general, the object-to-object distance calculation is
quite a difficult task and often can not be easily performed. In general, the computation of the
Euclidean distance between the objects leads to a constrained optimization problem. However, if the
unbounded parameterization is used, one can apply the gradient methods for distance calculation
while taking care of the local minima if the object is not convex. If the object is a differentiable
manifold, the approximation with the tangent plane can also be used [5].

In some cases it is possible to provide a part of the procedure analytically, but the rest of the
procedure can still be computationally expensive for high-dimensional input spaces. The evident way
of applying a Monte-Carlo method in these cases can appear to be equivalent to the original jittering.

2.2 Vicinal Risk Minimization

Consider the standard setting of the learning problem. Given the problem of learning the function
f(x, λ) from the examples ((x1, y1), (x2, y2), ...(x`, y`)), one has to take an appropriate loss function
L(.) and minimize the following risk functional

R(λ) =
∫

L(y − f(x, λ))p̂(x, y)dxdy (11)

using some estimation of the probability density p̂(x, y). The well-known Empirical Risk Minimization
principle [6] can be easily derived from (11), assuming the trivial empirical distribution.

Making more sophisticated assumptions on the density p̂(x, y), it is possible to derive different
learning algorithms. It was shown that this framework integrates several existing algorithms, including
Ridge Regression, Constrained Logistic Classifiers and Support Vector Machines [7].

Vicinal Risk Minimization (VRM) is a new learning principle proposed by Vapnik [8]. Defining
the vicinities of the training samples (the support of the distribution functions) and estimating the
unknown input density therein, we obtain the following Vicinal Risk functional:

Rvic(α) =
1
`

∑̀

i=1

L

(
y −

∫
f(x, α)p(x|xi, ri)dx

)
, (12)
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where xi is a training sample and ri is its vicinity parameter. Minimizing (12) instead of (11) is called
the Vicinal Risk Minimization (VRM) principle.

Vapnik mentions how to use the VRM principle to incorporate an invariance into the learning
algorithm. Using the density functions p(x|xi, ri) defined on the non-symmetrical support that de-
scribes the invariance to the desired transformation, one enforces the learning algorithm to obey the
invariance’s properties.

The idea can be related to the one described in section 2. As we will see, in the VRM-based SVM
algorithm the vicinity definition appears to be equivalent to specifying the corresponding objects and
kernels between them.

The following Vicinal Support Vector algorithm is obtained in [8]:

f(x) =
∑̀

i=1

β∗i D(x, xi) + b, (13)

where the β∗i coefficients are such that

β∗ = arg max
β

∑̀

i=1

βi − 1
2

∑̀

i,j=1

yiyjβiβjM(xi, xj), (14)

subject to the constraints:
∑̀
i=1

yiβi = 0,

0 ≤ βi ≤ C.
(15)

Functions D(x, xi) and M(xi, xj) are one- and two-vicinal kernels correspondingly:

D(x, xi) =
∫

K(x, x′)p(x′|xi, ri )dx′, (16)

M(xi, xj) =
∫∫

K(x, x′)p(x|xi, ri )p(x′|xj , rj )dxdx′. (17)

2.2.1 Scaling Invariance

Let us present here a simple example. To obtain the invariance described by (4) with β = 0, consider
the following vicinity density function:

p(x|xi, γ) =
1√
2πγ

∫
δ(x− (1− α)xi)e

− α2

2γ2 dα, (18)

where δ is the delta function, and the γ parameter defines the width of the vicinity and, hence, the
influence of scaling invariance.

Substituting (18) in both (16) and (17) using the standard isotropic RBF kernel function given
in (3) with the bandwidth parameter σ gives:

D(x, xi) =
σ

κ
e−

(x−xi)
2

2κ2 e−
γ2

2σ2κ2 (x2x2
i−(x,xi)

2) (19)

and

M(xi, xj) =
σ2

η
e
−σ2(xi−xj)2

2η2 e
− γ2

η2 (x2
i x2

j−(xi,xj)
2)

, (20)

where the following definitions were used:

κ2 = γ2x2
i + σ2, (21)
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η2 = γ2σ2(x2
i + x2

j ) + γ4(x2
i x

2
j − (xi, xj)2) + σ4. (22)

The resulting kernels are still RBF-based. One can note that the “effective” kernel bandwidth
depends both on the σ and γ parameters and on the samples xi and xj . This is an important property
of the algorithm: the kernel function varies in the input space.

The one-vicinal VRM-based kernel for the scalings bounded to [a, b] (”hard” vicinity with constant
density is used) looks like

D(x, xi) =
√

π

2
σ

‖xi‖(b− a)
e
− x2x2

i−(x,xi)
2

2σ2x2
i

[
erf

(
tx2

i − (x, xi)√
2σ‖xi‖

)∣∣∣∣
t=b

t=a

]
. (23)

In the limit case of unbounded scalings, this kernel mainly coincides with the RBF kernel (3) with
distance (6), obtained by “analytical jittering”.

In general, the kernels (19) and (20) correspond to the kernels between objects defined by (18).
The difference between the approaches described in sections 2.1 and 2.2 lies in several aspects. First
of all, VRM allows using “soft” objects, while in the analytical jittering approach we considered only
“hard” geometrical objects. Another difference is that in VRM we use the kernel averaged over the
object, while in analytical jittering the kernel is modified by taking the distance between objects: the
minimal distance between samples the object consists of. The VRM approach also provides a way to
deal with any kernel and not only with distance-based kernels.

3 Applications and Experiments

Real-life problems can rarely be formulated in a way suitable for object definition in the input space.
For example, it is hardly possible to define objects that correspond to the invariances of interest in
image processing such as 3D rotations with changing lighting conditions. This is the main drawback of
the described approaches. However, in some cases preprocessing and feature selection can be applied
to obtain the suitable data representation.

We present in this section two series of experiments illustrating the proposed approaches. The
first one is an artificial two-class classification task, while the second one is a problem of EEG signals
classification - a real task from the field of Brain-Computer Interface system design.

3.1 Artificial Data

To illustrate the action of the considered methods, we used an artificial dataset generated to be
invariant to (4) with β = 0. The goal is thus to illustrate the influence of the modified kernels on the
decision boundary.

Figure 1 illustrates the training data of both classes and the decision boundaries obtained with the
following algorithms: the left image shows the original SVM with RBF kernel (σ = 0.2); the center
one shows an SVM with RBF kernel (σ = 0.2) and distance defined by (6) with a = 0.5, b = 2; finally,
on the right we see an SVM with RBF kernel (σ = 0.2) and distance defined by (6) with a = 0.01,
b = 10. The substantial difference between the presented solutions lies in the number of SV’s, which
is 20 for the standard solution (left figure) and 8 for the modified one (right figure). Applying the
VRM-based algorithm results in similar solutions.

3.2 EEG Signals

The next series of experiments used EEG signals taken from the competition devoted to Brain-
Computer Interface system design. The details of data collecting and problem settings can be found at
[http://crick.bme.columbia.edu/competition.htm]. The task is to classify the signals that correspond
to imaginary movements of the left or right hand. The original data consists of signals taken from the



IDIAP–RR 03-29 7

Figure 1: Artificial two-class classification problem. Black training points have to be discriminated
against white training points. Left: Original decision function of SVM with RBF kernel (σ = 0.2),
Center: decision function using slightly jittered kernel, Right: decision function facing full invariance.

Table 1: Experimental results on the EEG dataset

Algorithm Testing Error, %
EEG SVM 9

AJ SVM 6
VRM-based 6

different electrodes located on a human’s head. The difference between two particular signals1 was
taken as input for the algorithm. The input dimension (the signal length) is 150. The dataset consists
of 413 training and 100 testing samples.

Raw data usage may appear to not be the best way of carrying out the classification. However, it
was found to work well for SVMs. For example, the classification performance based on auto-regressive
coefficients was significantly worse. The evident properties of these data are the invariances to the
signal amplitude and the selection of the reference point of the“zero” level of the signal. These findings
are also justified by the physical conditions of the EEG signal measuring process.

The results of the baseline SVM classifier based on Gaussian RBF kernel and SVMs with modified
kernels are presented in Table 1. The hyper-parameters of all the algorithms were tuned according
to cross-validation on the training set. The obtained values are C = 25, σ = 1500. The invariance-
defining parameters are γ = 0.55 for VRM-based kernel, and for the analytically jittered (AJ) kernel
the scaling range is [0.5, 1.5].

Both methods provided an improvement to the classification performance according to the testing
error. However, this improvement is hardly statistically significant (79% confidence only) since the
size of the test set is 100 samples. This is a basic disadvantage of the competition setting caused by
difficulties in data collection.

1Signals from the C3 and C4 electrodes, according to the standard labeling.
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4 Discussion and Conclusion

The method of prior knowledge incorporation considered in this paper results in a kernel modification
and exploits the standard SVM algorithm2. Kernel calculation can appear to be a computationally
expensive part of the algorithm; although in the considered examples it was not the case. Tangent
Distance [5] is a similar distance-based approach (although proposed in fact for neural networks).
It is based on the tangent planes of the manifolds and appears to be a good practical solution when
the object is a differentiable manifold. Here, we propose to define an arbitrary object as long as the
distance calculation is reasonable.

The proposed approach has also close links with the regularization framework. Loosely speaking,
regularization is used to enforce smoothness of the function in the vicinity of the training points. For a
learning algorithm based on the squared loss function it is shown that, under certain assumptions, the
approaches of adding virtual samples to the training set and adding a regularization term to the cost
function are equivalent [9]. Our approach is based on the objects “built” on the samples and hence is
a kind of limit case of the virtual sample approach. So, obviously, it has regularizing properties.

Since we propose an object definition based on combining the sample and some prior knowledge,
the presented method naturally establishes a link between kernel methods and generative models. The
general approach in this field is given in [10], where the Fisher kernel based on a metric defined on a
parametric generative probability model is presented. However, in the described approach we arrive
at the notion of a model from the aspect of prior knowledge incorporation, while the Fisher Kernel
was proposed to deal with distorted sequences or sequences of variable length.

In conclusion, in this paper we present a general method to incorporate prior knowledge into
kernel methods. It is based on modifying the setting of the problem by a transition from samples
to objects, which are generated from them using some prior knowledge. Two implementations of
the method were considered: analytical jittering and a new insight at the VRM-based classification
algorithm. Particular examples were presented, and experiments on both artificial and real datasets
showed useful results.
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