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Abstract

 

State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov

models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech

signal. At the level of each HMM state, Gaussian mixture models (GMMs) or artificial neural networks

(ANNs) are commonly used in order to model the state emission probabilities. However, both GMMs

and ANNs are rather rigid, as they are incapable of adapting to variations inherent in the speech signal,

such as inter- and intra-speaker variations. Moreover, performance degradations of these systems are

severe in the case of unmatched conditions such as in the presence of environmental noise. A lot of

research effort is currently being devoted to overcoming these problems. 

The principal objective of this thesis is to explore new approaches towards a more robust and adap-

tive modeling of speech. In this context, different aspects of the modeling of speech data with HMMs

and GMMs are investigated. Particular attention is given to the modeling of correlation. While correla-

tion between different feature vectors (corresponding to temporal correlation) is typically modeled by

the HMM, correlation between feature vector components (e.g., correlation in frequency) is modeled by

the GMM part of the model. This thesis starts with the investigation of two potential ways to improve

the modeling of correlation, consisting of (1) a shift of the modeling of temporal correlation towards

GMMs, and (2) the modeling of correlation within each feature vector by a particular type of HMM.

This leads to the development of a novel approach, referred to as “HMM2”, which is a major focus of

this thesis.

HMM2 is a particular mixture of hidden Markov models, where state emission probabilities of the

temporal (primary) HMM are modeled through (secondary) state-dependent frequency-based HMMs.

Low-dimensional GMMs are used for modeling the state emission probabilities of the secondary HMM

states. Therefore, HMM2 can be seen as a generalization of conventional HMMs, which they include as

a particular case. HMM2 may have several advantages as compared to standard systems. While the pri-

mary HMM performs time warping and time integration, the secondary HMM performs warping and

integration along the frequency dimension of the speech signal. Frequency correlation is modeled

through the secondary HMM topology. Due to the implicit, non-linear, state-dependent spectral warping

performed by the secondary HMM, HMM2 may be viewed as a dynamic extension of the multi-band

approach. Moreover, this frequency warping property may result in a better, more flexible modeling and

parameter sharing. After an investigation of theoretical and practical aspects of HMM2, encouraging

recognition results for the case of speech degraded by additive noise are given.

Due to the spectral warping property of HMM2, this model is able to extract pertinent structural

information of the speech signal, which is reflected in the trained model parameters. Consequently, such

an HMM2 system can also be used to explicitly extract structures of a speech signal, which can then be

converted into a new kind of ASR features, referred to as “HMM2 features”. In fact, frequency bands
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with similar characteristics are supposed to be emitted by the same secondary HMM state. The warping

along the frequency dimension of speech thus results in an adaptable, data-driven frequency segmenta-

tion. In fact, as it can be assumed that different secondary HMM states model spectral regions character-

ized by high and low energies respectively, this segmentation may be related to formant structures. The

application of HMM2 as a feature extractor is investigated, and it is shown that a system combining

HMM2 features with conventional noise-robust features yields an improved speech recognition robust-

ness. Moreover, a comparison of HMM2 features with formant tracks shows a comparable performance

on a vowel classification task.

The structure of this thesis is as follows. After an introduction of the state-of-the-art in automatic

speech recognition, the shifting of the modeling of time and frequency correlation towards GMMs and

HMMs respectively is briefly investigated. Then, the HMM2 approach is introduced, and its theory is

presented. This is followed by an experimental evaluation of HMM2 on a speech recognition task. The

application of HMM2 as feature extractor is investigated, and HMM2 features are compared to for-

mants. Finally, the most important results are summarized, and possible future research directions are

outlined.



 

Version abrégée

 

Les systèmes de l’état de l’art de reconnaissance automatique de la parole sont typiquement basés sur

des modèles de Markov cachés (Hidden Markov Models, HMMs) qui modélisent des séquences tempo-

relles de vecteurs acoustiques extraits du signal de parole. Au niveau de chaque état du HMM, des mix-

tures de Gaussiennes (Gaussian Mixture Models, GMMs) ou des réseaux de neurones artificiels

(Artificial Neural Networks, ANN) sont le plus souvent employés pour la modélisation des probabilités

d’émissions. Cependant, les GMM et les ANN sont assez rigides, n’étant pas capables de s’adapter aux

variations inhérentes du signal de parole, telles que les variations inter- et intra-locuteur. Beaucoup

d’effort de recherche est actuellement mis en oeuvre afin de proposer des solutions à ces problèmes.

L’objectif principal de cette thèse est d'explorer de nouvelles approches vers une modélisation plus

robuste et adaptative du signal de parole. Dans ce contexte, des aspects différents de la modélisation des

données représentant la parole par des HMMs et des GMMs sont étudiés. Alors que la corrélation entre

les différents vecteurs acoustiques (correspondant à la corrélation temporelle) est typiquement

modélisée par le HMM, la corrélation entre les coefficients des vecteurs acoustiques (par exemple, la

corrélation en fréquence) est modélisée par le GMM. Cette thèse commence avec une étude de deux

possibilités pour améliorer la modélisation de la corrélation : (1) un décalage de la modélisation de la

corrélation temporelle vers les GMMs, et (2) la modélisation de la corrélation entre les composants de

chaque vecteur acoustique avec un type particulier de HMM. Cela mène au développement d’une nou-

velle approche, appelée “HMM2”, qui constitue un des focus principaux de cette thèse.

Un HMM2 est une mixture particulière de modèles de Markov cachés, où les probabilités d’émis-

sion de chaque état du HMM temporel (dit primaire) sont modélisées avec des HMMs (dit secondaires),

travaillant dans le domaine des fréquences, et qui dépendent de l’état du HMM primaire. Des GMMs de

basse dimension sont utilisés pour la modélisation des probabilités d’émission de chaque état du HMM

secondaire. Par conséquent, l'approche HMM2 peut être vue comme une généralisation des HMMs con-

ventionnels, qui constituent en fait un cas particulier des HMM2. Un HMM2 peut avoir de nombreux

avantages par rapport aux systèmes standards. Tandis que le HMM primaire effectue un “warping”

(c.a.d. un regroupement) et une intégration dans la dimension temporelle, le HMM secondaire effectue

un warping et une intégration dans la dimension fréquentielle du signal de parole. La corrélation en

fréquence est modélisée par la topologie du HMM secondaire. En raison du warping implicite et non-

linéaire effectué par le HMM secondaire, un HMM2 peut être vu comme une extension de l’approche

multi-bande. En outre, le warping en fréquence peut résulter en une meilleure modélisation, plus flexi-

ble, permettant en plus un partage efficace des paramètres. Après une étude des aspects théoriques et

pratiques de l’approche HMM2, des résultats encourageants pour le cas de la reconnaissance de la

parole bruitée additivement sont donnés.
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Grace au warping du spectre effectué par le HMM2, ce modèle peut extraire des informations perti-

nentes sur la structure du signal de parole, ce qui est reflété dans les paramètres d’un modèle entraîné.

Par conséquent, un tel HMM2 peut être employé afin d’extraire explicitement des structures d'un signal

de parole. Ces structures peuvent être converties dans un nouveau type de coefficients, dit “features

HMM2”. En fait, des bandes de fréquences montrant une caractéristique similaire sont supposées être

émises par le même état du HMM secondaire. Le warping dans la dimension des fréquences génère

donc une segmentation adaptable en fonction des données. Comme on peut supposer que les états dif-

férents du HMM secondaire modélisent des régions de basses ou hautes énergies respectivement, cette

segmentation peut être en relation avec les formants. L’applications du HMM2 comme extracteur de

coefficients est étudié, et il est montré qu'un système qui combine ces “features HMM2” avec des coef-

ficients conventionnels et robustes aux bruits obtient une amélioration de la robustesse en reconnais-

sance de la parole. De plus, une comparaison des “features HMM2” avec les traces de formants montre

des résultats comparables pour la tache de la classification de différentes voyelles. 

La thèse est structurée ainsi : Après une introduction de l’état de l’art en reconnaissance automatique

de la parole, le décalage de la modélisation de la corrélation temporelle et fréquentielle vers les GMMs

et vers les HMMs respectivement est étudié. Ensuite, l’approche HMM2 est introduite, en commençant

par la théorie. Ceci est suivi par une évaluation des HMM2 pour la reconnaissance de la parole. L’appli-

cation des HMM2 comme extracteur de coefficients est étudiée, et les “features HMM2” sont comparés

aux formants. Finalement, les résultats les plus importants sont récapitulés, et des directions possibles

pour la recherche future sont données.



 

Kurzfassung

 

Algorithmen zur automatischen Spracherkennung, die dem aktuellen Stand der Technik entsprechen,

basieren in der Regel auf Hidden-Markov-Modellen (Hidden Markov Models, HMMs), die die zeitliche

Abfolge von Merkmalsvektoren beschreiben. Die Emissions-Wahrscheinlichkeiten werden für jeden

einzelnen Zustand des Modells meist als Mischung von Gaußkurven (Gaussian Mixture Models,

GMMs) oder als künstliche neuronale Netze (Artificial Neural Networks, ANNs) modelliert. Jedoch

sind sowohl GMMs als auch ANNs relativ unflexibel und können sich nicht an die für Sprachsignale

typischen Variationen (z.B. zwischen verschiedenen Sprechern oder zwischen verschiedenen

Aussprachevarianten desselben Sprechers) anpassen. Zudem versagen sie häufig unter gegenüber dem

Trainingsfall veränderten Bedingungen, z.B. bei Hintergrundgeräuschen. Zur Zeit wird intensiv an

Lösungen zu diesen Problemen geforscht.

Das hauptsächliche Anliegen dieser Arbeit ist es, neue Ansätze für eine robustere und adaptive

Sprachmodellierung zu erforschen. In diesem Zusammenhang werden verschiedene Aspekte der Mo-

dellierung des Sprachsignals mittels HMMs und GMMs untersucht. Besondere Aufmerksamkeit wird

der Modellierung von Korrelationen geschenkt. Während die Korrelation zwischen verschiedenen

Merkmalsvektoren (zeitliche Korrelation) typischerweise mit einem HMM beschrieben wird, so ist das

GMM für die Modellierung der Korrelation zwischen den einzelnen Komponenten eines Merkmalsvek-

tors (Korrelation bezüglich der Frequenz) verantwortlich. Diese Arbeit beginnt mit einer Untersuchung

von zwei möglichen Wegen, die Modellierung der Korrelation zu verbessern. Zum einen wird eine Ver-

schiebung der Modellierung zeitlicher Korrelation in Richtung eines GMM untersucht. Zum anderen

wird die Modellierung der Korrelation zwischen den Komponenten eines Merkmalsvektors mit einem

speziellen HMM erforscht. Dies führt zur Entwicklung eines neuen Ansatzes, der als "HMM2" bezeich-

net wird und der den Fokus dieser Arbeit bildet.

HMM2 ist eine besondere Mischung aus HMMs, bei der die Emissions-Wahrscheinlichkeiten des

zeitlichen (primären) HMM durch zustandsabhängige, frequenzbasierte (sekundäre) HMMs beschrie-

ben werden. GMMs niedriger Dimension werden für die Modellierung der Emissions-Wahrscheinlich-

keiten der Zustände des sekundären HMM genutzt. Deshalb können konventionelle HMMs als

Spezialfall von HMM2 betrachtet werden. Verglichen mit Standard-HMMs hat HMM2 verschiedene

potentielle Vorteile. Während das primäre HMM ein Warping (d.h. ein Verziehen) und eine Integration

über die zeitliche Dimension ausführt, vollzieht das sekundäre HMM ein Warping und eine Integration

über die Frequenzen des Sprachsignals. Korrelationen über der Frequenz werden durch die Topologie

des sekundären HMM beschrieben. Wegen des impliziten, nicht-linearen, zustands-abhängigen spek-

tralen Warpings des sekundären HMM kann HMM2 als eine dynamische Erweiterung des "Multi-Band-

Ansatzes" betrachtet werden. Außerdem kann dieses Frequenz-Warping zu einer besseren, flexibleren

Modellierung und zu einer gemeinsamen Parameter-Nutzung führen. Nach einer Untersuchung von the-
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oretischen und praktischen Aspekten von HMM2 werden Erfolg versprechende Resultate für die Erken-

nung von additiv verrauschter Sprache präsentiert.

Als eine Folge des spektralen Warpings extrahiert HMM2 automatisch relevante strukturelle Infor-

mationen der Sprache, welche in den trainierten Parametern widergespiegelt werden. Demzufolge kann

HMM2 auch zur Extraktion expliziter Strukturen aus einem gegebenen Sprachsignal eingesetzt werden.

Diese können dann in eine neue Art von Merkmalsvektoren umgewandelt werden, welche "HMM2-

Merkmalsvektoren" genannt werden. Tatsächlich ist anzunehmen, dass Frequenz-Bänder mit ähnlicher

Charakteristik vom gleichen Zustand des sekundären HMM emittiert werden. Deswegen führt das Fre-

quenz-Warping zu einer anpassungsfähigen, datengesteuerten Segmentierung des Sprachsignals entlang

der Frequenz-Axe. Da angenommen werden kann, dass Regionen hoher bzw. niedriger spektraler Ener-

gie durch unterschiedliche Zustände des sekundären HMM beschrieben werden, könnte sich diese Seg-

mentierung an den Formanten des Sprachsignals orientieren. Die Anwendung von HMM2 zur

Extraktion von HMM2-Merkmalsvektoren wird untersucht und es wird gezeigt, dass die Kombination

von konventionellen (gegenüber Rauschen robusten) Merkmalsvektoren und von HMM2-Merkmals-

vektoren zu einer verbesserten Robustheit der Spracherkennung führt. Außerdem zeigt ein Vergleich

zwischen HMM2-Merkmalsvektoren und Formantverläufen eine vergleichbare Leistung bei der Klassi-

fikation von Vokalen.

Diese Arbeit ist wie folgt strukturiert: Nach einer Einführung in die automatische Spracherkennung

wird die angesprochene Verschiebung der Modellierung von Zeit- und Frequenz-Korrelation in Rich-

tung GMM und HMM untersucht. Anschießend wird der HMM2-Ansatz und die ihm zugrunde liegende

Theorie präsentiert. Es folgt eine experimentelle Bewertung des Ansatzes mittels einer Spracherken-

nungs-Aufgabe. Die Anwendung von HMM2 zur Gewinnung von HMM2-Merkmalsvektoren wird

untersucht und die so extrahierten HMM2-Merkmalsvektoren werden mit den Formanten eines Sprach-

signals verglichen. Abschließend werden die wichtigsten Resultate der Arbeit zusammengefasst und es

werden mögliche Richtungen für die zukünftige Forschung aufgezeigt.
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Chapter 1

 

Introduction

 

One of the most fundamental characteristics distinguishing humans from all other living beings is the

use of high level spoken language for communication. The importance of the use of speech is already

reflected in old science fiction movies, where computers understood humans. For example, already in

the 1960s, the makers of “2001: A Space Odyssey” depicted a sophisticated system that allowed

humans to talk to computers. Also researchers were realizing that using spoken language is indeed one

of the most natural and efficient ways for humans to communicate and that it could be very valuable to

use such a communication scheme with computers as well. Today, as the scientific progress (as well as

the industrial and economic environment) allow advanced technology for computer access, this concept

is penetrating many fields of our daily lives. However, the use of spoken language for human-computer

interaction is still restricted to specific, limited domains. For instance, current automatic speech recogni-

tion (ASR) systems typically only deal either with a limited vocabulary (such as in voice dialing appli-

cations which come with many commercial cellular phones), or they need to be adapted to a certain

speaker (such as in dictation systems). Moreover, these ASR systems almost inevitably fail in spontane-

ous speech and in other difficult conditions such as under environmental noise, where human speech

recognition hardly degrades.

A lot of research effort is currently spent in laboratories all around the world in order to alleviate

these problems, and several approaches towards this goal are also investigated in our institution. The

goal of improving ASR robustness defines also the framework of this thesis. More particularly, on the

base of state-of-the-art speech recognition technology, new approaches towards a more robust and adap-

tive modeling of speech are investigated. To first give an introduction of the state-of-the-art in automatic

speech recognition (ASR), this chapter starts with an illustration of the structure of a typical ASR sys-

tem and a discussion of its major modules. Then, weaknesses of this standard system are reviewed, and

some approaches towards alleviating them are discussed. Finally, this thesis is placed into the defined

context, and its history and outline are given.

 

1.1 Automatic Speech Recognition

 

Figure 1.1 shows a block diagram of an automatic speech recognition (ASR) system. It shows three

major modules: (1) feature extractor, (2) acoustic model, and (3) decoder. The feature extractor provides

salient feature vectors at regular time intervals. The resulting features are aimed at characterizing the

linguistic information of the speech signal and discarding all other sources of variability. They are then

used in the acoustic model, which typically produces a measure of similarity between each temporal
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feature vector and the relevant speech units (classes). This measure most often corresponds to the prob-

ability (or likelihood) of a temporal feature vector belonging to a certain class. Finally, the (global)

decoder is responsible for the temporal alignment and integration of these (local) similarity measures,

thereby also taking account of lexical, grammatical and possibly even semantic constraints defined by

the language model. 

However, it needs to be clarified that the representation of ASR in those few distinct modules is

rather arbitrary and adapted to the point of view on ASR we adopt in the framework of this thesis. Dif-

ferent representations of ASR system architectures may be found e.g. in Gold and Morgan (2000),

Huang, Acero, and Hon (2001) and Bilmes (1999a). For example, before feature extraction, one might

want to add distinct modules for signal acquisition and analog-digital conversion. In spite of their

importance for the quality of an ASR system, these issues are out of the scope of this thesis and are

therefore not discussed here. Consequently, as the starting point of our ASR system, we take the digi-

tized waveform for granted. Similarly, we are here not concerned with higher level language modeling

(which includes dictionary, grammar, and possibly even semantics). However, the language model is

implicitly considered during decoding and therefore displayed in the figure. 

The figure might also suggest that the modules are distinct and well-defined, and that e.g. a certain

feature extractor could be replaced by another while leaving the rest of the ASR system unchanged.

However, this is not necessarily the case, as the subsequent modules might be adapted to the output of

the feature extractor - or the other way around, e.g. when features are searched for which satisfy certain

constraints (assumptions) imposed by the subsequent modules. In fact, an ideal feature extractor could

render other system modules superfluous (or at least much simpler). While this is far from reality, it is

true that there is some overlap between the different modules. As an example, speech recognition

improvements in the case of environmental noise might be achieved at the level of the acoustic features

and/or through adaptation of the acoustic model. 

In the following, we will give a short introduction to what could be called a standard speech recogni-

tion system. By this we mean readily available and widely employed techniques which fit quite nicely in

the three basic ASR system modules shown in Figure 1.1. There is a wide variety of feature extraction

techniques, of which the ones which are most commonly used as well as those directly relevant to this

thesis are discussed in Section 1.2. Most of today’s ASR systems use either Gaussian Mixture Models

(GMM) or Artificial Neural Networks (ANN) for the acoustic modeling, the former of which will be

used throughout this work and is therefore briefly explained in Section 1.3. Finally, virtually all ASR

systems are based on Hidden Markov Models, as introduced in Section 1.4, for the temporal decoding

part. 

decoderfeature
extractor

language
model

recognized
word

sequence

p(x|q)acoustic model

Figure 1.1: Important modules of an automatic speech recognition system.
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1.2 Features for Automatic Speech Recognition

 

The goal of feature extraction for ASR is to provide representation of speech which permits to distin-

guish between the different sounds of a language, but which is at the same time insensitive to all non-

linguistic variations such as speakers’ characteristics and environmental influences and distortions (e.g.,

noise). That means that these features should be relatively stable for different examples of the same

speech units, even if pronounced by different speakers and in different conditions. A cepstral representa-

tion of the speech signal, where knowledge about the human auditory system has been incorporated in

the feature extraction process, seems to be dominant in state-of-the-art ASR systems (Gold and Morgan,

2000) and will be described in the following. Moreover, some extensions, variants and alternative

speech representations will be discussed.

 

1.2.1 Mel-Frequency Cepstral Coefficients (MFCCs)

 

The mel cepstrum (Davis and Mermelstein, 1980) is one of the most widely employed signal represen-

tations in ASR. The exact details of how MFCCs can be calculated are covered in much of the ASR lit-

erature (Gold and Morgan, 2000; Rabiner and Juang, 1993; Huang, Acero, and Hon, 2001) and need not

concern us here. For us, it is sufficient to know that spectral analysis is followed by an integration of the

power spectrum within about 20-26 triangular, overlapping filters which are equally spaced along the

Mel scale. The Mel scale is perceptually motivated. It is supposed to model the sensitivity of the human

ear, which has been shown to distinguish far better between close sounds in low than in high frequencies

(Huang, Acero, and Hon, 2001; Rabiner and Juang, 1993). The Mel scale can be approximated by the

following equation (Young et al., 1995):

. (1.1)

The resulting filter magnitudes are then pre-emphasized (to approximate the unequal sensitivity of

human hearing at different frequencies) and logarithmically compressed (to model the power law of

human hearing). Finally, an orthonormal transformation (usually the Discrete Cosine Transform, DCT)

is applied to calculate MFCCs. Typically, only the first 13 MFCCs are used for ASR, including the -th

coefficient as a measure of the energy.

 

1.2.2 Temporal Derivatives

 

Features like MFCCs as discussed above provide a good smooth estimate of the local short-term spec-

trum (Gold and Morgan, 2000). However, one of the dominant characteristics of the speech signal is its

dynamics. In fact, temporal changes were shown to be important for human speech recognition (Huang,

Acero, and Hon, 2001). Also for ASR, they can represent discriminant information, which might not be

sufficiently captured in the so-called static cepstral coefficients described above. The conventional way

to include information on these dynamics is to augment the static feature vectors with temporal deriva-

tives. First and second order temporal derivatives (also called delta and acceleration coefficients,

denoted by D and A respectively) can be estimated by using regression equations (Young et al., 1995).

The feature vector of 13 MFCCs is thus augmented by 13 delta and 13 acceleration coefficients, result-

ing in an overall feature vector dimension of 39. MFCCs are widely employed, and often serve as a ref-

erence in order to measure performance improvements of newly developed features (Bilmes, 1999a;

Gales and Young, 1996; Garner and Holmes, 1998; Holmes, 2000; Hunt and Lefebvre, 1989; Kermor-

vant and Morris, 1999; Macho et al., 1999, McCourt, Vaseghi, and Harte, 1998; Nadeu, Hernando and

Gorricho, 1995; Okawa, Bocchieri, and Potamianos, 1998; Wassner and Chollet, 1996; Welling and

Mel f( ) 2595 10 1 f
700
---------+ 

 log=
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Ney, 1998; just to name a few examples). The fact that there is such a multitude of publications in this

area indicates that, although MFCC (most often including temporal derivatives) seem to be a kind of

“reference” features, there is still room for improvements. This is especially true in unmatched condi-

tions, like under different environmental noises and in applications where significant speaker variations

can be expected. In the following, we will discuss two frequently applied approaches towards alleviat-

ing the effects of such variations and thus providing a higher robustness to adverse conditions.

 

1.2.3 Feature Transformations

 

One way to improve standard ASR features such as MFCCs is to apply an additional transformation to

the original features (Hunt and Richardson, 1990; Haeb-Umbach and Ney, 1992). These transforma-

tions are based on certain statistics of the training data. Generally, they seek to orthogonalize the fea-

tures and reduce the feature vector dimension, while preserving or improving class separability (and

finally recognition performance). Two common examples of such transformations are Principal Compo-

nent Analysis (PCA) and Linear Discriminant Analysis (LDA) (Fukunaga, 1972; Bishop, 1995, Duda

and Hart, 1973). 

PCA, also referred to as Karhunen-Loéve transformation, basically finds the directions of maximum

variance of a given feature set in an unsupervised way. This transformation can be based on the calcula-

tion of the eigenvalues and eigenvectors of the global covariance matrix of all data, regardless of the

class labeling. For this reason, the transformed features might well represent the signal, but not be opti-

mal for discrimination.

In contrast, LDA aims directly at improving discrimination, relying on a measure of class separabil-

ity to derive a transformation. Therefore, the class labeling for the training data needs to be known. Typ-

ically, we want to maximize the inter-class variance while minimizing the intra-class variance. To

achieve this, a linear transformation can be derived according to different criteria, such as the trace of

the ratio between inter- and intra-class covariance matrices (Fukunaga, 1972). One such transformation

is thus given by the eigenvectors of this covariance ratio matrix. As the above criterion should be maxi-

mized, those eigenvectors whose eigenvalues are largest should be chosen for dimensionality reduction

(as is also the case for the PCA described above).

 

1.2.4 Noise Reduction Techniques

 

Another way to make standard ASR features more robust is to apply noise reduction techniques such as

spectral subtraction (SS) and cepstral mean normalization (CMS) (Gold and Morgan, 2000; Huang,

Acero, and Hon, 2001). These methods typically try to remove an estimate of the noise from the speech

signal, thus reducing a possible mismatch between training and testing conditions in the feature space.

While SS is designed to cope with additive noises (e.g., car noise, office noise), CMS handles convolu-

tional distortion (e.g. microphone or telephone distortions, reverberations). 

SS is based on the assumptions that the speech signal has been corrupted by (rather stationary) addi-

tive noise, and that the clean signal and the additive noise are uncorrelated. In order to obtain the power

spectrum of the clean signal, an estimate of the noise power spectrum (typically obtained during non-

speech periods) is subtracted from the power spectrum of the corrupted signal.

CMS removes the (long-term) average of the cepstrum from each cepstral feature vector. This pro-

cessing is based on the fact that convolutional disturbances in the time domain become additive in the

cepstral domain. As this subtraction in the cepstral domain corresponds to a division in the spectral

domain, this technique is also called Cepstral Mean Normalization. 



 

1.3. Gaussian Mixture Models (GMM) 5

 

1.2.5 Alternative Representations

 

Although MFCCs are widely employed, they are by far not the only powerful speech representation in

terms of ASR performance. Another example, which is very similar to MFCCs as it is based on similar

processing steps, is perceptual linear prediction (PLP), and different processing steps of the two

approaches may even be combined to yield other variants of features (Gold and Morgan, 2000). Like-

wise, the techniques described in Sections 1.2.2 to 1.2.4 simply represent common examples amongst a

multitude of possibilities, which might be combined directly or in a different, often more sophisticated

form with other feature extraction approaches. As an example, RASTA-PLP (Hermansky and Morgan,

1994) is a modified version of PLP processing which is based on filtering temporal trajectories of sub-

band energies. It is thus related to temporal derivatives (Section 1.2.2) and can also be interpreted as a

short-time version of CMS (Section 1.2.4) (Gold and Morgan, 2000).

For some applications, it might be desirable to use features in the spectral domain. This is for

instance the case in “missing data” processing (Cooke et al., 2001), as well as in the HMM2 approach

which will be introduced in Chapter 4. However, depending on the kind of model used in subsequent

ASR modules, common spectral representations of speech are often not competitive with features in the

cepstral domain. An exception to this are the recently developed Frequency Filtered Filterbank coeffi-

cients (FF) (Nadeu, 1999; Nadeu, Macho and Hernando, 2001). Frequency filtering can be applied

directly to Mel frequency filterbank coefficients (obtained at an intermediate stage during the extraction

of MFCCs, as explained in Section 1.2.1). Frequency filtering consists of simply calculating the differ-

ence between two coefficients of the same feature vector, e.g.  for first order FF coeffi-

cients and  for second order ones (in which case they are denoted as FF2). One of

the advantageous effects of this frequency filtering is a decorrelation of the coefficients, while staying in

the spectral domain. In addition, FF and FF2 features yield competitive speech recognition results to

MFCCs, which makes them particularly attractive features for the applications mentioned above.

An alternative spectral representation of speech is given by wavelet coefficients. A possible advan-

tage of these features is their property of providing information on different resolution levels in time as

well as in frequency. In fact, they offer a better temporal resolution at higher frequencies and a better

frequency resolution at lower frequencies. Wavelet related features have been used in different ways in

ASR (e.g., Kadambe and Srinivasan, 1994; Wassner and Chollet, 1996; Long and Datta, 1996; Long and

Datta, 1998; Kryze et al., 1999; Farooq and Datta, 2001), but as yet have not been shown to be compet-

itive with state-of-the-art features.

While features like MFCC are derived using knowledge about human speech perception, alternative

representations consider speech production related information. Of these, formants (defined as the reso-

nance frequencies of the vocal tract) are a compact and highly efficient representation of the time-vary-

ing characteristics of speech (Rabiner and Juang, 1993), which are supposed to be robust in noise.

Formants have been shown to be useful especially for vowel classification. In ASR, they have been used

in combination with other state-of-the-art features. However, one of the drawbacks of formants lies in

the difficulty of reliably estimating them, and as yet they are not widely used as features in ASR sys-

tems.

 

1.3 Gaussian Mixture Models (GMM)

 

There are a number of different ways to implement the acoustic model. Of these, the most widely

employed are Artificial Neural Networks (ANNs) (Bourlard and Morgan, 1994, Bourlard and Bengio,

2002) and Gaussian Mixture Models (GMMs) (Rabiner and Juang, 1993). While both these methods

x f( ) x f 1–( )–

x f 1+( ) x f 1–( )–
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exhibit certain advantages and drawbacks, they show a comparable performance (provided that suitable

(possibly different) features are used for either of these two approaches). GMMs can be seen as the clas-

sic approach, moreover offering a suitable framework for the issues investigated in this thesis. There-

fore, we will focus on the use of GMMs for (local) acoustic modeling.

In ASR, GMMs are typically used to model the distribution of the data belonging to a certain class

(e.g., phoneme or sub-phone unit, represented by the HMM states). GMMs are universal approximators

of densities, i.e., given a sufficient number of mixture components, they can approximate any distribu-

tion (Bishop, 1995; Huang, Acero, and Hon, 2001). For the case where the covariance matrices are diag-

onal, as considered here, the associated probability density function is defined as follows:

, (1.2)

where  is the number of mixture components and  are the weights associated to the respective mix-

tures,  is the number of (scalar) components  of a feature vector  (corresponding to the feature

vector dimension ), and  and  are the means and variances of all mixture components

 and all feature vector components . The mixture weights  are positive and

 . (1.3)

GMMs can be trained using the Expectation-Maximization (EM) algorithm (Dempster et al., 1977). As

we will discuss EM training for Hidden Markov Models (where the state probability distributions are

modeled by GMMs) in Section 1.4.3, EM training for GMMs will not separately be discussed here.

 

1.4 Hidden Markov Models

 

Hidden Markov models (HMMs) can be seen as a generalization of GMMs, which are suitable for

sequential data. In ASR, (first order) HMMs are typically used to represent the density of sequences of

 acoustic vectors , as shown in Figure 1.2. The basic idea under-

lying HMMs is to introduce a hidden (unknown) variable  describing the state of the system at time ,

and to factor the density of a sequence into several more simple terms: the initial state probabilities

, the state transition probabilities , and the emission probabilities . As these

HMM state emission probabilities are here represented by GMMs, we refer to the entire system as

Gaussian Mixture Hidden Markov Model (GM-HMM).

 

1.4.1 Notation

 

Basic notations used throughout this document are defined below and visualized in Figure 1.2:

•  is the observed vector at time step ,

•  the HMM state at time , where 

 

 

 

is a path through the HMM,

•  is the HMM emission probability, where the instantiation  is the probabil-

ity to emit  in state , 

•  is the initial state probability of the HMM,
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•  is the HMM state transition probability, where the instantiation 

is the probability to go from HMM state  at time  to state  at time ,

•  is the number of HMM states,

•  is the size of the sequence .

The likelihood of the data sequence  given the model parameters  at training step  is then

. (1.4)

1.4.2 HMM Assumptions

In the HMMs presented in this section, we assume that the value the hidden (state) variable takes is gov-

erned by a first order Markov process. The observations (feature vectors) then depend on the resulting

assignment of this variable. We can thus formulate two conditional independence assumptions, regard-

ing transition and emission probabilities. Firstly, it is assumed that the state  is conditionally indepen-

dent of any preceding variables given the previous state :

. (1.5)

This equation is in fact a generalization of the first order Markov assumption. Moreover, it is assumed

that the transition probabilities are independent of time, i.e., they depend only on the origin  and the

destination . Secondly, the probability of emitting  at time  depends only on the state  and is

conditionally independent of the past states and observations:

. (1.6)

This equation is frequently referred to as the output-independence assumption.

1.4.3 EM Training

Supposing that a sequence of acoustic vectors has been generated by a hidden Markov model, the

underlying sequence of HMM states is generally not known. Therefore, the data observed is said to be

“incomplete” and consequently, HMM parameters can not be estimated directly. The Expectation Max-

imization (EM) algorithm offers a way to circumvent this problem, using an iterative two-step proce-

dure.

The goal of the EM algorithm is to maximize the likelihood  of the data , given the model

parameterized by . EM solves the problem of the incomplete data by introducing hidden variables

such that the knowledge of these variables would simplify the learning problem. Hence, in the first step

of each iteration (referred to as E-step), the values of these hidden variables are estimated, while in the
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j t 1– i t

N
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Figure 1.2: Left-right Hidden Markov Model (HMM).
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second step (referred to as M-step), the expectation of the log likelihood of the observations and the hid-

den variables is maximized, given the previous values of the parameters. This two-step process is

repeated iteratively and is proved to converge to a local optimum of the likelihood of the observation

(Dempster, Laird & Rubin, 1977).

The adaptation of EM suitable for HMMs is also referred to as “Forward-Backward” or “Baum-

Welch” algorithm (Baum and Petrie, 1966; Baum et al., 1971), which is briefly outlined in the follow-

ing1. As stated before, for the case of HMMs the hidden variables correspond to the state assignments,

i.e. the sequence of states . Introducing an indicator variable  such that  is defined to

be 1 when  and 0 otherwise, the joint likelihood of the observations and the hidden variable is

then given by:

. (1.7)

We further define the following auxiliary function:

. (1.8)

As stated before, the E-step consists of computing the expectations of the hidden variables, given the

current parameters and the data. This can be done using a recursive estimation of some intermediate

“forward” and “backward” variables (which explains the name Forward-Backward algorithm). In the

M-step, given the estimated values of the hidden variables and the data, new parameters (i.e., for the

transition probabilities and emission distributions) maximizing  are found. Thus, at the -th iteration,

one computes

. (1.9)

It can be shown that maximizing  also maximizes the likelihood of the data  (Dempster,

Laird, and Rubin, 1977). 

1.4.4 Decoding

The aim of HMM decoding is to find the sequence of HMM states which best explains the input data,

while at the same time taking account of phonological, lexical and syntactical constraints in the case of

ASR. Therefore, under the typical HMM assumptions (see Section 1.4.2), the recognized word

sequence can be obtained by finding the path  which maximizes the joint likelihood of the data and

the hidden variables, given the model parameters:

. (1.10)

This is usually done with the Viterbi algorithm (Viterbi, 1967), which is based on a recursion quite sim-

ilar to the calculation of the forward variable mentioned above2. 

1A detailed description of this algorithm can be found in Section 3.2.3.
2This issue will be discussed in more detail in Section 3.2.4.
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1.4.5 Automatic Speech Recognition using HMMs

In automatic speech recognition, HMMs are used to model the different speech units. Typically, these

speech units correspond to phonemes, and each phoneme model comprises several states (often con-

nected in a left-right topology with loops, as shown in Figure 1.2). Words can be considered as concate-

nations of phonemes. Hence, to obtain a word model, the relevant phoneme models can be concatenated

to form one large HMM (where the dictionary defines the sequence(s) of phonemes of which a word

may be composed). Similarly, sentences are sequences of words, and a sentence model corresponds to a

concatenation of word models. For this case, the grammar can define possible sentences, or, alterna-

tively, the probability of a certain sequence of words. 

It is usually not possible to train each phoneme model separately, as the phoneme boundaries are not

known (and accurately segmenting a database in terms of phonemes is a hard and highly time-consum-

ing task). Therefore, “embedded training” can be used, where one large HMM is created as the concate-

nation of the phoneme models corresponding to the pronounced word or sentence. This typically only

requires a transcription (i.e., sequence of words) and a dictionary. All phoneme models can then be

trained simultaneously using the EM algorithm described in Section 1.4.3.

The aim of speech recognition is to find the sequence of pronounced words, given an acoustic

sequence. This is done by searching for the sequence of words, and thus phonemes and states, which

best explains the input data. For this, the Viterbi algorithm (briefly introduced in Section 1.4.4) is usu-

ally applied. Obviously, the resulting sequence of states is constrained to be of the same length as the

input sequence to be recognized. Further constraints are provided through dictionary and grammar (and

possibly even semantics), which can be considered parts of the language model and are highly depen-

dent on the application. An adapted definition of the language model can significantly reduce the search

space during decoding, making speech recognition more accurate and more efficient. However, these

aspects of ASR will not be further investigated in this thesis.

In the following, we will again focus our attention on HMMs, and discuss particularly their weak-

nesses and limitations.

1.4.6 Weaknesses

HMMs are quite powerful statistical models which can in principal model any probability distribution

over sequences. As seen above, efficient training and decoding algorithms are available, so that they

have become a standard in automatic speech recognition. However, it is often claimed that HMMs suffer

from a number of limitations. Potential (often cited) weaknesses of standard HMMs (as discussed in

this chapter) with respect to their application to ASR, include

• a poor modeling of acoustic context (in fact, each observation is assumed to be conditionally

independent of the past, given the current HMM state, and therefore all the context should be

reflected in the assignment of the (discrete) state variable),

• the assumption that speech can be well represented by a succession of steady segments (repre-

sented by the states) with instantaneous transitions between them (in fact, the observations are

assumed to be identically distributed, given the HMM state),

• a poor modeling of duration (in fact, duration is primarily modeled by the transition probabilities

and therefore supposed to follow an exponential distribution, and, moreover, the contribution of

these transition probabilities to the overall likelihood score is often negligible).
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However, it can be argued (Bilmes, 1999a) that these weaknesses3 are generally due to practical con-

straints, rather than caused by the model itself. They are not inherent properties of HMMs, but result

from the way HMMs are used. Bilmes confirmed that in general, an HMM can accurately model any

real-world probability distribution, given a sufficiently large number of hidden states and a sufficiently

rich class of observation distributions. However, for practical problems, this typically implies a large

number of model parameters, necessitating a prohibitive amount of training data. 

As a consequence of the ever-persisting problem of limited training data, we have to deal with yet

another weakness:

• a constrained model topology and number of parameters (typically chosen a priori).

Naturally, this problem is aggravated if there is a lot of variability in the data. For speech, this is typ-

ically the case. Sources of variability include additive noises and channel distortions, but also speech

and speaker variations such as voice quality, context, stress, speaking rate and style (Junqua and Haton,

1996). Although some of these distortions and variations can effectively be removed from the data (e.g.,

using noise reduction techniques as mentioned in Section 1.2.4), state-of-the-art ASR systems still suf-

fer from

• a limited robustness in adverse conditions.

The higher the variability of the data, the higher the amount of data and the complexity of the model that

is needed for an adequate data representation. Given that the amount of available training data is limited,

HMMs have to be constrained. For the case of ASR, this typically results in left-right phone (or triph-

one) models with a limited number of states, using a limited number of Gaussian mixtures to estimate

the observation probabilities. These restricted class of HMMs is then likely to exhibit the first set of

weaknesses listed above. 

Finally, another potential weakness of standard HMMs is that

• the model is usually not trained using a discriminant criterion (i.e., minimizing the classification

error (Duda and Hart, 1973)), but instead using a maximum likelihood criterion (i.e., maximizing

the likelihood of the data associated with each speech unit).

Much research has been devoted to overcome at least some of these limitations (and this thesis is yet

another attempt). Some of the most important achievements are described below.

1.5 Alternative Models
In the last section, we have outlined some of the weaknesses of the application of HMMs in the frame-

work of ASR (which of course may equally apply to other real-world problems). It was stated that the

main reason for these limitations lies in the constraints which have to be imposed on HMMs (due to a

the problem of limited training data and a high variability in the data). While illustrating this statement

with some examples, we will introduce attempts to overcome some of these limitations for the case

where training data is limited. 

With an unlimited amount of training data (including all potential sources of variability), large

HMMs could be trained which could effectively approximate the real data distribution. A more realistic

way to deal with this problem is to train not only the parameters of a given model, but also learn the

3As well as other supposed / frequently criticized weaknesses (Bilmes, 1999a), which are however closely

related to the ones outlined here.



1.5. Alternative Models 11

model structure from data. One attempt in this direction is the concept of Buried Markov Models

(BMMs, Bilmes, 1999a; Bilmes, 1999b). BMMs are built upon the conventional hidden Markov model

approach. In fact, extensions are added to standard HMMs where these were found to be deficient in the

framework of a particular task. These extensions take the form of conditional dependencies, e.g.

between components of different feature vectors, which are added based on a conditional mutual infor-

mation criterion. This also has a potential to resolve other HMM weaknesses. Observations are no

longer considered to be conditionally independent of the past, but the most salient dependencies, e.g. of

preceding observations, are explicitly considered. Bilmes showed that these additional dependencies

improved the model4. 

These BMMs can be interpreted as Dynamic Bayesian Networks (DBNs). DBNs can be seen as a

generalization of conventional HMMs (Smyth, Heckerman and Jordan, 1997), providing the means for

incorporating additional dependencies (such as described above), but also for dealing with (possibly

hidden) auxiliary information (e.g., articulator positions) (Zweig, 1998; Stephenson, 2003). As com-

pared to the HMM framework, which is based on an observed sequence of feature vectors resulting

from a hidden sequence of HMM states, DBNs allow the integration of additional observed or hidden

variables, and the consideration of statistical dependencies between all these variables.

BMMs and DBNs may be also seen as a more sophisticated and data-driven extension to “condi-

tional dependent HMMs”, “correlation HMMs” or “conditionally Gaussian HMMs”, where it is

assumed that the local probability depends not only on the state but also on the previous frame(s)

(Huang, Acero, and Hon, 2001; Wellekens, 1987; Ostendorf, Digalakis, and Kimball, 1996). Related to

this are also “Segmental HMMs” (Gales and Young, 1993), where the observations are conditionally

dependent not only on the current HMM state, but also of the mean of a “segment” of speech to which

they belong. These models are an example of a class of approaches which is referred to as “segment

models” (Ostendorf, Digalakis, and Kimball, 1996), which deal with sequences of frames, rather than

with independent frames. Besides segmental HMMs, they also include linear dynamical systems and

other types of trajectory models.

Other (perhaps more traditional) ways to relax the conditional independence properties of HMMs

include the use of temporal derivatives (see Section 1.2.2) (or information from longer time scales, as

will be discussed later in this thesis) as additional feature vector components in order to broaden the

scope of each temporal feature vector (Huang, Acero, and Hon, 2001; Bilmes, 1999a). 

To improve duration modeling with standard HMMs, one can use several HMM states featuring the

same local probability distribution. Depending on the connectivity of these states, a minimum duration

can be modeled (as often applied in the framework of HMM/ANN), and, if these states have self-transi-

tions, the resulting duration distribution is a sum of geometric distributions, which is a much richer

model than the geometric distribution implicitly modeled by one self-looped HMM state. An alternative

way of alleviating the duration problem is to use higher order HMMs, where the state transition proba-

bilities depend on the  previous states (for -th order HMMs). However, an -th order HMM can be

transformed into an equivalent first order HMM (Jelinek, 1997; Bilmes, 1999a; Huang, Acero, and Hon,

2001). To improve duration modeling in standard HMMs, duration can be incorporated into HMMs

(Wang, 1997), e.g. via an explicit, state-dependent duration distribution (Rabiner and Juang, 1993,

Huang, Acero, and Hon, 2001, Russel and Moore, 1985; Levinson, 1986). Also in segment models as

4In spite of the fact (which he had proven previously) that even standard HMMs can represent correlation

between feature vectors and (related) information about the acoustic context is represented indirectly via the hidden

(state) variable.

n n n
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described above, explicit duration models are incorporated for each state (Ostendorf, Digalakis, and

Kimball, 1996).

As already mentioned above, the state emission probabilities of an HMM can be modeled by an

ANN. These systems are referred to as (hybrid) HMM/ANN. HMM/ANNs have several advantages

over the standard GM-HMMs. They do not need strong assumptions about the distribution of the input

data, and they can approximate any kind of non-linear discriminant functions (Bourlard and Morgan,

1994; Bourlard and Bengio, 2002). Another way to improve discrimination in ASR systems (including

standard GM-HMMs) is to choose training methods which maximize posterior probabilities (by adjust-

ing the parameters of all models simultaneously), instead of maximizing the data likelihood (as done in

EM training), such as maximum mutual informations (MMI) (Bahl et al., 1986, Bilmes, 1999a).

Also, ANNs can be used at the level of the decoder, thus replacing HMMs. However, some mecha-

nism needs to be introduced in order to ensure temporal alignments, and finally segmentation and clas-

sification. This can be realized with variants of recurrent neural networks (including a feedback of the

hidden and/or output units to the input layer) and time delay neural networks (where output units are

only activated after a complete speech segment has been processed) (Huang, Acero, and Hon, 2001).

As stated above, a major weakness inherent to virtually all current ASR systems is their poor robust-

ness in adverse conditions. Systems often fail as soon as testing conditions differ from training condi-

tions. More specifically, speech is often distorted by noise. Some noise reduction techniques have

already been discussed in Section 1.2.4. Instead of, or in addition to, reducing the noise in the features,

the effects of noise on ASR performance can be alleviated by using models which can implicitly handle

these difficult conditions. Examples of this kind include the “multi-stream” approach (Morris, Hagen,

Glotin, and Bourlard, 2001; Hagen, 2001) where two (or more) feature streams (ideally containing com-

plementary information) are processed independently up to some stage, before being recombined. The

recombination can take place at different stages in the recognition process, using different methods and

possibly sophisticated weighting techniques which reflect some reliability measure of the different

streams. Related to multi-stream are approaches like “factorial HMMs” (Ghahramani and Jordan,

1997), “HMM decomposition” (Varga and Moore, 1990; Varga and Moore, 1991) and “parallel model

combination” (Gales and Young, 1995). The idea common to these methods is the modeling of several

independent sources (e.g., speech and noise) by different HMMs. However, these models can be seen as

special cases of large conventional HMMs (Bilmes, 1999a).

As a particular example of multi-stream, the speech signal can be decomposed into several fre-

quency sub-bands (referred to as “multi-band” approach) (Bourlard and Dupont, 1996; Hagen, 2001).

As these sub-bands are processed independently, band-limited noise present in one sub-band would not

affect the other sub-bands. An extension to multi-band processing based on Markov random fields was

investigated in (Gravier, Sigelle and Chollet, 2000). Also related to these methods is the “missing data”

approach, where so-called missing data masks are calculated (e.g., based on the local signal-to-noise

ratio (SNR) estimates), and recognition is based only on data which is supposed to be reliable (Cooke et

al., 2001).

For most of the techniques described above, limited improvements were often only possible at the

price of a substantial increase in computational complexity, and/or for some specific (artificial) task.

However, to the best of our knowledge, these approaches have generally not shown substantial improve-

ments over the conventional HMM approach, so that standard HMMs remain (in spite of their obvious

limitations) the most often applied model in automatic speech recognition (Huang, Acero, and Hon,

2001).
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1.6 Correlation in GMMs and HMMs
In the previous sections, we have introduced GM-HMMs, the assumptions imposed by them, their limi-

tations, as well as ways to overcome these limitations. We have stated that, in spite of a variety of possi-

ble alternatives, the classical GM-HMMs remain very competitive. Given these models, in the following

we will focus on the particular aspect of correlation modeling. It is clear that data from natural pro-

cesses (such as speech) has some redundancy, and therefore is necessarily correlated. This thesis

exploits different ways of modeling this correlation, as explained below.

Let us first consider the different types of correlation one has to deal with in ASR. When looking at

a spectral representation of speech, one can distinguish between correlation in time and correlation in

frequency. At the level of the final features used in ASR (such as MFCCs), this translates to correlation

between different feature vectors and correlation within each feature vector5, denoted as inter- and intra-

frame correlation. 

Because modeling correlated data typically requires more parameters (and thus more training data),

one might prefer to reduce the correlation inherent in the speech signal. This can be done during some

preprocessing steps, e.g. converting the highly correlated spectral representation of speech into the more

decorrelated Mel-cepstrum, or applying LDA. Typically, these techniques significantly reduce (but do

not completely eliminate) the intra-frame correlation. However, substantial inter-frame correlation per-

sists. In the following, we discuss how persisting intra-frame correlation as well as inter-frame correla-

tion can be dealt with in GMMs and HMMs respectively.

In the context of standard GM-HMMs, modeling of correlation is performed at two explicit levels.

While correlation within each temporal feature vector is modeled by the GMMs, correlation between

feature vectors is modeled by the HMM. As stated before, these models are theoretically able to repre-

sent any data (sequence) distribution- including correlated data. However, the limitations of the models

become evident in real-world applications. 

In GMMs, correlation can be modeled through the combination of the different mixture compo-

nents. However, a large number of Gaussians is needed to model correlated (and higher-dimensional)

features. In practice, this is demonstrated by severe performance losses when using (correlated) spectral

data as compared to data in the cepstral domain, given the same number of Gaussian mixtures. How-

ever, as seen above, the number of Gaussians is limited due to the limited amount of training data.

Therefore, it is often not possible to use a large enough number of parameters as would be required for

the modeling of this correlated data.

In HMMs, modeling of correlation is implicitly done through the model topology. It was shown that,

contrary to common criticism, HMMs can represent correlation between feature vectors (Bilmes,

1999a). However, as in the case of GMMs, a large number of model parameters (here: HMM states) is

needed.

In the framework of this thesis, different ways of dealing with correlation are exploited. In particu-

lar, we investigate the effects of shifting the modeling of correlation further towards GMMs or HMMs

respectively. On the one hand, contextual information can be included in each feature vector, and the

correlation between the components of this enhanced vector is then to be modeled by the GMM. On the

other hand, each vector can be split up into smaller sub-vectors. In this case, correlation within these

sub-vectors is still modeled by (lower-dimensional) GMMs, but the correlation between different sub-

vectors can be modeled by an HMM. These issues will be addressed in Chapters 2 and 3.

5Although the information in one frame does not necessarily cover only one time step.
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1.7 Thesis History and Outline
The arrangement of this thesis follows to a certain extent the chronological order in which the research

was carried out. Firstly, Chapter 2 deals with what could be called “early ideas”. In fact, this thesis

started off with a preliminary study on including information from longer time scales (additionally to

temporal derivatives) into each acoustic feature vector. This method proved to be beneficial for the

speech recognition performance, especially in the case of noise. This motivated us to go one step further

and consider different levels of resolution not only in the temporal, but also in frequency dimension. For

this, wavelets were chosen as features, as they are inherently multi-resolutional in both these dimen-

sions. However, the dimension of wavelet feature vectors is very high, and the feature vector compo-

nents tend to be highly correlated. For this reason, we searched for a model which would offer a less

parameter-intensive and more powerful representation of wavelet features than the conventionally

applied GMMs. Consequently, wavelet-domain hidden Markov trees (WHMT) were imported from the

field of computer vision, and used for local likelihood estimation in each HMM state (thus replacing the

GMMs). 

However, while research on this WHMT-HMM system was put on hold after a short time and at a

very preliminary stage (at which some potential of this approach became apparent, but could not yet be

underpinned with positive speech recognition results), the underlying concept gave rise to further (even

more promising) investigations on using a more general kind of models than WHMTs (or GMMs) for

the local likelihood estimations in each HMM state. Thus, the idea of HMM2 was born, which rapidly

became the focus of research carried out in the framework of this thesis. In particular, a certain instanti-

ation of HMM2, featuring a bottom-up topology with only few (self-looped) states to model the frame

likelihoods, was investigated and constitutes the kernel of this thesis. Consequently, the largest part of

this document deals with this HMM2 system and issues related to it. Chapter 3 is entirely devoted to the

HMM2 theory, while Chapter 4 presents practical aspects as well as ASR results.

When analyzing the mechanisms underlying HMM2, it was discovered that this system implicitly

extracts pertinent information from the speech features, which could in turn be used as features for con-

ventional HMMs. Chapter 5 investigates the use of HMM2 as feature extractor. The resulting features

are called “HMM2 features”. Again, positive results were obtained for the recognition of noisy speech.

As it was assumed that the most promising HMM2 features bear a resemblance with the formant repre-

sentation, this issue is investigated in more depth in Chapter 6, where they are compared to “true” (as

well as to other automatically extracted) formant features in terms of their performance on a vowel clas-

sification task. Once again, encouraging results were obtained.

Of course, the research effectuated in the framework of this thesis does not exhaust the subject.

Chapter 7 summarizes the results obtained so far and outlines promising directions for future research.

The work accomplished in the framework of this thesis and reported in this document was generally

done by its author, of course under the guidance of thesis director and advisors. Exceptions to this are

explicitly mentioned. The author’s work also resulted in or contributed to several publications (see the

list of publications, page 118). Publications which are primarily based on the work of the author of this

thesis are [1], [3], [4], [7], [8], [9], [10], [14]. To publications [12] and [15], both their first and second

authors made major contributions. While the contributions of the author of this thesis to the other publi-

cations are of a lesser importance, they are also cited for the sake of completeness and where their con-

tents is related to the subjects dealt with in the respective sections of this document. 



Chapter 2

Modeling Time/Frequency Correlation

This chapter focuses on some very preliminary work, which formed the starting point of this thesis. In

this context, two different research directions were investigated: the multiple time scale feature combi-

nation approach, and the wavelet-domain hidden Markov tree approach. In the multiple time scale fea-

ture combination approach, features obtained from longer time scales are appended to conventional

feature vectors, and the augmented feature vectors are processed in GM-HMMs in the usual way. In the

wavelet-domain hidden Markov tree approach, features obtained from different (temporal and fre-

quency) resolutions are investigated in combination with a particular HMM, which models the correla-

tion between the different components of a feature vector. It is shown that this approach can also be

integrated into the HMM paradigm. While some positive results for both these methods are reported, it

should be noted that these early research directions were not explored comprehensively. However, they

inspired the new ideas which will be described in the main part of this thesis. 

Before giving a brief overview of these two preliminary approaches, we will first introduce the gen-

eral experimental setup used throughout this thesis.

2.1 General Experimental Setup
This section gives some information about the general setup used for the experiments reported in this

thesis. In particular, we will briefly discuss database specifications and evaluation criteria. While the

choice of databases was primarily motivated by our research goals, an additional consideration was con-

formity with other ongoing research (Kermorvant, 1999; Glotin, 2000; Hagen, 2001). This also had an

influence on some more decisions concerning the practical experimental setup, e.g., parameters such as

frame rate and analysis window size during feature extraction, the division of data in different indepen-

dent sets for training and testing, and the significance tests. These issues will be discussed in the follow-

ing.

2.1.1 Databases

The majority of the experiments reported in this thesis have been done on the OGI Numbers corpus

which was released in 1995 (Cole et al., 1995). This database (in the following referred to as

Numbers95) is a multi-speaker telephone speech database in American English. As a collection of natu-

rally produced connected numbers it contains e.g., zip codes, numbers from addresses, birth dates and

phone numbers, with their orthographic transcriptions. The vocabulary consists of 30 words, and no

grammar is defined (i.e., each word may follow any other with equal probability).
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Also, some experiments on Numbers95 data degraded by additive noise will be reported. The noises

were partly drawn from the Noisex database (Varga et al., 1992), and partly provided by Daimler-

Chrysler in the framework of a common European project (SPHEAR). Three different noises were arti-

ficially added at four different signal-to-noise ratios (SNR). The SNR provides a measure for the

amount of noise added to the speech signal. The desired ratio between the speech signal  and the noise

 (over all frequencies ) was obtained for each sentence (excluding silence parts) through adaptation

of the gain factor , using following equation (Hagen, 2001):

. (2.1)

However, it should be noted that the SNR might not be the optimal measure of degradation of the

speech signal in terms of the effects of the noise on automatic speech recognition performance. I.e., for

some noises, relatively good speech recognition results might be achieved at low signal-to-noise ratios,

while for others, severe degradations are observed already at a relatively high SNR. For instance, the

effects of white noise are typically more severe in terms of performance degradations than those of band

limited or low frequency noise at the same SNR. Consequently, for a given noise and SNR, more impor-

tance should be given to the performance comparison between two methods than to results reported for

one method alone.

In correspondence with (Kermorvant, 1999; Hagen, 2001), two independent subsets of the

Numbers95 database were used. The training set consisted of 3590 utterances, comprising approxi-

mately three hours of (clean) speech. Generally, optimization was done on this set. The test set1 con-

sisted of 1206 utterances, comprising 4670 words. The same utterances, artificially corrupted with the

different noises as described above, were also used for testing in noise.

If not stated otherwise, feature extraction was done with a frame rate of 12.5ms on 32ms analysis

windows. Training was started on 27 3-state left-right monophone models, where the emission probabil-

ities were modeled with single Gaussian distributions. While the number of Gaussians was increased

(up to mixtures of ten Gaussians) in successive training steps, EM training was carried out. Finally, 80

triphone models were generated from the monophones, followed by a final parameter re-estimation

using the EM algorithm.

Some preliminary testing was also done using the 1998 release of the Aurora database (Pearce,

1998). The aim of this Aurora project was to compare systems (in particular front-ends) of different

research institutes. For this reason, the kind of models, the training algorithm, and other options were

specified in this project and left unchanged for our experiments. The Aurora database was derived from

the TIDigits database and includes artificially added noise. It has a small vocabulary (11 words), pro-

nounced by different speakers. While the characteristics of this database are fairly similar to those of

Numbers95, Aurora was also conceived for multi-condition training, i.e. training under different noise

conditions, which was used in the experiments reported here.

A third database, which was used for some particular vowel classification (and not speech recogni-

tion) experiments, is the American English Vowels (AEV) database. Details on AEV will be given in

Section 6.3.1.

1In fact, this test set corresponds to the test set used in (Kermorvant, 1999), and is a super-set of the one used in

(Hagen, 2001).

S

N f

g

SNR 10
S2 f( )

f∑
gN2 f( )

f∑
----------------------------

10
log⋅=



2.2. Multiple Time Scale Feature Combination 17

2.1.2 Evaluation Criterion

The evaluation criterion for all the speech recognition experiments is the word error rate (WER), calcu-

lated using the following equation:

, (2.2)

where ,  and  are the numbers of insertions, deletions and substitutions respectively, and

are found by comparing the recognizer output with the correct transcription (Young et al., 1995). 

is the total number of words, given the correct transcription. The significance of performance improve-

ments are evaluated using confidence intervals (CI), which are estimated using the following equation:

, (2.3)

where  for , corresponding to the 95% confidence interval2 (McClave and Sin-

cich, 2000; Bronstein, 1989).

2.2 Multiple Time Scale Feature Combination
While a lot of progress has been made during the last decades in the field of ASR, one of the main

remaining problems is that of robustness. Typically, state-of-the-art ASR systems work very efficiently

in well-defined environments, e.g. for clean speech. However, their performance degrades drastically

under different conditions. As discussed in Chapter 1, many approaches have been developed to circum-

vent this problem. Here, we investigate the influence of using additional information from relatively

long time scales to noise robustness. 

In state-of-the-art ASR systems, feature extraction techniques analyze the speech waveform and pro-

duce an acoustic vector, a representation of the speech signal suitable for further processing by HMMs.

Typically, this analysis is performed on rather short windows (up to about 30ms) of the speech signal.

Some contextual information is provided by appending derivatives to the original feature vector. How-

ever, there is no information covering a longer time span, e.g., spanning the length of one syllable.

Recently, it has been shown that this kind of long-term information could improve robustness of

ASR systems. For examples, TempoRAl Patterns (TRAPs) (Hermansky and Sharma, 1999) use addi-

tional information of up to one second. Information regarding syllables is considered in (Wu et al.,

1998). In the same spirit, we are here using features covering relatively long time scales, and which are

combined with conventional feature vectors.

2.2.1 Additional Features from Longer Time Scales

Usually, a feature vector contains only information obtained from an analysis window of about 30ms

length as well as first and second order temporal derivatives. This feature vector’s context is modeled

entirely by the topology of the HMM. To introduce some additional contextual information into each

feature vector, we appended new features, obtained either by analysis over a longer time span or by

averaging over a number of subsequent feature vectors, as a second, time-synchronous, stream. For

2Again, this significance test corresponds to the one in (Kermorvant, 1999; Hagen, 2001). It should however be

noted that it is based on assumptions (such as Gaussianity of the WER) which are often not fulfilled (Bronstein,

1989; McClave and Sincich, 2000; Mokbel, 1992).
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example, we computed the average feature vector over 9 vectors, looking at four adjacent frames on

either side of a feature vector, thus covering a time span of 112ms in total for our second time scale.

This corresponds roughly to the amount of contextual information frequently employed in hybrid

HMM/ANN systems (Bourlard and Morgan, 1993), as well as to approximately half the length of a syl-

lable. Other experiments used even longer time spans of up to 2s for the additional information stream.

The features obtained from each time resolution can be seen as separate information streams, and

the multiple time scale feature combination approach is thus a particular kind of multi-stream process-

ing (Hagen, 2001). Different streams can be treated synchronously or asynchronously (Mirghafori,

1999). Here, we only consider the synchronous processing of the streams, where their combination is

straight-forward and can be done either on the feature level or on the level of the local likelihoods

(referred to as feature combination or likelihood combination respectively, as described e.g. in (Okawa,

Bocchieri, and Potamianos, 1998)). In the case of feature combination, the feature vectors from differ-

ent streams are combined to form a single feature vector, and the HMM state likelihoods are then calcu-

lated in the usual way (e.g., using equation 1.2). In the case of likelihood combination, equation 1.2 can

be employed at the level of each stream, and the resulting stream likelihoods  are the combined as

follows:

, (2.4)

where  is the weight associated with stream . 

In the experiments reported in this section, we used feature combination, i.e., features calculated

using windows covering different time spans of the speech signal were combined to form a single fea-

ture vector.

2.2.2 Preliminary Experiments

The effects of introducing features from a second time scale (using feature combination) were tested on

the Aurora database (see Section 2.1.1). Conventional MFCCs with their first and second order deriva-

tives were used for the first time scale. Analysis windows had a length of 32ms, and features were

extracted every 10ms. Noise reduction techniques (i.e., spectral subtraction and blind equalization, Ker-

morvant, 1999) were applied. Our Aurora baseline system yields an average WER (for 0-20dB) of

13.4%, with a 95% confidence interval of [13.2%.13.6%]. It should be noted that, apart from changing

the feature extraction part (and thereby also the feature vector and model dimension), the same parame-

ters as defined in the Aurora specification were used throughout the tests, which might not be optimal

for some cases.

Experiments were run where the features of the second time scale were obtained through averaging

9 subsequent features of the first time scale. Therefore, the resulting features span more than 100ms, and

are of the same dimension as those from the first time scale (resulting in large feature vectors). Results

are shown in Table 2.1. The average word error rate of 12.7% achieved by our multiple time scale sys-

tem can be considered a significant improvement, given the baseline results and the 95% confidence

interval mentioned above.

More tests have been carried out, e.g., calculating conventional MFCCs for the second time scale

features, but on a window of 128ms (yielding an average WER of 12.5%); taking the average over 17

frames (WER= 13.1%); and taking the average over 201 frames which corresponds to roughly 2 sec-

onds (WER=37.7%). The last experiment was repeated, but for the second time scale only one coeffi-

p xs( )

p x( ) p xs( )
w

s

s
∏=

ws s



2.2. Multiple Time Scale Feature Combination 19

cient (the energy) was calculated and appended to the original feature vector. This way, a WER of

12.3% was obtained (see Table 2.2), which is the best result obtained on all our multiple time scale sys-

tems. The same setting, but only regarding a window of one second, yielded a WER of 13.7%.

 

Figure 2.1 shows the performance of the multiple time scale systems from Tables 2.1 and 2.2 in

comparison to the baseline. The relative WER ratio

(2.5)

Noise1: 
Exhibi-

tion 
Hall

Noise2:
Babble 
Noise

Noise3:
Train

Noise4:
Car 

moving

Aver-
age of 
Noises

1..4

Clean 1.5 1.7 1.5 1.5 1.5

20 dB 2.1 3.0 2.0  1.7 2.2

15 dB 3.7 6.4 2.8 1.6 3.6

10 dB 8.0 15.4 5.0 2.3 7.7

 5 dB  17.4 34.1 11.6 4.7 17.0

 0 dB 36.0 58.6 27.5 10.5 33.2

-5 dB 66.8 78.6 53.4 29.0 57.0

Average 
0..20dB 12.7

Table 2.1: Word error rate on the Aurora database: Two

time scales, the second time scale being the average over

9 subsequent frames of the first time scale and consisting

of 13 coefficients. 

Noise1: 
Exhibi-

tion 
Hall

Noise2:
Babble 
Noise

Noise3:
Train

Noise4:
Car 

moving

Aver-
age of
Noises

1..4

Clean 1.5 1.7 1.5 1.1 1.5

20 dB 2.2 2.6 1.5 1.0 1.8

15 dB 3.7 5.5 2.5 1.3 3.3

10 dB 7.5 13.8 4.7 2.3 7.0

 5 dB 14.5 31.7 11.5  4.3 15.5

 0 dB 36.7 60.0 28.0 10.5 33.8

-5 dB 70.9 80.1 59.7 29.4 60.0

Average 
0..20dB 12.3

Table 2.2: Word error rate on the Aurora database: Two

time scales, the second time scale being the average over

about 2s of the energy coefficients of the first time scale. 

RR WER baseline( ) WER 2timescales( )–
WER baseline( )

------------------------------------------------------------------------------------------------ 100⋅=
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is visualized, with positive values meaning a decrease in WER (and thus better performance) for the

multiple time scale system. It can be seen that in most cases both multiple time scale systems perform

better than the baseline, and that the system with just one additional component for the second time

scale, calculated over 2s (light bars in the figure), generally performs better.

In summary, the best tested multiple time scale system uses 14 coefficients plus their first and sec-

ond order derivatives. 13 MFCCs (including energy) were calculated on 32ms of speech and one long-

term energy coefficient was appended. This coefficient was obtained by averaging the energy coeffi-

cients over a time span of approximately 2 seconds, centered around the window from which the first

time scale coefficients were calculated. First and second order derivatives were appended. This way, a

significant improvement was gained as compared to our single time scale baseline system.

2.2.3 Discussion

In this section, the multiple time scale feature combination approach was investigated. It was shown to

significantly increase robustness of ASR systems in the case of additive noise, as compared to state-of-

the-art systems. However, some improvements might lead to an even better recognition performance.

These include a higher number of time scales, changing lower and upper cut-off frequencies of the fre-

quency bands used for the different time scales as well as varying the length of the analysis (or averag-

ing) window. Also, an additional feature transformation such as LDA might prove to be advantageous.

For instance, it might replace the averaging technique for the calculation of the second time scale, which

Figure 2.1: Aurora database: Percentage of relative WER ratio of the multiple time scale systems (from
Tables 2.1 and 2.2) as compared to the baseline. Positive values mean a decrease in WER, i.e., a better
recognition performance.
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was applied in the experiments described above. Different feature extraction or preprocessing tech-

niques might be used for the various time scales. Likelihood combination may be used instead of (or in

addition to) feature combination, pointing towards a more general multi-stream framework, as

described e.g. in (Ellis, 2000; Hagen, 2001).

2.3 Wavelet-domain Hidden Markov Trees
Above, it has been shown that features obtained from two different time scales could improve ASR per-

formance. In this section, we extend this idea, using features obtained on even more time scales. Multi-

resolution features have been applied in ASR before, e.g. (McCourt, Vaseghi, and Harte, 1998). Here,

wavelets (Daubechies, 1992) are employed, which are inherently multi-resolutional along the temporal

as well as the frequency dimension. However, the focus of this section is on a new modeling technique,

which is especially adapted to wavelet features. In fact, the local likelihood of a wavelet feature vector is

calculated using a so-called Wavelet-domain Hidden Markov Tree (WHMT). Phoneme likelihoods

obtained using the WHMT and wavelet features are then combined at the level of each temporal HMM

state with those obtained by Gaussian distributions using MFCCs. This corresponds to the likelihood

combination (as mentioned above) of the two feature streams.

2.3.1 Introduction

Due to their inherent multi-resolution characteristics, wavelet coefficients offer an implicit way to

exploit information on multiple time scales. In fact, the time scale of the analysis varies with frequency,

providing greater temporal resolution for higher frequencies, and better frequency resolution for lower

frequencies. The wavelet transformation is calculated using shifted versions of a low-pass scaling func-

tion and shifted and dilated versions of a bandpass wavelet function. These functions, if chosen reason-

ably, form an orthonormal basis, as, e.g., the Daubechies-4 transformation (Daubechies, 1992), which

was used for the experiments reported below. Daubechies-4 wavelet coefficients  (with

, where  is the length of the analysis window) can be calculated using an iterative

procedure. Given a signal , the wavelet coefficients at the highest frequency resolution level can be

calculated using:

Figure 2.2: Wavelet features obtained from the Numbers95 database: The words
pronounced are “one two seven three”. Dark/light regions correspond to high/low
energy coefficients.
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. (2.6)

Similarly, the Daubechies-4 scaling coefficients  can be calculated using

. (2.7)

These scaling coefficients are subsequently used for the calculation of the wavelet and scaling coeffi-

cients of the next lower frequency resolution, replacing the original signal  in equations 2.6 and 2.7. 

Wavelet coefficients have successfully been applied, e.g., in the field of image processing (Antonini

et al., 1992; DeVore, Jawerth, and Lucier, 1992). Recent advances take advantage of inter-coefficient

dependencies by modeling wavelet feature vectors with a special kind of HMM: the Wavelet-domain

Hidden Markov Model (Crouse, Nowak, and Baraniuk, 1998). In fact, while the wavelet transformation

is expected to decorrelate the signal, there still remain some major statistical dependencies. Particularly,

adjacent coefficients in the time-frequency plane show similar behavior, as can be seen from a speech

sample in Figure 2.2. It becomes obvious that coefficients are correlated across time (horizontal axis) as

well as frequency (vertical axis). These correlations are inherent properties of the wavelet transform,

referred to as clustering and persistency respectively.

There are three types of Wavelet-domain Hidden Markov Models, taking account of different corre-

lations: (1) Independent Mixtures, treating each coefficient as statistically independent of all others, (2)

Markov Chains, regarding only correlations across time, and (3) Markov Trees. Here, we focus on the

third model, which emphasizes the dependencies within one feature vector across frequency. On the

basis of (Crouse, Nowak, and Baraniuk, 1998; Choi and Baraniuk, 1999), wavelet-domain hidden

Markov trees (WHMTs) are adapted for application to ASR, and integrated into a system combining the

conventional HMM approach with this new technology.

2.3.2 Wavelet Features for ASR

The wavelet transformation is calculated using shifted versions of a low-pass scaling function and

shifted and dilated versions of a bandpass wavelet function, which, if chosen reasonably, form an

orthonormal basis (Daubechies, 1992). A way of interpreting wavelet coefficients of a speech signal is

to consider their position in the time-frequency plane. Wavelet features obtained from higher frequency

bands have lower frequency resolution (i.e., corresponding to larger bandpass filters) and higher tempo-

ral resolution than those obtained from lower frequency bands. Thus, the time scale of a wavelet coeffi-

cient depends on its frequency position. From this, two major properties of the wavelet transformation

are apparent: locality (given the precise position of a coefficient in the time-frequency plane) and multi-

resolution (given the varying window size and different number of coefficients per resolution level).

These characteristics could make them attractive features in the area of speech recognition. In fact, fea-

tures derived from wavelet coefficients have been used in ASR, as reported e.g. in (Long and Datta,

1996; Wassner and Chollet 1996; Long and Datta, 1998; Farooq and Datta, 2001).

2.3.3 General Concepts

A wavelet feature vector can be visualized as a binary tree in the time-frequency plane, as seen in Figure

2.3. As shown in the left panel, the wavelet coefficient at the root of the tree corresponds to the lowest

frequency band and the lowest temporal resolution level, spanning the whole analysis window. At the

second resolution level, there are 2 wavelet coefficients, each of them spanning one half of the original
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time window. At the highest temporal resolution level , there are  coefficients, each of them cor-

responding to a large frequency band in a short time window.

We define a model of the structure of a binary tree (shown in the right panel of the figure), in which

each “node” corresponds to one wavelet coefficient. Each node consists of two states, and a single

Gaussian distribution is used to model the probability density function in each state. The choice of using

two states with single Gaussian distributions was motivated by the fact that a two-state Gaussian mix-

ture model can closely fit real wavelet coefficient data (Crouse, Nowak, and Baraniuk, 1998). We can

now add connections between different nodes. Emphasizing dependencies between coefficients of adja-

cent frequency bands, we can construct a topology such as shown in Figure 2.3, where each state of a

certain node is connected with each state of the two nodes of the adjacent resolution level (i.e., higher

frequency band). Given a wavelet feature vector, the assignment of the coefficient to the different nodes

in the tree is well defined. However, it is not known which state in the respective node has emitted a par-

ticular coefficient. Therefore, the state variable is hidden. In this sense, this model is a particular variant

of a hidden Markov model, which we refer to as wavelet-domain hidden Markov tree (WHMT).

The parameters of this WHMT are the initial state probabilities (of the states in the root), the state

transition probabilities (which are only defined for states from one resolution level to the next one along

the frequency dimension, as seen in the figure), and the emission probabilities (i.e., Gaussian means and

variances). Similar assumptions as made for conventional HMMs apply, and the WHMT can be trained

with an adapted version of the EM algorithm (Choi and Baraniuk, 1999; Keller, Ben-Yacoub, and Mok-

bel, 1999). 

One tree as described above might not be able to account for all potential variability in the pronunci-

ation of a phoneme. To circumvent this problem, we can either augment the number of Gaussians in

each state, the number of states in each node, or employ several WHMTs per phoneme in parallel. In our

work, the third approach was used.

R 2R 1–

Figure 2.3: WHMT concept. The left panel shows a schema of the time-frequency plane
of the lowest three resolution levels of a wavelet feature vector. The dependencies
between coefficients, which are directly considered in the WHMT, are visualized by
arrows. In the right panel, the corresponding WHMT is shown. Each wavelet coefficient
corresponds to one node (grey in the figure), which in turn consists of two states (white
circles). Transitions are introduced between the states of adjacent resolution levels, as
shown in the figure.



24 Modeling Time/Frequency Correlation

2.3.4 Combination with Conventional Systems

Above, we have illustrated how wavelet feature vectors could be modeled by a WHMT. In the frame-

work of ASR, each speech unit can be modeled by one WHMT. Therefore, the WHMT model may

replace the GMMs, which are conventionally used to model the distributions of the different speech

units. Similar to GMMs, WHMTs can be used for the local likelihood estimation in temporal HMMs.

WHMT are thus used at the level of each temporal HMM state. This HMM/WHMT system can be seen

as a special mixture of HMMs.

Because of their multi-resolution properties, wavelet features have several potential advantages as

compared to state-of-the-art features like MFCCs. While they have not yet been shown to outperform

MFCCs for many tasks, they may provide additional, complementary information. Therefore, they may

be used in a multi-stream approach as discussed in Section 2.2.1. When using WHMTs to calculate the

likelihoods given a wavelet feature vector and GMMs to calculate the likelihood of the corresponding

MFCC feature vector, the combination of the two streams can be done at the likelihood level (i.e., using

likelihood combination, as discussed in Section 2.2.1). This is visualized in Figure 2.4. 

2.3.5 Preliminary Experiments

The Numbers95 database was used for the preliminary WHMT experiments. Wavelet coefficients were

calculated on 32ms windows of speech, shifted by 10ms, yielding large feature vectors of 256 compo-

nents. A WHMT implementation based on (Choi and Baraniuk, 1999) was used to model these features,

and one WHMT model was trained for every phoneme, (i.e., HMM state), given the hand-segmented

training data. For every feature vector, the phoneme likelihoods were calculated using all these models,

and a modified version of the HTK toolkit (Young et al., 1995) was used for decoding. Additionally, 13

MFCC coefficients (including energy, calculated on the same signal windows) were used to train Gaus-

sians distributions and calculate phoneme likelihoods in a similar manner. 

After preliminary testing of different kinds of wavelet transformations, the Daubechies-4

(Daubechies, 1992) transformation was chosen. Upon analyzing the phoneme confusion matrices of

these tests, a high percentage of errors was observed for certain phonemes. For instance, /ey/ was very

often mistaken as /ay/ or /iy/. This suggests that the employed models cannot handle the variations

within these phonemes over time. By the introduction of two, three, four or six parallel WHMTs per

phoneme we aimed at circumventing this problem. After an initialization based on the means of the

HMM

WHMT

Gaussians

Wavelets

MFCCs

Figure 2.4: Combination of WHMTs and GMMs (taking as features wavelet
coefficients and MFCCs respectively), and integration into temporal HMM system.
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training data and a different (random) distortion of these means for each WHMT, training was done

using an adapted version of the EM algorithm, where only the parameters of the most likely model

(given the respective features) were updated. Generally, the models comprising four WHMTs per-

formed best. Looking again at the confusion matrices, we observed that systems with different numbers

of trees misrecognized different phonemes. It can be assumed that a sensible combination of these sys-

tems could be able to increase recognition performance. So we achieved some improvement in combin-

ing the two-tree and the six-tree systems by simply choosing a model on a per-phoneme bases as a

function of the number of training examples. However, as defining suitable selection criteria is not a

trivial task, we finally chose the four-tree system for further experiments (yielding a WER of 67.8%).

In a second testing phase, we combined likelihoods calculated by our WHMT models on wavelet

data with those obtained from single-Gaussian HMMs on MFCCs at the frame level. Phoneme GMM

and WHMT models were trained separately. The resulting likelihoods of the two systems were com-

bined (using likelihood combination, as described in Section 2.2.1) and then processed in an HMM sys-

tem in the conventional way (Figure 2.4). This combination gave a performance improvement as

compared to either of the two systems working separately, as shown in Table 2.3. In fact, the WER

obtained from the wavelet data using the WHMT model was 67.8%, and the WER using the MFCCs

and GMMs was 52.0%. With the combined system, a WER of 50.3% was achieved. However, although

this improvement is significant (given the 95% confidence interval), it should be noted that none of

these results are competitive with those obtained using state-of-the-art technology, which will be pre-

sented in the following chapters3.

2.3.6 Discussion

We would again like to emphasize that only a very preliminary investigation of the WHMT approach

was carried out. At this stage, it can not be expected to achieve competitive recognition results. How-

ever, although this matter could not be investigated in depth in this thesis, there is a lot of room for fur-

ther improvement. Some possible directions for future research are outlined below.

One of the major problems of the experiments reported above is situated at the feature extraction

level. In fact, data from rather low frequencies are used, which are usually disturbed by line effects for

the case of telephone speech (Mokbel, Jouvet, and Monné, 1996). In particular, the four lowest levels (in

frequency) of the wavelet data contain only information from frequencies below 250Hz, which probably

contains no discriminant information and may even influence the recognition results in a negative way.

This also causes the problem that the discriminant information from analysis windows longer than 2ms

is limited. This problem is aggravated by the fact that temporal derivatives were not considered. Further-

WER

Wavelets-WHMT 67.8

MFCC-Gaussians 52.0

Combination 50.3

Table 2.3: Word error rate on Numbers95 for Wavelets-

WHMTs, MFCC-Gaussians, and their combination. 

3The reasons for this comparatively low performance are mainly related to a rather simple model topology

(using monophone models with only one temporal state and a single Gaussian distribution, instead of triphone

models with three states and mixtures of 10 Gaussian distributions, as used in later experiments).
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more, there is no appropriate energy measure and no normalization. With an ameliorated signal process-

ing, wavelet data more adapted to the characteristics of (telephone) speech could be generated.

Some problems described above are reflected at the wavelet feature modeling level. Obviously, the

system relies heavily on the lower resolution levels (including the root of the WHMT model). Further-

more, a mechanism should be introduced to incorporate derivatives into our system. This could be done

by adding temporal derivatives to each wavelet coefficient and modeling these small feature sub-vectors

by low-dimensional Gaussians, or by introducing derivative WHMTs that are connected to the others to

reflect dependencies between wavelet data and their derivatives. Some improvement might also be

gained by extending the model to allow different numbers of parallel WHMTs or Gaussian mixture dis-

tributions. Moreover, the WHMT model might be made more flexible by introducing loops into the

nodes/states, which, among other potential advantages, would allow phoneme duration modeling as in

conventional HMMs to be directly applied to the WHMT models.

As for conventional HMMs to process MFCCs, only a rather basic system (e.g., based on single

Gaussian distributions rather than GMMs) has been applied which could be replaced by a state-of-the

art one. Moreover, the likelihood combination could be improved with an appropriate weighting scheme

(Hagen, 2001). Furthermore, improvements could be obtained by, e.g., introducing triphones and/or

more emitting states per phoneme.

More generally, the idea of modeling features by means of special HMMs working on top of the

conventional HMM mechanism can be extended to features other than wavelets. For example, filterbank

coefficients or even MFCCs could be modeled by double Markov chains with cross-connected hidden

states. Also in this case, considering the residual correlations between adjacent coefficients of a feature

vector after signal processing seems a promising research direction.

2.4 Conclusion
Above, we have presented some preliminary research on early ideas. Two different approaches were

investigated: the multiple time scale feature combination approach and the wavelet-domain hidden

Markov tree approach. Common to these two approaches is the use of information from different tem-

poral resolutions (or time scales) of the speech signal in one feature vector. The correlation between the

components of a feature vector was, however, modeled in different ways. For the multiple time scale

feature combination approach, correlation was modeled by GMMs in the conventional way. In the

WHMT approach, a new paradigm was investigated, where each feature vector was represented by a

special kind of HMM, modeling correlation through the model topology.

Preliminary experiments showed some potential for both these approaches. However, there is still a

lot of room for improvement. For instance, the multiple time scale feature combination approach has

been further developed and has achieved even more promising results (Hagen, 2001). In the framework

of this thesis, the focus of research was however directed further towards the modeling of (temporal and

frequency) correlation by HMMs. Based on the experience gained from the preliminary work presented

in this chapter, the HMM2 approach was developed, where a special, “secondary” HMM is used at the

level of each temporal feature vector. Similar to the combination of the WHMT approach with conven-

tional HMMs presented above, the secondary HMM works in conjunction with the usual temporal

HMM. The focus of the next chapter is on the presentation of the theory on which this HMM2 approach

is based.



Chapter 3

HMM2:
Mixtures of Hidden Markov Models

In state-of-the-art automatic speech recognition (ASR), hidden Markov models (HMMs) are widely

used. While there are many suitable alternatives and design options for some parts of ASR systems such

as feature extraction and phoneme probability estimation, HMMs are the uncontested model for repre-

senting temporal sequences. The success of HMMs can (at least partly) be attributed to their ability to

easily accommodate temporal variations, such as different durations of phonemes, e.g. due to varying

speaking rate or speakers’ accents. 

However, such variations do not only occur along the time axis, but can also be observed in fre-

quency, as shown in Figure 3.1. In the spectograms depicting four different pronunciations of phoneme

/ay/ (including some context), inter- as well as intra-speaker variability becomes apparent (compare Fig-

ure 3.1a with 3.1b, and Figure 3.1b with 3.1c respectively). Furthermore, Figure 3.1d shows the same

phoneme pronounced in a different context, revealing the effects of coarticulation. All sub-figures sug-

gest that the position of spectral peaks may change significantly in the time-frequency plane during the

pronunciation of a phoneme.

When using HMMs, however, it is assumed that speech segments corresponding to one phoneme or

sub-phone1 unit are (1) invariant (e.g., across different speakers) enough to be modeled by the same

1By this we mean the speech unit which is modeled by one HMM state.

Figure 3.1: Spectrograms of different pronunciations of the phoneme /ay/ by different
speakers and in different contexts. Dark regions correspond to high, light regions to low energy
spectral components. The vertical axis is the frequency, the horizontal one the time evolution. 

(a) Speaker 1: ‘five’ (b) Speaker 2: ‘five’
(1st occurrence)

(c) Speaker 2: ‘five’
(2nd occurrence)

(d) Speaker 2: ‘nine’
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static probability distribution and (2) stationary for their duration, which clearly is not the case. In an

attempt to relax these rather rigid assumptions, and encouraged by many more practical motivations (as

further elaborated in Section 3.1.2), the HMM2 approach was introduced (Weber, Bengio and Bourlard,

2000). HMM2 can be understood as an HMM mixture consisting of a primary HMM, modeling the

temporal properties of the speech signal, and a secondary HMM, modeling the speech signal’s fre-

quency properties. A secondary HMM is in fact inserted at the level of each state of the primary HMM,

estimating local emission probabilities of acoustic feature vectors (conventionally done by Gaussian

mixture models (Rabiner and Juan, 1993) or artificial neural networks (Bourlard and Morgan, 1994)).

Consequently, an acoustic feature vector is considered as a fixed length sequence of its components,

which has supposedly been generated by the secondary HMM.

Although HMM2 was developed independently, a similar approach had already been proposed and

used with some success in computer vision (Levin and Pieraccini, 1993; Kuo and Agazzi, 1993;

Samaria, 1994; Eickeler, Müller and Rigoll, 1999). More recently, this approach was also applied to

speech recognition (Werner and Rigoll, 2001). However, as further discussed below, the HMM2

approach presented here includes full EM training and was extended to take care of specificities of the

problem at hand.

The purpose of this chapter is to revise theoretical and practical aspects of the HMM2 approach with

regard to its application to speech recognition. Firstly, a description of HMM2 is given and motivations

for applying it to speech recognition are outlined. This is followed by the HMM2 theory, including algo-

rithms for training and decoding. Finally, a thorough analysis of HMM2, including its possible draw-

backs and constraints, is given.

Figure 3.2: HMM2 system. In the upper part, a conventional HMM, working along the temporal
axis, can be seen. The local emission probability calculation is done with a secondary HMM,
working along the frequency axis (depicted in the lower part of the figure).
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3.1 Introduction 

3.1.1 HMM2 Description

As described in Chapter 1, HMMs are statistical models which are used to represent sequential data, e.g.

a sequence of  acoustic vectors  in speech recognition (as shown in the

upper part of Figure 3.2). As each acoustic vector  can itself be considered as a fixed length sequence

of its  components , another HMM can be used to model this fea-

ture sequence (displayed in the lower part of the figure). By “component” we mean a sub-vector of low

dimension. For instance, a temporal feature vector of dimension  could be split up into  3-dimen-

sional sub-vectors , consisting of a feature coefficient as well as its first and second order time deriva-

tives. 

While the primary HMM models temporal properties of the speech signal, the secondary, state-

dependent HMM is working along the frequency dimension (supposing that a spectral data representa-

tion is used)2. The secondary HMM is in fact acting as a likelihood estimator for the primary HMM, a

function which is usually accomplished by GMMs or ANNs in conventional systems. However, the state

emission distributions of the secondary HMM are again modeled by GMMs. Consequently, HMM2 is a

generalization of the standard GM-HMM system, which it includes as a particular case. In fact, a stan-

dard HMM can be realized with HMM2 in different ways, as shown in Figure 3.3. A trivial implementa-

tion of a standard HMM within the HMM2 framework is to have only one secondary HMM state which

emits the entire (temporal) feature vector at once (i.e.,  with ), as shown in the left panel

of the figure. An alternative way of realizing a conventional HMM within the HMM2 framework is

shown in the right panel. In this case, the secondary HMM consists of a number of (vertical) branches,

each of which corresponds to one Gaussian mixture. The emission probability in each state is modeled

by a single Gaussian distribution. Starting from the initial state, several transitions can be taken, and the

2As we focus in this thesis on the use of HMM2 for spectral data, we will use “primary HMM” interchangeably

with “temporal HMM”, and likewise “secondary HMM” with “frequency HMM”.
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Figure 3.3: Different ways to realize a GMM within the HMM2 framework. The left panel
shows the trivial solution, where the secondary HMM consists just of one state, emitting the
entire temporal feature vector at once. In the right panel, each vertical branch of the secondary
HMM corresponds to one Gaussian mixture component. 
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associated transition probabilities correspond to the weights of the Gaussians. All following transition

probabilities are set to one. Each HMM state only emits one component.

The parameters of an HMM2 are the primary HMM transition probabilities , the second-

ary HMM transition probabilities , and the secondary HMM emission probabilities

.

3.1.2 Motivations

In the following, some motivations for introducing the HMM2 approach for ASR are discussed and its

potential advantages as compared to conventional HMMs are outlined.

a) Better and more flexible modeling and parameter sharing

HMMs assume piecewise stationarity of the speech signal. Any signal dynamics within a segment

assumed to be stationary, such as the dynamic properties of the speech signal along the feature (fre-

quency) dimension, are disregarded. Using a secondary HMM for the local likelihood estimation, the

stationarity assumption is relaxed, as a more flexible modeling of the variability and dynamics inherent

in the speech signal is allowed. For instance, a spectral peak could be modeled by a single state of the

secondary HMM, even though its position on the frequency axis is quite variable (as seen in Figure 3.1).

Furthermore, a secondary HMM topology can be quite sparse, at the same time allowing for efficient

parameter sharing. The number of parameters can be easily controlled by the model topology and the

probability density function associated with the secondary HMM states. 

b) Modeling of correlation through secondary HMM topology

Under the typical HMM assumptions, correlation between feature vector components is not ignored, but

supposed to be modeled through the topology of the secondary HMM. Thereby, correlation of close fea-

ture vector components is emphasized in comparison to distant correlation, which corresponds to the

properties of data we aim to model. In fact, HMM2 could allow a sophisticated modeling of the under-

lying time-frequency structures of the speech signal and model complex constraints in both the temporal

and the frequency dimensions. In the same spirit, it was proposed in (Bilmes, 1999a; Bilmes, 1999b) to

model time/frequency correlation in the framework of buried Markov models by using Bayesian net-

works to compute emission probabilities, where the connectivity of the Bayesian network was deter-

mined by the degree of mutual information between coefficients.

c) Non-linear, state dependent spectral warping

The secondary HMM automatically performs a non-linear, state dependent spectral warping. While the

primary HMM does time warping and time integration, the secondary HMM performs warping and

integration along the frequency axis. This frequency warping has the effect of automatic non-linear

vocal tract normalization (Ikbal, Weber and Bourlard, 2002), providing a kind of unsupervised and

implicit speaker adaptation (therefore tackling the problem of inter-speaker variations). Applying

HMM2 in this field is also encouraged by the work of Lee and Rose (1998), who used a related fre-

quency warping approach to speaker normalization. With the same mechanism, intra-speaker variations

as well as coarticulation effects are also taken care of. 

Furthermore, it could be expected that HMM2 performs a kind of implicit dynamic formant trajec-

tory tracking. As a spectral peak (formant) can be modeled by an HMM state and a spectral valley by

P qt qt 1–( )
P qt

f qt
f 1–( )

p xt
f qt

f( )
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another, the segmentation performed by the secondary HMM may be a good indicator for the position

of a formant. Formants are assumed to carry discriminant information in the speech signal, moreover

being especially robust in the case of degraded speech (Garner and Holmes, 1998, Welling and Ney,

1998).

d) Extension of multi-band processing

Currently, considerable research effort in speech recognition is being devoted to multi-band speech rec-

ognition (Morris, Hagen, Glotin and Bourlard, 2001). In this case, the full frequency band is split into

multiple subbands which are processed independently (to a certain extent) by different classifiers before

recombining the resulting probabilities to yield the fullband phonetic probabilities. More recently, this

multi-band ASR approach was extended by using the so called “full combination approach” in which

subband probability combination is performed by integrating over all possible reliable subband combi-

nations. HMM2 can be seen as a further, more flexible extension to this approach. Indeed, all possible

paths through the secondary HMM will correspond to different subband segmentations and recombina-

tions. The frequency position of the subbands is then automatically adapted to the data, following for

example formant-related structures.

The following section gives a more detailed description of the HMM2 approach, including HMM2

training and decoding algorithms.

3.2 HMM2 Theory
As stated previously, although HMM2 was proposed independently and with an entirely different moti-

vation, it is related to similar approaches used previously for computer vision, such as Planar HMMs

(Levin and Pieraccini, 1993) and Pseudo 2D HMMs (Kuo and Agazzi, 1993; Samaria, 1994; Eickeler,

Müller and Rigoll, 1999). However, while these models are trained using either a planar segmentation

algorithm based on Viterbi (Levin and Pieraccini, 1993), a segmental k-means algorithm (Kuo and Aga-

zzi, 1993), or (after the two-dimensional model has been converted to a similar one-dimensional HMM)

with conventional EM training (Samaria, 1994; Eickeler, Müller and Rigoll, 1999), we here develop an

EM algorithm which is especially adapted to HMM23. 

3.2.1 Notation

Basic notations used throughout this section are explained in Figure 3.2. Their definitions and some

more explanations about additional notations are given below.

•  is the observed vector at time step , and  is its observed component at frequency step ,

•  is the primary HMM state at time , where  is a path through the primary HMM, and  is

the secondary state associated with primary state  at frequency step , where  is a path

through the secondary HMMs associated with primary state ,

3The basics of HMM theory, including training with EM, have already been briefly outlined in Section 1.4. For

the sake of completeness, and in order to make this section self-contained, certain equations will be repeated in the

following.

xt t xt
f f

qt t Q qt
f

qt f Qt

qt
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•  is the emission probability in the primary HMM, where the instantiation 

is the probability to emit  in state , and  is the emission probability in the secondary

HMM, where the instantiation  is the probability to emit component  in second-

ary state  of primary state ,

•  is the initial state probability of the primary HMM, and  is the initial state probabil-

ity of the secondary HMM in primary HMM state ,

•  is the state transition probability in the primary HMM, where the instantiation

 is the probability to go from primary state  at time  to state  at time

, and  is the state transition probability in the secondary HMM associated with pri-

mary state , where the instantiation  is the probability to go from sec-

ondary state  at the frequency component  to secondary state  at frequency component

 while in primary state  at time ,

•  is the number of states in the primary HMM, and  is the number of states of the secondary

HMM associated with primary HMM state ,

•  is the size of the sequence , and  is the size of the sequence of com-

ponents .

The likelihood of the data sequence  given the model parameters  at training step  is then

. (3.1)

3.2.2 HMM2 Assumptions

For standard HMMs, we assume that the state sequence has been generated by a first order Markov pro-

cess. For the case of HMM2, this is the case for both the temporal sequence of feature vectors, and the

sequence of sub-vectors. The resulting conditional independence assumptions for transition and emis-

sion probabilities are given below. 

Firstly, for the primary HMM it is assumed that the state  is conditionally independent of any pre-

ceding variables given the previous state :

. (3.2)

Similarly, for the secondary HMM it is assumed that the state  is conditionally independent of any

preceding variables given the previous state , associated with the primary state :

. (3.3)

Moreover, it is assumed that the primary and secondary transition probabilities are independent of time

and frequency respectively. That means that the primary transition probabilities only depend on the ori-

gin  and the destination . Similarly, the secondary transition probabilities only depend on the origin

 and the destination , given the primary HMM state. Secondly, for the primary HMM, the probabil-

ity of emitting  at time  depends only on the state  and is conditionally independent of the

past states and observations:

. (3.4)

Given the primary HMM state, the same assumption applies for the secondary HMM:
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. (3.5)

3.2.3 Training

Since an HMM is a special kind of mixture of distributions, an HMM2, being a mixture of HMMs, can

therefore also be considered as a more general mixture of distributions. As the emission and transition

probabilities of the secondary HMMs are represented by mixtures of Gaussians and multinomials

respectively, it should be natural that an Expectation-Maximization (EM) algorithm could be derived in

a similar way as shown for GM-HMMs in Section 1.4.3. In this section, such a derivation is given for

the case of HMM2, which is based on (Bengio, Bourlard and Weber, 2000).

As already discussed in Section 1.4.3, the general idea of EM is to select a set of hidden variables

such that the knowledge of these variables would simplify the learning problem. Then, an iterative pro-

cedure finds a local optimum of the likelihood of the observation (Dempster, Laird and Rubin, 1977),

where each iteration consists of two steps: estimation (E-step) and maximization (M-step). As shown in

the following for the case of HMM2, during the E-step, the values of the hidden variables are estimated,

and during the M-step, new model parameters are found, maximizing the expectation of the log likeli-

hood of the observations and the hidden variables, given the previous values of the parameters. 

In the case of HMM2, two sets of indicator variables  and  are defined such

that  is 1 when  and 0 otherwise, and  is defined only when , and is 1 when

, and 0 otherwise. Similar to the EM for GM-HMMs, the joint likelihood of the observations

and the hidden variables is then defined as:

(3.6)

but the emission probabilities are expressed as:

(3.7)

Including equation (3.7) into equation (3.6) and taking the log we obtain:

(3.8)

We define an auxiliary function as follows:

. (3.9)
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Including equation (3.8) into equation (3.9) and moving the expectation inside the log gives:

(3.10)

with 

(3.11)

(3.12)

(3.13)

(3.14)

given the model parameters  at the -th EM iteration. The expectations defined in equations (3.11) to

(3.14) are calculated during the E-step of EM. Then, during the M-step, the parameters maximizing

equation (3.9) are found. Thus, at the -th iteration, we calculate

. (3.15)

As mentioned before, it can be shown that maximizing  also maximizes the likelihood of the data

 (Dempster, Laird and Rubin, 1977).

In the following, some more details of the E-step and the M-step are given.

3.2.3.1 E-Step

Forward and Backward Variables

Let us first introduce some intermediate variables, which can be used for calculating the likelihood of a

data sequence given the model, and which will also be needed for training. We define:
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(3.16)

and

(3.17)

Thus,  corresponds to the probability of generating the sequence  and being in primary state 

at time , and is referred to as “forward” variable of the primary HMM. Similarly,  corresponds to

the probability of generating the sequence  and being in primary state  at time  and in secondary

state  at frequency , and is referred to as “forward” variable of the secondary HMM.

Likewise, we define a “backward” variable  for the primary HMM, which corresponds to the proba-

bility of emitting the sequence , given that the primary state  was visited at time :

(3.18)

and a “backward” variable  for the secondary HMM, which corresponds to the probability of emit-

ting the sequence , being in external state  at time , and given that secondary state  was vis-

ited at frequency .

(3.19)

Consequently, the product  corresponds to the probability of having emitted the complete data

sequence , while visiting state  at time . 
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Likelihoods

The likelihood  of the sequence  can then be calculated as follows:

(3.20)

or, using only the forward variable:

(3.21)

Similarly, given that primary state  is visited at time , the likelihood of , corresponding to the

sequence , can be calculated, e.g. using the forward variable of the secondary HMM:

(3.22)

The likelihood calculated in equation (3.22) can be used in equations (3.16) and (3.18).

Expectations

The expectation defined in equations (3.11) to (3.14) can be calculated using the intermediate variables

defined in equations (3.16) to (3.19) and the likelihoods from equations (3.21) and (3.22) as follows:
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(3.25)

(3.26)

3.2.3.2 M-Step

During the M-step, we seek to find the parameters which maximize the auxiliary function defined in

equation (3.9). These parameters are 

• the primary transition probabilities:  is the probability to go from primary state  to primary

state , 

• the secondary HMM transition probabilities:  is the probability to go from secondary state 

of primary state  to primary state  of primary state ,

• and the parameters of the probability density functions (pdf’s) associated with the secondary

HMM states. As noted before, we here consider these pdf’s to be mixtures of Gaussian distribu-

tions with diagonal covariance matrices. However, to simplify the notation, we will give the

update equations for the case of single Gaussians with diagonal covariance matrices. 

We are thus looking for new parameters  such that

(3.27)

Including equation (3.10) into equation (3.27) gives:
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(3.28)

M-Step for primary transition probabilities

Let us first consider the transition probabilities of the primary HMM. As they are represented by multi-

nomials, all  are constraint to be non-negative and

 . (3.29)

This constraint can be forced by introducing a Lagrange multiplier , and, instead of maximizing

, we maximize 

. (3.30)

Consequently, we need to solve

(3.31)

which gives

(3.32)

Solving equation (3.32) and choosing  such as to normalize the distribution, we obtain:

(3.33)

M-Step for secondary transition probabilities

The derivation of the secondary HMM transition probabilities, which are also represented by multi-

nomials, is very similar. The respective steps are outlined below. 

All  are constraint to be non-negative and
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 . (3.34)

To force this constraint, a Lagrange multiplier  is introduced, and

. (3.35)

is maximized. Consequently, we need to solve

(3.36)

which results in

. (3.37)

We finally obtain:

(3.38)

M-Step for emission distributions

Let us now look at the update equations for the probability density function associated with the second-

ary HMM states. For the sake of simplicity, let us consider the case where the frequency sub-vectors are

scalars. Then, if the emission probability of primary state  and secondary state  is defined as a Gauss-

ian with mean  and standard deviation , the log likelihood of a component is

(3.39)
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The update equations for  are derived as follows:

(3.40)

(3.41)

(3.42)

Similarly, the update equations for  are derived as follows:

(3.43)

(3.44)

(3.45)

In this section, we have developed the EM algorithm for HMM2, and presented update equations for the

transition probabilities of the primary and secondary HMMs and for the parameters of the emission dis-

tribution for the case where they are modeled by single Gaussian densities. In the following, we will

briefly discuss decoding in an HMM2 system.

3.2.4 Decoding

The aim of HMM decoding is to find the sequence of words which best explains the input data, while at

the same time taking account of phonological, lexical and syntactical constraints in the case of ASR.

Therefore, under the HMM2 assumptions as discussed in Section 3.2.2, the recognized word sequence

can be defined by the path  which maximizes the joint likelihood of the data and the hidden vari-

ables, given the model parameters:

. (3.46)
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Similarly to the calculation of the likelihood of the data given the model (as discussed above), a recur-

sion can be used to find this path. We thus define an intermediate variable as follows:

(3.47)

Hence,  is the probability of the best partial path (i.e., the most likely sequence of states) through

the model for the data , ending in state  at time . For ,  can be computed for each

state . At the same time, for each , the state  through which passed the best path at time  is

kept. Finally, starting from the last state (given by ), the best sequence of states can be

tracked back.

At the level of the secondary HMM, the likelihood of an acoustic feature vector (i.e., a sequence of

its components) given the primary HMM state  can be calculated as follows:

(3.48)

This likelihood can be estimated by means of the forward recursion defined in (3.17), using equation

(3.22). Alternatively, the following approximation can be used: 

. (3.49)

In this case, a Viterbi recursion similar to equation (3.47) can be used at the level of the frequency

HMM:

(3.50)

and  can be approximated by

. (3.51)

Naturally, every term of equations 3.48 and 3.49 is conditioned on the state of the primary HMM. 

Having discussed the HMM2 theory and introduced some fundamental equations, let us now investi-

gate the HMM2 approach in yet more detail and have a closer look on the implications of the underlying

mechanisms of HMM2 to data representation and discrimination.
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3.3 HMM2 Data Representation
As stated before, hidden Markov models are a generalization of Gaussian mixture models (suitable for

sequential data). Given a sufficiently large number of appropriately chosen parameters, these mixture

models can approximate any continuous density to arbitrary accuracy (Bishop, 1995; Bilmes, 1999a).

Practically, however, there are limitations. The number of parameters in a mixture model has to be

appropriately chosen, depending on the task and the available training data. Furthermore, as discussed

in Section 3.2.2, there are additional assumptions for the case of sequential data modeled by an HMM.

Moreover, there may be constraints imposed by the HMM topology.

Naturally, in the case of HMM2, these assumptions and constraints do not only apply to the primary,

but also to the secondary HMM. In this section, we investigate implications of these assumptions on the

capacity of the HMM2 model for data representation, as compared to a conventional GM-HMM system.

Let us therefore consider different ways to calculate the primary HMM state likelihood: on the one

hand using the conventional GMMs, on the other hand by three specific secondary HMM topologies, as

described below and depicted in Figure 3.4.

• Topology 1 (left model in Figure 3.4): Simulation of a GM-HMM with a single Gaussian distribu-

tion. The secondary model has a strict bottom-up topology without loops. The number of states is

equal to the length of the sequence to be emitted. As there is only one possible state sequence, this

model is a “degenerated” HMM. The local likelihoods of the secondary model states are estimated

with single Gaussian distributions.

• Topology 2 (middle model in Figure 3.4): Introduction of Gaussian mixtures (instead of single

Gaussians) for the local likelihood estimation. Here, the same model topology as in Topology 1 is

used, but at the level of the secondary model states, the single Gaussians are replaced by Gaussian

mixtures.

• Topology 3 (right model in Figure 3.4): Secondary HMM with loops. Compared to Topology 2, the

number of states in the secondary HMM is reduced and self-transitions (loops) are added at each

state. There are fewer states than emitted components, and this secondary model is a “real” HMM.

Based on these three topologies, the constraints imposed by the independent modeling of feature vector

components (permitted through the output-independence assumption) and the parameter sharing (as a

Figure 3.4: Different secondary HMM topologies.

(1) (2) (3)
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consequence of the assumption of piecewise stationarity, enforced through the first-order Markov topol-

ogy with fewer states than components) are discussed. It is demonstrated that the particular instantiation

of HMM2 discussed here can only model a limited class of distributions, restricting the model’s data

representation capabilities. 

3.3.1 Effects of the Independent Modeling of Components

Firstly, we will investigate the effects of independent modeling of components in the secondary HMM

states, as compared to the modeling of the entire vector in a GMM. For the case of the secondary model

topologies 1 and 2, equation (3.48) simplifies drastically: as there is only one possible state sequence

 through the model, we here deal with a “not-hidden” model. Therefore, 

for all transitions  defined through the model topology. For topology 1, there is even only a sin-

gle Gaussian distribution, and so we obtain: 

 with . (3.52)

The above equation is equivalent to the state likelihood estimation in conventional HMM systems where

the distribution is modeled by a single Gaussian having  dimensions.

For topology 2 and Gaussian mixture distributions in the secondary HMM states, the simplified state

likelihood equation is:

 with . (3.53)

This equation bears a significant difference as compared to the distribution obtained for a conventional

GMM, as can be expressed using the following equation:

 (3.54)
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Figure 3.5: Toy example: modeling power of GMM vs. HMM. In (a), a mixture of 3 2-dimensional
Gaussians is defined (i.e., Gaussian means, variances and mixture weights). This GMM is
visualized in (b). In (c), a distribution resulting from an HMM (also employing the parameters
defined in (a)) is shown. 
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It can be seen that a sum of products (in the case of a GMM, equation (3.54)) has been replaced by a

product of sums (in the case of a secondary HMM, equation (3.53)). Figure 3.5 shows the implications

of these two equations on an example of “toy” data. It can be seen that the distribution obtained by the

GMM (Figure 3.5b) is quite irregular. In fact, the shape of the distribution obtained by a GMM is prac-

tically only limited by the number of mixtures used. For example, the resulting PDF can take an

(almost) elliptical form, whose principal axes are not necessarily parallel to the coordinate system. On

the other hand, when modeling each feature component independently in a secondary HMM state, each

mixture component in each state influences linearly all mixture components in all other states. Hence,

the form of any resulting distribution is very restricted, as its principal axes inevitably follow the coordi-

nate system’s orientation. This is illustrated in Figure 3.5c. Therefore, correlation can not be modeled in

the same way as in GMMs4. 

3.3.2 Effects of the Parameter Sharing

Does this drawback generalize when moving from the kind of models investigated above to hidden

Markov models, or can it be compensated through some correlation modeling due to a suitable HMM

topology? In the case of real HMMs (see right model in Figure 3.4), each possible path through the

model corresponds to one Gaussian distribution, hence the sum over all possible paths corresponds to a

Gaussian mixture (with as many mixture components as there are paths in the model):

(3.55)

where the respective products of initial and transition probabilities  represent the

mixture weights. 

However, if one state emits several components ( ), the underlying PDF for

their data likelihood estimation is constant (i.e., the Gaussian parameters are shared for the likelihood

calculation of all those components). Hence, the distributions which can be modeled by such a second-

ary HMM are again very restricted. This fact is depicted graphically on another “toy” example in Figure

3.6. It can be seen that the resulting distribution obeys the same restrictions as the one shown in Figure

3.5: it is not possible to model distributions whose principal axes do not follow the coordinate system’s

orientation. For the kind of secondary HMM we are investigating here (i.e. bottom-up topology with

fewer states than emitted components), this conclusion generalizes to higher-dimensional data and a

higher number of Gaussian mixtures.

In conclusion, Figures 3.5 and 3.6 both show that feature correlation can be modeled quite well by

Gaussian mixture distributions, because they allow any orientation of the principal axes of the data dis-

tributions in a given coordinate system. This is not possible in the same way with a bottom-up second-

ary HMM with few states, because (1) the independent modeling of components in individual HMM

states and (2) the parameter sharing (allowed by the stationarity assumption and enforced through

4It is interesting to note that the traditional multiband approach suffers from a similar handicap, for which the

full-combination approach (Morris, Hagen, Glotin and Bourlard, 2001) can offer a remedy.
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looped HMM states) both constrain the resulting distribution to follow the orientation of the coordinate

system. However, if the data conformed with the assumptions imposed through the model, HMM2

could still be appropriate. After having discussed some issues concerning data discrimination with

HMM2, we will adopt a more data-driven point of view towards HMM2 and investigate the peculiarities

of the speech data with respect to the above assumptions in Chapter 4.

3.4 HMM2 Data Discrimination
As stated before, the topology of the secondary HMM was chosen to be strictly bottom-up and to have

fewer states than there are components in one temporal feature vector (as also seen in Figure 3.2).

Therefore, each secondary HMM2 state is expected to emit a number of adjacent components, i.e. all

components belonging to a certain frequency band. The number of secondary HMM states determines

the number of frequency bands into which the spectrum is decomposed. The cut-off frequencies and

bandwidths of these frequency bands will be dynamically determined, given the data and the model

parameters, during training and decoding. These segmentations along the frequency axis could corre-

spond to formant-like structures.

It is widely acknowledged that spectral peaks (formants) contain important discriminant information

(Garner and Holmes, 1998; Welling and Ney, 1998). Therefore, the secondary HMM’s frequency seg-

mentation might represent rather discriminative information. However, HMM2 seems to suffer from the

same problem as encountered in conventional HMMs: an imbalance between the contributions of HMM

state likelihoods and transition probabilities to the estimation of the overall likelihood5 (even though

this effect is somewhat diminished due to the lower feature dimension in the secondary HMM). Conse-

quently, the primary HMM state likelihoods do only insignificantly (if at all) reflect the frequency seg-

mentation produced by the secondary HMM. The improved flexibility of the model due to the high

number of paths through the frequency HMM leads to a loss of discriminability (because of the loss of

information concerning formant positions), which may rule out the potential gain of frequency warping.
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Figure 3.6: Toy example: demonstration of the modeling capacity of a GMM (left part of the
figure) and a secondary HMM (right part) for the case of 3-dimensional data. The GMM consists
of a mixture of 2 Gaussians with diagonal covariance matrices. The secondary HMM has 2 states
as shown in (d), thus there are 2 possible paths through the model (see (e), which compares to (a)
for the GMM case). In (f), the Gaussian components contributing to the resulting distribution are
depicted (compare to (b) for GMM). It can be seen that, for the case of the secondary HMM, only
one dimension is expanded, resulting in the distribution depicted in (g). The principal axes of this
distribution are constrained to follow the axes of the coordinate system, which is not the case for
the distribution resulting from the GMM (depicted in (c)). 
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Under the assumption that frequency positions of different spectral regions (especially formants)

represent important discriminant acoustic cues, it should be ensured that HMM2 takes them into

account in an appropriate way. This problem can be solved with an additional coefficient of the feature

vector, which indicates the frequency position of its respective component, as shown in Figure 3.7a

(Weber, Bengio and Bourlard, 2001c). This has the effect of forcing the Viterbi algorithm to take the fre-

quency position of each feature vector into account during the frequency segmentation. 

As a toy example, Figure 3.7 illustrates the typical spectral shape of two vowel classes α and β, both

consisting of 2 alternating spectral peaks (H) and valleys (L), resulting in the overall structure HLHL.

These classes can be distinguished only by the position of the spectral peaks and valleys, and it is

known that these positions are indeed the most important perceptual cues. Using HMM2 without fre-

quency coefficients, the only way of modeling the differences between α and β is by the transition prob-

abilities, which, as stated previously, do not have much influence. The two classes are therefore easily

5Together with the effects of the HMM’s inherent exponential duration probability distribution, this leads in

conventional HMMs (as well as in our primary HMM) to a poor duration modeling. However, these problems play

in the conventional case only a subordinate role. On the one hand, the poor duration modeling can be compensated

for, e.g. through lexical and grammatical constraints in combination with word entrance penalties. On the other

hand, the duration of a phoneme might not be an essential cue for discrimination, as this parameter varies consider-

ably (depending on non-discriminant features such as the speaking rate).

Figure 3.7: The frequency index: In (a), data assumed to be typical of the classes
α and β are visualized by a black and a gray curve respectively. On the right,
feature vectors (corresponding to the class α curve) as used in the secondary
HMM composed of coefficients cs, their delta ds and acceleration coefficients as,
as well as the frequency coefficient fs, are shown. In (b), an example frequency
segmentation is shown for each class. (c) shows a structure of an HMM with
alternating H and L states, which is able to model both classes. With an
additional trained frequency coefficient (as shown in (d)), discriminability can be
ensured.
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confusable. When introducing the frequency coefficients, the Viterbi segmentation of a feature vector is

in some way constrained and discriminability will be maintained. In fact, the frequency coefficient is

handled in the same way as the other coefficients in a feature vector, i.e. it is modeled by the GMM. The

Gaussian mean will correspond to the mean frequency of the modeled frequency band, and the variance

should be an indicator of the bandwidth.

While the idea of using an additional frequency coefficient may seem surprising, it is justified in the

frequency warping performed by HMM2. Improved recognition results confirm the suitability of this

idea (Weber, Bengio and Bourlard, 2001c). Naturally, in standard HMMs this frequency coefficient does

not give any additional information, as the frequency position of each coefficient is implicitly known

from the structure. 

3.5 Conclusion
This chapter has presented the motivations and foundations underlying the use of HMM2, a particular

form of HMM in which emission probabilities are estimated through secondary, state-dependent,

HMMs working along the acoustic feature dimension. It was shown that the parameters of this new

model can be trained using the Expectation-Maximization (EM) algorithm. Including the standard

multi-Gaussian HMMs as a particular case, HMM2 provides additional modeling capabilities, allowing

a principled approach towards flexible modeling of the time/frequency structure of speech through

warping along the temporal and frequency dimensions. However, it was shown that there are also limita-

tions concerning the data representation and discrimination capabilities of HMM2. In the following

chapter, we will investigate how these limitations might affect the practical application of HMM2 to

speech recognition.
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Chapter 4

Application of HMM2 as Decoder

In this chapter, the application of HMM2 as a decoder for speech recognition is investigated. After dis-

cussing the choice of features to employ in an HMM2 system, different ways of practically implement-

ing such a model are considered. The focus of this chapter is however on the experimental evaluation.

The capability of different HMM2 topologies for data representation and discrimination is evaluated for

application to speech data, and compared to that of the conventionally employed GMMs. This is fol-

lowed by the presentation of speech recognition experiments both for clean speech and for speech

degraded by additive noise.

4.1 Experimental Setup

4.1.1 Features for HMM2

Experiments were carried out on the Numbers95 corpus (see Section 2.1.1). A major concern when

working with HMM2 is the choice of the features. We investigated different representations such as fil-

terbanks, Rasta, and MFCCs. Obviously, for the motivations outlined in Section 3.1.2 to hold, features

in the spectral domain should be employed (although HMM2 might also show some advantages with

different features). For most of our experiments, frequency filtered filterbanks (FF2, as explained in

Section 1.2.5) were used. Compared to MFCCs, these features show only slightly worse speech recogni-

tion results on our HTK-based system (this result applies to clean data; however, performance degrades

significantly in noisy conditions). In addition to staying in the spectral domain, FF2 features offer the

advantage of being normalized to some degree (possibly large signal level variations are in fact

smoothed out through the differencing). Twelve normalized FF2 coefficients (including one energy

coefficient) were used. First and second order time derivatives were added to each feature vector. 

4.1.2 HMM2 Implementation

There are different ways to implement an HMM2 systems. A straightforward realization is based on the

implementation of a generalized form of the standard EM algorithm, as described in section 3.2. This

requires either changes to standard HMM tools, or the development of a new software, such as

described in (Ikbal, Bourlard, Bengio and Weber, 2001).

A second way is to unfold the HMM2 (which, as previously stated, is a kind of HMM mixture) into

one large HMM (Levin and Pieraccini, 1993; Kuo and Agazzi, 1993; Samaria, 1994; Eickeler, Müller
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and Rigoll, 1999; Weber, Bengio and Bourlard, 2001b), as shown in Figure 4.1. For this implementa-

tion, synchronization constraints have to be introduced to ensure that exactly one feature vector is emit-

ted between each two transitions in the primary HMM. This requires (1) additional synchronization

states1 (grey in the figure) and (2) a re-arrangement of the data. Out-of-range synchronization compo-

nents (modeled exclusively by the synchronization states) are introduced between the original feature

vectors. The transitions between primary HMM states correspond to transitions between the synchroni-

zation states. Standard EM training algorithms (as presented in Section 1.4.3) can be used to implement

this unfolded HMM2, and Viterbi decoding has to be used at the level of both the primary and the sec-

ondary HMM.

We did preliminary tests with both of the HMM2 implementations described above. It was found

that they yield a similar performance on small problems. For practical reasons, all further experiments

reported here used the implementation shown in Figure 4.1, realized with the HTK system (Young et al.,

1995).

4.2 Evaluation of Data Representation and Discrimination
In Section 3.2.2 we have presented the assumptions we need to impose on the data in order to model

them with an HMM2 system, and in Section 3.3 we discussed their implications in some more detail. In

fact, each component is assumed to be independent of all other components, given the HMM state, and

a data segment is assumed to be piecewise stationary along both the time and the frequency axes (i.e., a

1It is sufficient to introduce one synchronization state either at the beginning or at the end of each secondary

HMM. However, for the sake of clarity we here choose 2 synchronization states before and after each secondary

HMM.

Figure 4.1: HMM2 implementation with synchronization constraints and synchronization sub-
vectors. The HMM2 system is emitting a sequence of (low-dimensional) components, intermitted by
synchronization components at regular intervals. 
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few subsequent components are supposed to have been generated by the same probability density func-

tion). As is generally the case for a temporal sequence of speech data, these assumptions may not

entirely be satisfied for the sequence of sub-vectors processed by the HMM2 system, which may result

in a mismatch between the data and the model’s capacity for data representation and discrimination

(Weber, Bengio and Bourlard, 2001b). We now investigate whether these assumptions are satisfied, and

their significance for the speech data representation in HMM2, as compared to conventional GM-HMM

systems. 

In Figure 4.2, correlation coefficients of FF2 features are visualized. It can be seen that the data are

correlated, especially neighboring components in a feature vector (indicated in the figure by darker col-

ors near the diagonal). Figure 4.3 shows how these correlated data are represented by a GMM and by a

secondary HMM. The models are both trained on real FF2 speech data, and their respective parameters

are visualized (in the same way as for the toy example in Figure 3.5). In the left part of the figure, it can

be seen how the GMM parameters represent the existing data correlation. However, the HMM, shown in

the right part, is not able to reproduce an appropriate data distribution. Although there are many suitable

methods which orthogonalize data to some extent, completely uncorrelated features have yet to be

found in the domain of ASR2. If this mismatch between data and modeling capacity cannot be circum-

vented or compensated for, data representation by HMM2 might remain sub-optimal.

The validity of the stationarity assumption is harder to fully prove or reject. Figure 4.4 shows an

example pronunciation of phoneme /ay/. It can be seen that the piecewise stationarity assumption is not

entirely satisfied. Nevertheless, it is intuitively (and practically, using a clustering algorithm) possible to

segment this representation along the (horizontal) frequency axis in a few quasi-stationary sectors,

which could subsequently be represented by the same PDF.

4.2.1 Visual Evaluation of the Frequency Index

In Section 3.4, we have discussed the issue of data discrimination, related to the stationarity assump-

tion and thus to the modeling of a sequence of sub-vectors by one secondary HMM state, and we have

introduced a potential way to improve data discrimination by adding additional frequency information

to each frequency sub-vector. To evaluate the meaning of such frequency information, an HMM2 sys-

tem was trained, using secondary feature vectors augmented by a frequency index. In Figure 4.5, the

corresponding Gaussian means are shown for different phonemes of the database. The associated vari-

ances are also visualized in the figure. While the trained means of the frequency index provide informa-

tion about the position of the frequency bands modeled by the corresponding states, the variances model

the respective bandwidths. It can be seen that these parameters vary across phonemes, and that, for a

given phoneme, they may also vary in time. The figure confirms that some general structural informa-

tion of the phonemes is modeled. However, the structures represented in the figure are not meant to be

sufficient for phoneme discrimination, as no supplementary (and generally available) information about

other underlying speech features (such as the energy in the different frequency bands) is visualized.

2Even the correlation coefficients of (the supposedly decorrelated) MFCC are quite comparable to those of FF2

(shown in Figure 4.2), with the difference of a lower correlation near the diagonal.The issue of the modeling of cor-

relation with HMMs has been discussed in Section 1.6.
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Figure 4.2: Correlation coefficients of FF2 features. Dark colors
correspond to high correlation coefficients.
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Figure 4.3: Illustration of the modeling power of GMM and Markov
model using real FF2 speech data. Figure (a) shows a part of a
trained GMM, (b) the equivalent trained Markov model (only two
dimensions are displayed). In either case, there are mixtures of 3
Gaussians. While in (a) data correlation becomes obvious, it cannot
be seen in (b).
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Figure 4.4: Energy spectrum of a
pronunciation of phoneme /ay/. Each line
in the figure corresponds to one time step,
and thus to one feature vector (the thick
black line is the mean). 
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4.2.2 Preliminary Evaluation on a Speech Recognition Task

In this section, the HMM2 approach is evaluated on a real speech recognition task. In order to

directly compare HMM2 with the conventional GM-HMM system, the topology of the primary HMM

was left constant throughout the tests (all phoneme models had 3 temporal states, connected by a strict

left-right topology). Only the likelihood estimation in each primary HMM state was changed, realized

by GMMs with different numbers of mixtures, or alternatively with different frequency HMM topolo-

gies such as described in Section 3.3 and depicted in Figure 3.4. Test were also done using an additional

frequency index (FI). Word error rates are shown in Table 4.1.

As in the case of conventional GM-HMM, for each of the tested HMM2 variants performance

improves as the model becomes more complex. For both the no-loops model (topologies 1 and 2) and

the HMM (topology 3), a mixture of 10 Gaussians performs generally better than a single Gaussian, and

triphone models have a superior performance as compared to monophones. 

Comparing GMM and the non-looped model, it can be seen that their performance for the case of

monophones with a single Gaussian distribution is comparable (22.2% vs. 21.8% WER respectively).

This was expected, as the two systems were shown to be theoretically similar (see Section 3.3.1). The

slight difference in the results can be attributed to differences in implementation and training algorithm. 

Although for both these systems performance increases when adding more Gaussians, the improve-

ment for the case of the non-looped model is inferior compared to the GMM. As was shown in Section

Monophones
1 Gaussian

Monophones
10 Gaussians

Triphones
10 Gaussians

GMM 22.2 12.5 6.7

no-loops model 21.8(1) 18.3(2) 11.4(2)

HMM 41.9 31.6(3) 20.5(3)

HMM/FI 42.2 27.2(3) 15.9(3)

Table 4.1: Comparison of systems using different models for the

local likelihood estimation of the primary HMM: WER on

Numbers95. Where applicable, the numbers in superscripts

designate the corresponding topology (see Section 3.3).
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Figure 4.5: Trained HMM2 parameters for different phonemes. In each column, the means
of the frequency indices of the 4 secondary HMM states belonging to the same temporal
state are visualized. Vertical bars show the respective variances. The 3 columns belonging
to a phoneme correspond to the 3 temporal states. It should be noted that these structures
are not meant to be sufficient for phoneme discrimination.

 /ah/ /n/  /th/ /r/ /iy//w/
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3.3.1, a GMM provides better modeling of correlation. Given the correlation in our data (see Figure

4.3), it can be concluded that GMM are indeed the more accurate model for this case. This is confirmed

by the results on triphones.

Comparing the no-loops model and the HMM, we encounter yet again a serious performance drop.

It could be argued that this loss might be due to the parameter sharing and thus a lower number of

parameters in the HMM. However, the HMM with mixtures of 10 Gaussians has about four times as

many parameters than the no-loops model with a single Gaussian distribution, and still the latter model

performs much better. This might partly be due to the stationarity assumption not being entirely satis-

fied, and partly due to the loss of discriminability as described in Section 3.4. Indeed, when using an

additional frequency index in the feature vectors (HMM/FI), performance increases. This shows that

this frequency index effectively improves discriminability. However, performance of the HMM/FI is

still inferior to both the GMM and the no-loops model.

Generally, a significant performance drop was observed when using HMM2. Speech recognition

accuracy decreased significantly as compared to the conventional GM-HMM system. This result is con-

sistent for different HMM2 implementations (as described above), and holds for all kinds of features

tested.

The experiments reported above were all run on clean speech. However, one of the motivations for

using HMM2 is its possibly higher robustness in the case of mismatch between training and testing con-

ditions. Therefore, we investigate in the following section the robustness of HMM2 in the case of addi-

tive noise.

4.3 Evaluation on Noisy Speech
To realistically compare the performance of the HMM2 system to that of a conventional HMM, tests

were performed on both models given the same features (i.e., FF2, as discussed in Section 1.2.5), and

using an additional frequency coefficient. Figure 4.6 shows results for one noise condition, with error

bars indicating the 95% confidence interval (more results are given in Appendix A). It can be seen that

the differences in the performance of these 2 models are statistically significant. While HMM2 is not
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Figure 4.6: HMM vs. HMM2 performance for frequency filtered filterbank features, illustrated
by the broken and solid lines respectively, for car noise at different signal-to-noise ratios
(SNR). Errorbars for HMM WER show the 95% confidence interval.
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competitive with conventional HMMs in clean conditions or noisy speech with a high SNR, for speech

heavily degraded by additive noise it outperforms the conventional HMMs. In fact, HMM2 is better able

to handle this kind of mismatch between training and testing conditions (as training was done on clean

speech only). This was confirmed on all other tested noise conditions. However, the obtained results (for

both HMM and HMM2 with FF2 features) are not competitive with the state-of-the-art performance

(obtained with conventional HMMs, but employing as features mel-frequency cepstral coefficients,

including spectral subtraction and cepstral mean subtraction, see Section 1.2.4). In fact, the performance

is limited due to the choice of features in the spectral domain, which were not found to be competitive

with cepstral features on noisy data. Although, to further improve HMM2 performance, more research

is required first and foremost in the area of the robust extraction of spectral features, these results indi-

cate the potential for applying HMM2 in adverse conditions. 

4.4 Conclusion
In this chapter, the application of HMM2 as a decoder for speech recognition was investigated. Firstly,

the capacities of HMM2 for data representation and discrimination were evaluated. It can be stated that

the additional assumptions imposed on the data through the particular secondary HMM topology inves-

tigated here are not always satisfied. This might be one reason for the performance degradations (as

compared to standard HMMs) observed in matched training and testing conditions. On the other hand,

the improved flexibility of the model might allow for a better performance in unmatched conditions. In

fact, it was shown that HMM2 outperformed conventional HMMs for the case of speech degraded by

additive noise with low signal-to-noise ratio, using the same features. However, it has to be stated that

using state-of-the-art cepstral features in combination with noise-reduction techniques still yields better

results in the framework of conventional GM-HMM systems.

Above, the performance of HMM2 was compared to that of conventional HMMs in terms of the

word error rate. Additional considerations are the number of parameters, the amount of training data

necessary in order to obtain reliable models, and the recognition speed. Due to the parameter sharing

done by HMM2, the number of parameters of this model is generally inferior (given the same number of

Gaussian mixtures) to that of conventional HMMs (in fact, in the settings tested, the number of parame-

ters of HMM2 was less than half than that of conventional HMMs). As this has a direct influence on the

necessary amount of training data, it can be assumed that the HMM2 model could be reliably trained

with the training data available. On the other hand, due to the higher number of states in the HMM2 sys-

tem (in fact, in the settings tested there were about five times the number of states in an HMM2 as com-

pared to the conventional HMM), the HMM2 recognition speed is considerably lower. While

recognition speed is becoming a minor issue given the hardware improvements observed during the last

years, it might still be a drawback for the case of real-time applications.

Although HMM2 has not yet been found to be competitive with conventional HMMs in terms of the

WER, HMM2 might be able to outperform conventional HMMs. When staying with the bottom-up

looped HMM2 topology, the use of better spectral features should yield performance improvements.

While the focus of our work was on the acoustic modeling part, ongoing research by other researchers

sought (and seeks) to improve feature extraction, also in the spectral domain (Macho and Nadeu, 2001).

It is likely that spectral features which outperform MFCCs (including noise reduction techniques) in

unmatched conditions using standard HMMs would perform even better in the HMM2 framework.

On the other hand, the particular secondary HMM topology investigated here is just one possibility

for an HMM2 implementation. Many other topologies could be employed. For instance, one could start
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from a topology mimicking the well-working GMMs (such as depicted in the right panel of Figure 3.3),

and include additional transitions where they are found to be useful. This approach might better com-

bine the advantages of both the GMM and a secondary HMM for the local likelihood estimation. More

generally, an ergodic topology using a large number of states could be employed, which could permit a

better modeling of complex structural information and correlation in the speech signal.

As seen above, there are still many possible research directions in the framework of HMM2. How-

ever, during the analysis of the mechanisms underlying HMM2 (with a bottom-up looped secondary

HMM topology, as described in this chapter), it became obvious that this model implicitly extracts per-

tinent information about certain structures of the speech signal (as those visualized in Figure 4.5). Con-

sequently, the idea arose to explicitly exploit this information for speech recognition. This is the subject

of the following chapter.



Chapter 5

Application of HMM2 as Feature Extractor

In the previous chapters, HMM2 was introduced. It was shown that HMM2 is a special mixture of

HMMs, where emission probabilities of a conventional, “primary” HMM are estimated by “secondary”

HMMs, one secondary HMM being associated with each state of the primary HMM (see Figure 3.2). In

the case of ASR, the primary HMM works along the temporal dimension of speech and emits a time

sequence of feature vectors, and, provided that features in the spectral domain are used, the secondary

HMM works along the frequency dimension. In fact, each temporal feature vector is assumed to be a

sequence of its sub-vectors, where each sub-vector is associated with a particular frequency band (e.g.,

reflecting its signal energy). If a temporal feature vector is emitted by a certain temporal HMM state, the

associated sequence of (frequency) sub-vectors is in fact emitted by the secondary HMM associated

with the current temporal HMM state. 

Conventional HMM-based speech recognition is done with the Viterbi algorithm, which finds the

best (most likely) path through the model, given the model parameters and the data. This method deliv-

ers as a by-product the temporal segmentation of the speech signal, i.e. we get to know not only the

sequence of the (supposedly pronounced) sub-phone units, phonemes and words, but also the point in

time when each of these speech units begins and ends, and therefore implicitly their duration. In the

framework of HMM2, and when applying the Viterbi algorithm at the level of both the primary and sec-

ondary HMMs, we obtain additionally (from the secondary HMMs) for each temporal feature vector a

segmentation in frequency. Like the temporal segmentation, the frequency segmentation is obtained in a

principled way, optimizing a maximum likelihood criterion. Therefore, it can be expected that this seg-

mentation also contains meaningful information. In fact, the frequency segmentation of one temporal

feature vector might reflect its partition into frequency bands of similar energy, and therefore indicate

the position of spectral peaks and valleys. Spectral peaks are related to so-called formants, which may

be useful to discriminate between certain speech sounds.

In this chapter, we investigate whether the time and frequency segmentation obtained through

HMM2 Viterbi decoding could (directly or in a converted form) be used as (additional) features for a

second, conventional ASR system. In the following, we will refer to such features as “HMM2 features”.

5.1 Introduction
Let us first examine more closely an HMM2 system processing a speech signal. For conventional

speech recognition, the Viterbi algorithm is used to find the sequence of states that best explains the

input data, i.e., that has the highest probability (likelihood) of emitting the given data sequence (equa-



58 Application of HMM2 as Feature Extractor

tion 3.46). If, at the level of each temporal HMM state, the likelihood of an acoustic feature vector is

also estimated using the Viterbi algorithm (equations 3.49 and 3.51), this likelihood is again based on

the best sequence of states of the frequency HMM associated with the actual temporal state. Therefore,

for the full HMM2 system, we obtain the path through the model that has the highest probability (likeli-

hood) of emitting the observed data sequence, at the level of both the temporal and frequency HMMs. In

addition to the sequence of primary and secondary HMM states, we can retain information about where

(in time and frequency, respectively) the transitions between these different states take place. 

Figure 5.1 shows an example of temporal and frequency segmentations as produced by HMM2. The

upper part shows the primary HMM, which segments the speech signal along the temporal (horizontal)

dimension. In the lower part, the resulting segmentations are projected onto a (spectogram-like) time-

frequency plane (the colors of the columns correspond to the relevant states of the primary HMM). For

the middle column, it is illustrated how the secondary HMM associated with the second (blue) primary

HMM state segments the corresponding temporal segment along the frequency axis into four different

frequency regions (illustrated by different shades). Obviously, the frequency segmentation depends on

the state of the temporal HMM. It is clear however that the temporal and frequency segmentations are

not obtained sequentially, but in an integrated way during the global Viterbi decoding. While a temporal

HMM state typically corresponds to a phoneme or a sub-phone unit, a frequency HMM state corre-

sponds to a particular frequency band. As illustrated in the figure, the positions and the bandwidths of

these frequency bands are not fixed a priori, but depend on the data and on the model parameters. In

fact, given the bottom-up frequency HMM topology, the Viterbi algorithm can be expected to group (for

each temporal feature vector) adjacent frequency components showing similar characteristics into one

state, i.e. frequency band. For example, there might be a high energy region covering several frequency

components in the lowest frequencies. These components would be modeled by the first frequency

HMM state, and the following low energy region would be modeled by the next state. This is demon-

strated for the middle (blue) primary HMM state in the figure, where dark shades correspond to high

and light shades to low energy regions. However, it can also be seen that, as the signal characteristics

change in time, the distribution of high and low energy regions over the secondary HMM states might
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Figure 5.1: Illustration of time and frequency segmentations of a speech signal, as could be
produced by HMM2 Viterbi decoding for the example of a 3-state temporal HMM with 4
frequency HMM states each. 



5.1. Introduction 59

be different for each primary HMM state. So, for the right (red) primary HMM state, the energy in the

lowest frequencies is comparatively low.

Above, it was discussed how HMM2 can be used to segment the speech signal into regions of simi-

lar energy. From these segmentations, new “HMM2 features” can be obtained for a second recognition

pass. Firstly, the temporal segmentations could be used to extract features related to duration. Secondly,

the segmentations produced by the secondary HMM can be used directly or in a converted form (e.g., as

frequency values) as features. Moreover, this frequency segmentation allows the extraction of additional

information, such as the average energy of the feature vectors emitted by each secondary HMM state.

Additionally, the likelihood that the sequence of feature vectors are emitted by a certain primary or sec-

ondary HMM state might contain meaningful information. After having motivated the use of these dif-

ferent HMM2 features, we will describe in more detail the methods used for their calculation.

a) Extraction of features in a principled way

As described in Chapter 3, an HMM2 system can be trained using the Expectation Maximization algo-

rithm (EM), adapting the parameters of the model in such a way that the likelihood of the observations

is guaranteed to increase with each training step. Therefore, the final model parameters can be expected

to yield a local maximum of the likelihood. Then, during Viterbi decoding, the path through the model

that maximizes the likelihood of the data, given the model parameters, is found. Therefore, both training

and decoding (i.e. feature extraction) with HMM2 are based on a maximum-likelihood criterion. As dis-

cussed previously, Figure 4.5 visualizes trained HMM2 parameters, and some structural information

specific to different speech units becomes apparent. Even though HMM2 recognition (and therefore

HMM2 feature extraction) is necessarily prone to errors (as in the case of any other decoder), it can be

expected that the resulting HMM2 features, obtained by finding the most likely path through the most

likely model, carry significant information for speech recognition. 

b) Relationship with formant positions

As discussed above, the segmentation between secondary HMM states, produced as a by-product of the

Viterbi algorithm, can be interpreted as a separator between regions of different energy levels in the

spectrogram (just as the temporal segmentation separates phonetic units). If, e.g., a distinct high energy

region is surrounded by low energy along the frequency dimension, it can be assumed to correspond to

a formant. Formants are supposed to represent discriminant information, which has been shown to be

useful for speech recognition. More details, motivations and results for the use of formants as well as

formant-related HMM2 features for ASR can be found in Chapter 6.

c) Duration-related feature

Apart from the frequency segmentation, also the temporal segmentation produced as a by-product of

the Viterbi algorithm might also contain useful information. A transition from one primary HMM state

to the next might indicate a change in the characteristics of the speech signal, and the time spent in a pri-

mary HMM state might be related to parameters such as phoneme duration and speaking rate. The use

of duration related features has been investigated and has shown some success, e.g. in (Wang, 1997).

d) Relationship to Tandem System

Recently, the “tandem system” has been proposed (Hermansky, Ellis, and Sharma, 2000), using pho-

neme emission probabilities as estimated by artificial neural networks (ANN) as features for conven-
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tional HMMs. Applying this approach to the framework of HMM2, the secondary HMM state

likelihoods could also be used to calculate a special kind of HMM2 features. These likelihoods may also

provide some sort of confidence measure of the recognized speech unit, and therefore of the quality of

the (other) HMM2 features.

e) Dynamic multi-band

The relationship between HMM2 and the multi-band approach has already been discussed in Chap-

ter 3, and can be extended to the case where HMM2 is used as a feature extractor. In fact, the Viterbi

algorithm finds the most likely path through the primary and secondary HMMs. At the level of each

temporal feature vector, the associated sub-vectors can thus be assigned to the secondary HMM states

that are supposed to have emitted them. Each such secondary HMM state might represent one frequency

band, and would therefore define the frequency band’s characteristics (e.g., high or low energy). For

each temporal feature vector, the HMM2 frequency segmentation is not defined a priori, but depends on

the observation. Therefore, the cut-off frequencies and bandwidths of the frequency bands are adaptive.

The application of HMM2 directly as a decoder can be seen as an implicit multi-band implementation

where the bandwidths of the different frequency bands are adjusted dynamically, depending on the data.

When HMM2 is used as a feature extractor, the frequency segmentations can be used to calculate new

features, given these dynamic sub-bands. As all of the sub-vectors emitted by the same secondary HMM

state can be assumed to show similar characteristics, it can be assumed that they contain redundant

information. They could therefore be compressed, e.g. simply through averaging. Together with the

information about the (adaptive) positions (and/or bandwidths) of the frequency bands, the compressed

sub-band energies can be expected to represent relevant information for ASR. A feature related to the

“contents” of a band might be particularly useful if it is considered that high and low energy regions

might be located in different sub-bands for different primary HMM states.

5.2 HMM2 features
As already described to some extent in this chapter, the temporal and frequency segmentations delivered

as a by-product of the Viterbi algorithm serve as the basis for calculating new features for a second rec-

ognition pass, which we refer to as “HMM2 features”. In this section, we describe some techniques for

calculating HMM2 features.

5.2.1 Time Index

Let us first consider the temporal segmentation. In most applications, the point in time at which a

certain speech unit starts or ends is of no value for discrimination. While the duration of a speech unit in

comparison to other speech units might give some clues about its identity (e.g. vowels tend to be longer

than consonants, and plosives tend to be very short in comparison to other phonemes), there is a non-

negligible correlation between duration and other non-discriminant features such as the speaking rate.

Therefore, a duration feature might be of limited use for ASR. However, it might be useful to know

whether a certain temporal feature vector has a temporal position near the start, the center or the end of

a speech unit.

Given a temporal segmentation, we have direct access to the start time  and end time  of each

speech unit. For each time step  with , a “time index”  can be calculated using the follow-

ing equation: 

ts te

t ts t te≤ ≤ TI
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(5.1)

where . Therefore, the first temporal feature vector which is supposed to be emitted by a cer-

tain primary HMM state is attributed a time index of , and  corresponds to the last emitted

temporal feature vector. Intermediate feature vectors have indices equally spaced between  and .

Alternatively, a time index can be computed over several primary HMM states, e.g. over all states

belonging to a phoneme (  would therefore be the time when the first HMM state associated with a cer-

tain phoneme is entered, and  the time when the last such state is visited for the last time).

In either case, the exactness of this time index is limited and depends on (1) a sufficiently good tem-

poral segmentation, which is likely to be influenced by the HMM2 recognition performance and (2) the

sampling rate of the temporal feature vectors (usually, a temporal feature vector is extracted every 10-

20ms).

5.2.2 Frequency Index

Unlike the temporal segmentation, the frequency segmentation may directly represent discriminant

information. As shown in Figure 5.1, each transition from one secondary HMM state to the next corre-

sponds to a transition between frequency regions, which are represented by the different frequency sub-

vectors. As the spectral features represent discrete frequency components, the frequency segmentations

obtained from the secondary HMMs are also discrete. Naturally, the coarseness of the features limits the

segmentation capability of the HMM2 not only in the temporal, but also in the frequency dimension.

Typical spectral feature vectors  consist of about  coefficients (i.e. frequency com-

ponents). If the number of states of the secondary HMM is , there are only  different fre-

quency values at which a transition from a certain state to the next can take place. This is illustrated in

Figure 5.2. When adhering to such a small number of frequency sub-vectors (which might be desirable

for practical reasons and necessary in order to achieve a good HMM2 recognition performance), it

becomes clear that the frequency segmentation can only be very crude. In fact, a straight-forward map-

ping of the frequency HMM transitions to integer indices can be used, e.g. indicating the frequency sub-

vector that came before (or after) a transition from one secondary HMM state to the next. If desired,

these “frequency indices”  can be mapped to frequency values . An example transformation for

the case of filterbank coefficients equally spaced on the frequency axis between  and the maximum

frequency , and where  is defined as being the number of the first sub-vector that is emitted by

a certain frequency HMM state, is given by the equation

. (5.2)

However, there seems to no advantage in using real frequency values instead of integer indices as

HMM2 features. Moreover, a mapping of the indices to precise frequency values (like the above) might

be questionable, as the frequency regions used to calculate the sub-vectors are usually overlapping (as is

the case of, e.g., the conventionally applied filterbank analysis, demonstrated in Figure 5.2), and there is

no unique boundary frequency value separating two adjacent sub-vectors. 

As discussed above, when spectral data such as filterbank coefficients are used as features, the seg-

mentation obtained from the secondary HMMs could correspond to the transition between high and low

energy regions. High energy regions might be related to formants. Therefore, the segmentations before

and after a high energy region could specify the frequency values between which one (or several) for-
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mant(s) might be found. Therefore, the frequency segmentations do not correspond to the formant posi-

tions themselves. If a closer correspondence to formant values is required, the signal processing could

be adapted accordingly (e.g., using frequency-filtered features (as described in Section 1.2.5), as was

actually done in most of our experiments), in order for HMM2 to extract spectral maxima and minima.

Also, some constraints in order to assure a certain smoothness of the formant tracks might be suitable.

Furthermore, a more complex topology of the secondary HMM should be considered. These issues will

be addressed in Chapter 6. 

5.2.3 Sub-band Energies

The HMM2 frequency segmentations alone do not give any information about the “content” of the

resulting frequency bands. As discussed above and shown in Figure 5.1, low and high energy regions

might be at different positions, i.e. they might be attributed to different frequency bands. It thus seems

appropriate to investigate the use of additional features, such as sub-band energies. A straight-forward

implementation of this idea is to take the average or median of the values of all the sub-vectors which

are supposed to be emitted by the same frequency HMM state:

(5.3)

where  and  determine the low and high cut-off frequencies of sub-band  (resulting from the

assignment of frequency components to a certain secondary HMM state by the Viterbi segmentation),

and  is the mean of the respective components.

5.3 Practical Issues

5.3.1 Using HMM2 Features in Conventional HMMs

Once the HMM2 features have been calculated, they can be used in a conventional HMM just like any

other features. Figure 5.3 shows how HMM2 features are extracted using temporal and frequency seg-

mentations provided in a first (HMM2) recognition pass and then processed by a conventional HMM in
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Figure 5.2: Mapping of frequency segmentations to the frequency scale. 
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a second recognition pass. Considering the crudeness of the HMM2 features, they cannot be expected to

yield competitive recognition performances as compared to more sophisticated and higher-dimensional

state-of-the-art features. Nevertheless, their application may increase recognition rates if used in combi-

nation with state-of-the-art features. In fact, due to the very different nature of HMM2 features, they

may be expected to contain complementary information. Especially in difficult conditions (e.g., noisy

speech signal), it is possible that recognition errors made when using HMM2 features are not identical

with recognition errors made on conventional features. Therefore, it might be useful to combine both of

these features. As has been shown in Chapter 2, a combination can be done e.g. on the feature level, or

at the level of the local state likelihoods. 

5.3.2 “One Model” Variant

As discussed above and seen in Figure 5.3, an HMM2 system is itself a speech decoder. Conse-

quently, HMM2 recognition is prone to errors (as also seen in Chapter 4). It is clear that, if the HMM2

features are extracted using the wrong model, these features are error-prone too, and are likely to be

suboptimal. This suggests that a much simplified HMM2 system, which relies on no or only a limited

recognition pass, might be more appropriate. The simplest possibility to realize such a system would be

to only consider one model (instead of one model for each phoneme) comprising only one (phoneme-

independent) temporal state, with which a secondary HMM with several states is associated. We refer to

this HMM2 system as OM (“one model”), in contrast to PDM (“phoneme-dependent model”). The OM

system models the emission probability distribution of the data set chosen for training. Typically, the

whole training set (regardless of the labeling) is used in order to estimate this distribution. Alternatively,

a certain subset (e.g., vowels only) may be used for training. It is important to note that this HMM2 sys-

tem by itself is not intended for speech recognition, but to model some common properties of the train-

ing data. However, the frequency segmentation obtained from a forced alignment of this HMM2 can be

expected to contain meaningful information. Apart from the time index, all of the HMM2 features

described previously can be extracted.

5.3.3 HMM2 Initialization

Different methods can be used to estimate the initial parameters of an HMM2 system1. For instance,

assuming that each temporal feature vector is composed of alternating high and low energies, the

respective Gaussian means (of the initial single Gaussian distributions) can be initialized with high and

low energy values (referred to as HL-initialization). Alternatively, for all temporal feature vectors, a lin-

ear segmentation along the frequency axis can be assumed, and the respective means (and possibly vari-

ances) of the data can be used as initial Gaussian parameters (referred to as MU-initialization). If the

temporal labeling is known, phoneme dependent initialization can be done, which should result in more

accurate initial parameter estimates. While using these different initializations did not seem to signifi-

cantly affect the performance of HMM2 when directly applied as a speech decoder2, the resulting

HMM2 features (and their performance) are significantly influenced, as discussed below3. 

1In fact, standard initialization procedures (such as starting from a linear segmentation of the data) cannot be

used for the unfolded HMM2 because the explicitly introduced synchronization constraints have to be taken into

account.
2For this reason, this issue was not discussed in Chapter 4.
3Different initialization methods (including formant-dependent techniques) were tested during later work and

will be discussed in Section 6.3.4.
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Figure 5.3: HMM2 system in its application as feature extractor. The HMM2 system is used in a first
recognition pass (upper part of the figure). From the temporal and frequency segmentations delivered
as a by-product from the Viterbi algorithm, HMM2 features can be calculated and used in a
conventional HMM in a second recognition pass (lower part of the figure). 
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5.4 Experiments 
Experiments were run using the same experimental setup as described in Section 4.1, i.e. the database

was Numbers95, second order frequency-filtered filterbank coefficients were used as features, and

HMM2 was implemented in HTK. 

5.4.1 Evaluation of Different Kinds of HMM2 Features

A first set of experiments was carried out using the PDM system to extract different kinds of HMM2

features. In particular, three frequency indices (represented by the number of the component before

which transitions between the four subsequent secondary HMM states took place), one time index (cal-

culated according to equation 5.1, where (  corresponds to the time when the first of the 3 primary

HMM associated with a phoneme was entered, and  to the time when the third primary HMM state

was visited for the last time), and the average subband energies (calculated using equation 5.3). As an

additional feature, the overall energy of the entire temporal feature vector was used.

Different initialization methods (as described in Section 5.3.3) were tested. Figure 5.4 visualizes two

test series. The first series was done with a phoneme-dependent initialization of the Gaussian means

(referred to as MU in the following). The corresponding results (in terms of word error rates) for the dif-

ferent HMM2 features extracted using this system are displayed on the left of each cluster. The second

series was done using an initialization based on the assumption of alternating low and high frequency

bands (referred to as LH. In fact, the Gaussian means of the respective FF2 coefficients were simply

assigned values of 1 or -1 respectively). The right bar of each cluster shows the results obtained with

this system. For each cluster, it is indicated in the table below the bar graph which features were used4. 

Let us first look at the results obtained with the HMM2 features extracted by the MU system (left bar

of each cluster). Using only 3 frequency indices as features, WERs of about 25% were achieved. Using

additional temporal derivatives of these features (indicated by “xda” in the corresponding field of the

table), the error rates were decreased by about 4%. When a time index was used instead of these tempo-

ral derivatives, even better results were obtained. Adding the overall energy as an additional feature fur-

ther reduced the error rate. Finally, the best results were obtained when also the sub-band energies were

appended (resulting in a 9-dimensional feature vector). However, using additional first and second order

temporal derivatives (which gave a feature vector with 27 dimensions) did not improve recognition. The

two clusters on the far right illustrate the results obtained when only using overall and sub-band ener-

gies, with and without first and second order temporal derivatives respectively, resulting in rather medi-

ocre error rates.

Looking now at the results of the LH system, it can be seen that it outperforms the MU system for

most of the different HMM2 features. In fact, the LH system gave a WER close to the best MU system

result even when only 3 frequency indices were used as features. However, it is interesting to note that

this tendency is reversed for the case where only energy features are used. This might be explained as

follows. For the MU system, the initial Gaussian means of the frequency HMM states were calculated

given a segmentation linear in frequency for each temporal feature vector. Therefore, the initial system

is tuned toward this linear segmentation, resulting in only minor variations of the FI. The corresponding

sub-band energies are therefore calculated on the base of relatively stable sub-bands. On the other hand,

although the initialization of the LH system might seem comparatively crude, it was chosen with the

4In fact, the recognition error rates of these two HMM2 systems when used directly as a decoder were 13.0%

for the MU and 15.5% for the LH system respectively.

ts

te
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aim of separating high from low energy regions. Therefore, the frequency index features is more likely

to contain discriminant information such as formant positions. However, if such an LH-segmentation is

indeed obtained in a similar way for each phoneme, the corresponding sub-band energies might not pro-

vide significant additional discriminant information.

5.4.2 Evaluation of Features From Different HMM2 Systems

In a second set of experiments, the OM and PDM systems were compared. The OM system (featuring

just one primary HMM state) was trained on all data regardless of the labeling, as described in Section

5.3.2. In this case, no frequency coefficient (as described in Section 3.4) was appended to the secondary

feature vectors5. The frequency segmentation for an example speech unit is shown in Figure 5.5a. It can

be seen that different secondary HMM states seem to model spectral regions of different energy. In par-

ticular, the HMM state modeling the second lowest frequency band constantly emits coefficients of

comparatively high energies. E.g., in the beginning of the displayed speech segment, there is a high

energy region, whose maximum moves with time from relatively low to relatively high frequencies. The

overlaid segmentations (1st and 2nd lines from the bottom of the sub-figure) follow this evolution. This

is followed by a rather abrupt change in the speech signal’s characteristics, reflected by a sudden transi-

tion of all segmentations to different frequencies, and the same state finds again a spectral maximum,

5In fact, this system was also tested including a frequency coefficient. For the tested parameter setting, this

however resulted in a uniform frequency segmentation, naturally providing no discriminant information.
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Figure 5.4: Word error rates obtained using different features extracted from a MU and an
HL HMM2 system (displayed by the left (blue) and right (red) bar of each cluster
respectively). With each cluster of the bar graph in the upper part of the figure, one column
of the table below is associated. The features that were used for the respective tests are
marked with an “x”. The notation “xda” signifies that additional first and second order time
derivatives were used. The last row of the table shows the resulting feature dimension for
each setting. 



5.4. Experiments 67

now in relatively low frequencies, until the next change of signal characteristics. In fact, in the case of

less distinct or absent formants (as for the case of unvoiced phonemes), irregularities and discontinuities

can be observed.

Figure 5.5b shows the segmentation obtained from a PDM system, including the frequency coeffi-

cient in the secondary feature vector. The segmentation is smoother, but high and low energy regions are

not necessarily modelled by equivalent secondary HMM states (e.g., the third secondary HMM state

may model a high energy region for one phoneme and a low energy region for another). Nevertheless, a

certain structure of the speech signal becomes apparent from the segmentation.

The features extracted by different OM and PDM systems were tested in a second HMM recognition

pass. For the OM system, word error rates on clean speech were between 35% and 45%, depending on

the particular parameter settings. As seen above, with the PDM system, error rates are in the range of

about 15% to 25% when using the 3-dimensional frequency index features. Although for the case of

PDM the meaning of the frequency segmentation is not necessarily consistent for all phonemes, this

system clearly outperforms the simplified OM system.

5.4.3 Combination with MFCCs

Given the baseline performance of about 5.7% word error rate obtained on this database when using

MFCCs as features, it is obvious that HMM2 features are not competitive. Also, none of the HMM2 fea-

Figure 5.5: Segmentations obtained (on unseen data) from (a) a single secondary HMM
and (b) a full HMM2 system. In both figures, the same speech segment is shown in a
spectrogram-like manner, and the overlaid horizontal lines correspond to the frequency
segmentation. In (b), additional vertical lines show the temporal segmentation obtained
from the full HMM2 system, where phoneme boundaries are displayed as thick lines, and
transitions between temporal states of the same phonemes as thin ones. 
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ture combinations tested in Section 5.4.1 were able to outperform the respective HMM2 system when

applied as a decoder. In spite of the motivations for using HMM2 features outlined above, their utility

might be questioned given these experimental results. On the other hand, we have shown previously

how the robustness of a state-of-the-art ASR system based on MFCCs could be improved by using addi-

tional features in a second feature stream. Indeed, for the case of HMM2 features it can be expected that

they present complementary information to that contained in MFCCs, which could be exploited in such

a multi-stream system. Consequently, HMM2 features from both the OM and the PDM system were

also tested in combination with noise-robust MFCCs (already including spectral subtraction (SS) and

cepstral mean subtraction, denoted MFCC-SS in the following). The noise conditions presented in Sec-

tion 2.1.1 were used. 

Table 5.1 gives an example for the performance of the OM system in the case of additive Noisex fac-

tory noise (more results are given in Appendix B). Word error rates are compared to those of MFCC-SS.

Although the HMM2 features (i.e., 3-dimensional frequency index features) yield very high error rates,

positive results were obtained when using them in (feature) combination with MFCC-SS. Similar

results were obtained on car and lynx noise, and it can be stated that the improvement (as compared to

the MFCC-SS baseline) is significant with more than 95% confidence.

Similar tests were carried out with HMM2 features obtained from PDM systems. Although their per-

formance on clean speech is generally much higher than that of OM in clean conditions, recognition is

severely impaired in the case of noise. In contrast to the OM case, the HMM2 features obtained from

PDM are error-prone, as they are possibly extracted using the wrong HMM2 phoneme model. Naturally,

the lower the quality of the signal, the more recognition errors are made by the HMM2 system, and the

lower is the quality of the resulting HMM2 features. Therefore, the HMM2 features obtained from the

PDM system are possibly less robust than those obtained from the OM system. 

This was confirmed by our experiments combining HMM2 features with MFCC-SS. In fact, perfor-

mance improvements were generally less important using HMM2 features extracted by a PDM than by

an OM system. An exception to this is the case where the combination was done not at the feature level,

but at the local likelihood level (corresponding to feature vs. likelihood combination as discussed in

2.2.1). Comparing the best PDM with the best OM-based feature based system (using feature and likeli-

hood combination with MFCC-SS respectively), performance differences were marginal. 

To summarize, it was found that HMM2 features extracted using both the PDM and the OM system

can achieve a higher robustness in combination with MFCC-SS than MFCC-SS features alone.

SNR MFCC-SS
(baseline)

HMM2
features
(OM)

MFCC-SS +
HMM2
features

clean 5.7 43.2 5.6

18 7.4 42.3 7.3

12 11.9 49.8 11.4

6 23.0 62.2 21.4
0 48.6 76.4 46.6

Table 5.1: Word error rates using MFCC-SS, HMM2

features and their combination for clean speech and

speech degraded by additive factory noise at different

SNRs.
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5.5 Conclusion
In this chapter, we have shown how an HMM2 system can be used as a feature extractor, and what kind

of features it can provide. The different HMM2 features, as well as their combination with MFCC-SS,

were tested for clean speech and under different additive noise conditions. While the HMM2 features

alone are not competitive with MFCC-SS, an improved noise robustness was observed when both types

of features were used together in a multi-stream approach.

However, it has to be noted that an HMM2 system is rather complex as compared to conventional

feature extractors. This is reflected by a multitude of design options, resulting in a large number of pos-

sible hyper-parameters and parameters, of which only very few could be tested. Moreover, an HMM2

system is first and foremost a decoder (as investigated in Chapter 4). If a full HMM2 decoder (i.e., an

HMM2 system featuring phoneme-dependent models) is used for feature extraction, the resulting

HMM2 features are obtained using the most likely phoneme model- which is not necessarily the right

one. Consequently, HMM2 features are a priori impaired by the fact that the HMM2 decoder itself

makes recognition errors. This can be avoided when using only one model for all data, where no recog-

nition takes place, and only the optimal path through the (single) secondary HMM is found and con-

verted into features. However, it has been shown that the error-prone, phoneme-dependent HMM2

features (from a full HMM2 system) perform significantly better than features obtained from this sim-

plified HMM2 feature extractor. 

These results suggest that on the one hand, the modeling capabilities of the OM might not be suffi-

cient for extracting competitive HMM2 features. On the other hand, the more sophisticated PDM sys-

tem goes along with a higher confusability, which might be contra-productive as well. This suggests that

one way to improve the HMM2 feature extractor could be to use a “compromise” between the OM and

PDM system. For instance, one may use a few models which represent broader speech categories than

phonemes (such as vowels, fricatives, plosives, etc.). Such a system is likely to be less prone to recogni-

tion errors than PDM, which may lead to more efficient and more robust HMM2 features.

In summary, when using a full HMM2 system for feature extraction, classification errors accumulate

over the first pass (made by the HMM2 system itself) and the second pass (using the resulting HMM2

features in a conventional HMM). Therefore, classification performance using HMM2 features can not

be expected to be higher than that of either of these two system components. One may then ask what

advantage is gained by extracting HMM2 features? Firstly, HMM2 features might provide complemen-

tary information to that of features conventionally used for ASR. These two feature streams can be eas-

ily combined in conventional HMMs. We have shown that speech recognition robustness is improved

when using HMM2 features in addition to MFCCs. Secondly, one might be interested in the structural

information provided by HMM2 features, as this information might give clues about formant positions.

In the following chapter, the relation of HMM2 features to formants is investigated in more detail.
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Chapter 6

Formant-related HMM2 Features for ASR1

In the previous chapter, it was shown how HMM2 can be used as a feature extractor. In fact, the seg-

mentations produced by an HMM2 system as a by-product of Viterbi decoding can be used to generate

“HMM2 features”, which can be exploited as (additional) features in a second HMM recognition pass.

It was empirically demonstrated that the Viterbi frequency segmentation may separate regions of low

energy from regions of high energy. Therefore, it can be expected that these frequency segmentations

may be related to formant frequencies. In this chapter, we take a closer look at those frequency segmen-

tations and their relation to formant values. After having briefly discussed formant extraction techniques

and the use of formants in ASR, we will give some detail about the HMM2 formant extractor. Then, we

will focus on an empirical investigation, using what experts labeled as “formants” as features for speech

recognition. We investigate their capacity for vowel classification, and compare their performance to

that of MFCCs. Then, the obtained results serve as a reference for the comparison with automatically

extracted formant-related features, namely “Robust formants” and HMM2 features.

6.1 Formants in ASR
Formants may be defined as the resonance frequencies of the vocal tract. In a spectrogram, they can usu-

ally be distinguished by the presence of high energy (i.e., spectral peaks) in the concerned frequency

bands. In the context of speech production, formants are explained using a tube model of the vocal tract.

The shape of this tube defines its frequency selectivity, and when the shape is changed, different sounds

are produced. It is clear that, as no two speakers have the same vocal tract shape, formant frequencies

are not only influenced by what is being said, but are also quite speaker-dependent. Nevertheless, it has

repeatedly been shown that formant frequencies can well be used to discriminate between different

vowels, suggesting that formant frequencies contain more information about different speech sounds as

compared to speaker-dependent characteristics.

One often referenced study of vowel acoustics was done over 50 years ago by Peterson and Barney

(1952). As reported e.g. in (Rabiner & Schafer, 1978; Hillenbrand et al., 1995), Peterson and Barney

used a spectrograph to measure the formant frequencies of vowels, which had been pronounced by 76

1This chapter is partly based on work done with Febe de Wet, Loe Boves and Bert Cranen from the University

of Nijmegen, The Netherlands. A lot of the reported experiments were done in tight collaboration. However, while

work on HMM2 features was done exclusively by the author of this thesis, the “Robust Formants” parts are contri-

butions of the above-mentioned colleagues.
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male, female and children speakers in /h-V-d/ syllables, and which were perceived to be equivalent. If

the frequencies of the second formant (F2) are plotted against those of the first formant (F1), it can be

seen that, even though there is a lot of variability within each vowel and some overlap between different

vowels, vowels can be separated quite nicely in this F1/F2 plane. Although a later study by Hillenbrand

et al. (1995) claims that the overlap of different vowels is actually more important than the measure-

ments by Peterson and Barney indicate, it was confirmed in the same study that good results can be

achieved when using formant frequencies as features for automatic vowel classification.

However, there are only a few state-of-the-art speech recognition systems which actually use for-

mants or formant-like features. One of the reasons lies certainly in the difficulty of automatically esti-

mating them. In the following, we will give a short description of formant extraction methods and their

application to ASR.

6.1.1 Formant Extraction

In this section, we will give a short overview of some formant extraction techniques. Many common

formant extractors are based on linear prediction analysis (McCandless, 1974), performing a frame-by-

frame computation of the roots of a linear predictor polynomial (Atal and Hanauer, 1971; Talkin, 1987;

Lee et al., 1999), or searching for maxima in the spectral envelop (also referred to as “peak picking”)

(Schafer and Rabiner, 1970; Laprie and Berger, 1994). Alternative approaches include analysis by syn-

thesis (Olive, 1971), possibly based on digital resonators (Welling and Ney, 1998). Furthermore, meth-

ods to find the spectral peaks can be based on banks of bandpass filters (Padmanabhan, 2000), energy

gravity centroids (de Mori et al., 2000), or mixtures of Gaussians (Zolfaghari and Robinson, 1996; Stut-

tle and Gales, 2001). However, most of these methods suffer from several disadvantages, such as (1) the

number of formants (or spectral peaks) found might vary from frame to frame and (2) the formant tracks

are often not smooth (as one would expect given the physiological constraints of speech production). As

a result, these methods extract at best formant candidates. One of the reasons for these problems lies in

the fact that formants are often not well-defined, or ambiguous. In fact, there is generally no one-to-one

relation between the spectral maxima of an arbitrary speech signal and its representation in terms of for-

mants, and there may be more or fewer prominent maxima, depending e.g. on the spectral characteris-

tics of the source signal.

One technique overcoming the above problems is the “Robust Formants” algorithm (Willems, 1986)

which will be described in more detail below. An alternative way is to impose continuity constraints on

the formant tracks (Schafer and Rabiner, 1970; McCandless, 1974). This kind of formant trajectory

optimization can be done for example using dynamic programming (Ney, 1983; Talkin, 1987). A related

approach uses HMMs for formant tracking (Kopec, 1986). On the other hand, one can make use of the

phonetic labeling (Lee et al., 1999). If the phonetic labeling is known, the a priori distribution of “for-

mant targets” can be used in order to chose the most likely formants from a number of formant candi-

dates. For example, this can be done using Viterbi search in a second formant tracking step (Acero,

1999; Huang, Acero and Hon, 2001). While using information about the phonetic labeling may improve

the accuracy in formant estimation, for obvious reasons, techniques relying on this kind of a priori

information can not be applied for the case of speech recognition in general and the study presented in

this chapter in particular.

An alternative way, which can be used in ASR but still does not completely disregard information

about the phonetic labeling, is to delay the selection of formant tracks until after a phonetic search has

been carried out (Schmid and Barnard, 1995), or to directly combine formant tracking with phoneme

recognition (Hasegawa-Johnson, 1996). This is also motivated by the assumption that the “analysis of
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formants separately from hypotheses about what is being said will always be prone to errors” (Holmes,

2000).

 Above, we briefly introduced a variety of formant extraction techniques. We have discussed that for-

mant extraction may be improved if the phonetic labeling is known. However, this is generally not the

case in the context of ASR, where, to the contrary, one may use information about formant trajectories

in order to find the phonetic labeling. Before discussing the use of formant features in ASR, we will give

a short introduction to the “Robust Formants” algorithm as one example for conventional formant

extraction techniques, producing formant values suitable as features for ASR.

6.1.2 The “Robust Formants” Algorithm

The “Robust Formants” (RF) algorithm (Willems, 1986) guarantees to provide a fixed number of for-

mants at each time step, and ensures a certain smoothness of the resulting formant tracks. This algo-

rithm was initially designed for speech coding and synthesis applications. It uses the Split Levinson

Algorithm (SLA) to determine a fixed number of spectral maxima for each speech frame. Instead of

directly applying a root solving procedure to a standard LPC polynomial to obtain the frequency posi-

tions of the spectral maxima, a so-called singular predictor polynomial is constructed from which the

zeros are determined in an iterative procedure. All the zeros of this singular predictor polynomial lie on

the unit circle, with the result that the number of maxima that are found is guaranteed to be half the LPC

order under all circumstances. The maxima that are located in this manner are referred to as “formants”

found by the RF algorithm.

After the frequency position of the RF formants have been established, their corresponding band-

widths are chosen from a pre-defined table such that the resulting all-pole filter minimizes the error

between the predicted data and the input. The frequencies at which the zeros of the classical root solving

procedure occur are close to the unit circle (i.e., as long as the true formants have small bandwidth val-

ues). This property ensures that the most important formants are properly represented.

In contrast to standard root solving of the LPC polynomial (or searching for maxima in the spectral

envelop derived from LPC coefficients), the RF algorithm finds a fixed number of “formants” for each

speech frame. This makes the RF algorithm particularly suitable for the goal of using the extracted for-

mants as features for ASR, because the algorithms that are used in ASR are generally designed to deal

with feature vectors of a fixed length. 

6.1.3 Formant Features for ASR

As already discussed above, formants are useful for discrimination between certain speech sounds, and

there are numerous attempts of incorporating them in ASR systems. For instance, in (Welling and Ney,

1998), a recognition system based solely on formant contours is presented. Comparing these features to

a mel-cepstrum representation (with the same number of parameters), recognition results on clean

speech were reported to be only slightly better for the latter case. Another system uses formant trajecto-

ries in combination with formant bandwidth, pitch and segment duration, achieving a comparable per-

formance to a cepstral-based system on a vowel/semi-vowel segment classification task (Schmid, 1996). 

However, it is argued in (Holmes, Holmes and Garner 1997) that formant frequencies cannot dis-

criminate between speech sounds for which the main differences are unrelated to formants. Therefore,

formants were used not instead of, but in addition to features such as MFCCs, leading to a better recog-

nition performance than obtained on MFCCs alone. Other systems where additional formant related fea-
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tures were found to improve recognition performance in certain conditions include (Padmanabhan,

2000), (de Wet et al., 2000), and (Stuttle and Gales, 2001). 

6.1.4 HMMs and HMM2 as Formant Extractor

As mentioned above, the idea of using HMMs for formant extraction is not new (Kopec, 1986, Haseg-

awa-Johnson, 1996). In particular, Kopec’s formant tracker HMM emits a sequence of temporal feature

vectors, just like conventional HMMs used for ASR. However, in this case, the HMM states correspond

to possible formant values (and not to, e.g., phonemes). Continuity constraints are implemented in the

transition probabilities of the HMM (i.e., there are high transition probabilities to states representing

close formant positions). For training, a database with hand marked formant-tracks is required. In

(Hasegawa-Johnson, 1996), an extension to this system is proposed, where multivariate-state HMMs are

used to simultaneously transcribe phonemes and formants. Another HMM-based extractor of formant-

related structures, which moreover may also be used for phonetic classification, is the HMM2 system,

as explained below.

In Section 3.1.2, we have motivated HMM2 (amongst other arguments) by its ability to implicitly

extract structural information of the speech signal, possibly corresponding to formant regions. In the

same line of thought, it was discussed in Chapter 5 that HMM2 might be capable of separating high

from low energy regions. The fact that formants can be expected to be located in the extracted high

energy regions opens up the perspective of using HMM2 as a formant tracker. HMM2 also offers the

advantage that continuity constraints can easily be incorporated. Moreover, for every time frame, a fixed

number of “formants” is found, which facilitates their application as features in ASR. Although the

interpretation of the HMM2 frequency segmentation as formant-like regions may not always be fully

justified (as seen later), this application is additionally motivated by HMM2 being a tool which can inte-

grate a speech decoder and a formant tracker in a unique model, as discussed above (Holmes, 2000).

6.2 HMM2 Formant Extractor
In the previous chapter, the HMM2 feature extractor was explained in detail. Let us recall that for each

temporal feature vector, it is determined between which sub-vectors a transition from one frequency

HMM state to the next takes place. In fact, the number of the first sub-vector being emitted by a new fre-

quency HMM state (i.e., just after a transition in the frequency HMM took place), can be retained as an

index, which can directly be mapped onto a frequency value. Depending on the features used, these fre-

quencies might correspond to spectral peaks and spectral valleys or transitions between them (as will be

discussed in more detail below). 

6.2.1 Preliminary Study

The purpose of this section is to investigate if, under ideal conditions, a frequency HMM is indeed capa-

ble of extracting structural information related to spectral peaks and valleys, and thus possibly to for-

mants. Therefore, a preliminary study was carried out, in which a much simplified HMM2 topology was

used. In fact, the temporal HMM consisted of just one state, and the associated frequency HMM was a

4-state bottom-up HMM, corresponding to the OM system discussed in Section 5.3.2. However, train-

ing was done with data (from the Numbers95 training set) labeled to belong to one vowel (/iy/), and

testing was done on the same data. 
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For obvious reasons, features in the spectral domain were chosen. Each temporal feature vector con-

sisted of 14 frequency derivatives of log Rasta PLP features (Hermansky et al., 1991), obtained simply

by taking the difference of each two adjacent log Rasta PLP coefficients, using first order frequency fil-

tering (as described in Section 1.2.5). Using those delta features has two advantages for our application.

On the one hand, the frequency differencing implicitly introduces a kind of normalization (Nadeau,

1999). On the other hand, we can take advantage of the fact that these features are some kind of deriva-

tives, positive values corresponding to increasing energies (along the frequency dimension), and nega-

Figure 6.1: Features and segmentations for an example of phoneme /iy/. Sub-figure (a) shows a
spectrogram-like representation of log Rasta PLP features, and (b) their respective first order
frequency derivatives. In (c), the topology of the frequency HMM is shown, and in (d), the frequency
segmentation obtained from a forced alignments of the data in (b) given this HMM is shown in the
time/frequency plane. In (e), the projection of this segmentation onto the original features is
visualized.

(a)

(b) (c) (d)

(e)
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tive values to decreasing energies respectively. As the boundary between regions of increasing and

decreasing energy is obviously a spectral maximum, a formant could be expected at this frequency loca-

tion. If one frequency HMM state was to model positive changes in energy, and the surrounding states

were to model negative changes, then the transitions between these states would fall onto spectral peaks

and valleys of the original, undifferentiated features, and every other frequency segmentation might fall

onto (or near a) formant. 

An example of the original (15-dimensional) features can be seen in Figure 6.1(a), and their fre-

quency derivatives are visualized in Figure 6.1(b). While in Figure 6.1(a) dark/light regions correspond

to high/low spectral energies, in Figure 6.1(b), dark/light regions correspond to negative/positive

changes in energy. In Figure 6.1(d), the segmentation as performed by the frequency HMM Figure

6.1(c) is visualized. It can be seen that states 2 and 4 tend to model high values, whereas states 1 and 3

model low values. In particular, the segmentation of state 3 seems to model the “dark region” moving in

time and frequency. In Figure 6.1(e), the projection of this segmentation onto the original log Rasta PLP

features (i.e., not the frequency deltas) can be seen. In this case, a transition of the frequency HMM cor-

responds to a coefficient (rather than to the transition between coefficients, as for the frequency deriva-

tives). These transitions follow approximately the maximum and minimum energy regions, but taking

account of constraints imposed by the topology and parameterization of the frequency HMM. Although

a possible correspondence to formants has not been proven, it can be noted that the segmentations

between the first and second as well as between the third and forth state approximately correspond to

spectral peaks.

However, it needs to be stressed that this is a very preliminary test, which was done under ideal con-

ditions. For instance, data of only one phoneme (the identity of which was known) was used for training

and testing. The features used might not be optimal when applied in GM-HMMs for application in ASR.

Moreover, using only 14 coefficients severely limits the resolution of the resulting frequency segmenta-

tion. Finally, the topology of the frequency HMM was chosen such as to obtain an optimal match with

the data to be modeled, which could intuitively and invariably be divided into high/low regions along

frequency. 

In this section we have demonstrated what could ideally be expected from an HMM2 system

towards the goal of extracting formant-like features. However, our main goal of extracting formant-like

features is their use for speech recognition. In the following, we will first show that “true” formant fea-

tures, obtained from hand-labeled formant tracks, are indeed useful for a vowel classification task, and

compare their performance to that of MFCCs. Furthermore, another method to automatically extract

formants is investigated. All these different features are then compared to HMM2 features in terms of

their classification performance.

6.3 AEV Database, Experimental Setup and Baseline System
In the preceding section, it was argued that HMM2 could be used to extract features which are related to

formant frequencies. The purpose of this section is to evaluate this assumption by comparing HMM2

features to hand-labeled formants (HLF) and other automatically extracted formant-like features. How-

ever, databases featuring hand-labeled formant tracks are rare and difficult to obtain. As the hand-label-

ing of formant frequencies requires a considerable human effort, these databases are typically rather

small, and often cover only vowels. The research reported in the following is thus necessarily con-

strained by the limitations imposed by the used database (which was the only database containing hand-
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labeled formant tracks available to us). In particular, instead of speech recognition, a vowel classifica-

tion task is investigated (using, however, ASR technology). 

6.3.1 Database of American English Vowels 

The speech material that was used for most of the experiments presented Chapter 6 is a subset of the

database of “American English Vowels” described in Hillenbrand et al., 1995. This database contains

recordings of the 12 vowels produced by 45 men, 48 women and 46 children. The vowels are embedded

in /h/-V-/d/ syllables, i.e., there is an /h/ proceeding and a /d/ following the vowel. The speech signals

are studio quality and were digitized at 16 kHz. Various acoustic measurements were made for each

token in the database, including vowel duration, vowel steady state times2, formant tracks and funda-

mental frequency tracks. In what follows, the focus will be on the formant tracks, since these values

were used as features in our classification experiments.

2Vowel steady state was defined by Peterson and Barney as “... following the influence of the /h/ and preceding

the influence of the /d/, during which a practically steady state is reached” (Peterson & Barney, 1952).
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Figure 6.2: Example spectrogram and formant tracks (F1,F2 and F3) of two pronunciations of the
phoneme /er/ (pronounced within the word “heard”), as provided with the AEV database. Only the
frequency band from 0-4000Hz is shown. The vertical black lines show the part which was labeled as
the vowel part, according to the segmentation provided with the database. It can be seen that the
formant tracks corresponding to the leading /h/ and trailing /d/ are very irregular. In the lower figure,
a merger of F2 and F3 occurred, and the upper frequency slot was thus set to zero.
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To obtain the formant tracks, candidate formant peaks were first extracted from the speech data by

means of a 14th order LPC analysis. These values were subsequently edited by trained speech patholo-

gists and/or phoneticians. In addition to the LPC peaks overlaid on a gray-scale spectrogram, labelers

were also provided with individual LPC or Fourier slices where necessary. The labelers were allowed to

repeat the LPC analysis with different parameters and to hand edit the formant tracks. The formant

tracks were only hand edited between the start and end times of the vowels, i.e. the formants corre-

sponding to the leading /h/ and trailing /d/ of the /h/-V-/d/ syllables were not manually labeled. Where

unresolvable formant mergers occurred, the higher of the two formant slots affected by the merger was

set to zero. Two examples of the data provided in the AEV database are shown in Figure 6.2. The lines

which are overlaid onto the spectrogram correspond to the three lowest formants F1, F2, and F3.

Hillenbrand et al. (1995) showed that the vowel classes can be separated reasonably well (in com-

parison with human performance) by applying a quadratic discriminant analysis (QDA) on the values of

the first three formants measured at a number of pre-defined times in the vowel.

6.3.2 General Experimental Setup

In all the experiments reported in this section, a subset of the AEV database was used, consisting of the

12 vowels pronounced by 45 male and 45 female speakers. Only the vowel parts of these utterances

were taken into consideration. This allows a direct comparison between the hand-labeled formants and

all other features, because the formant tracks of the leading /h/s and trailing /d/s were not hand-edited.

In comparison with the databases that are typically used in ASR experiments, the AEV database is

quite small. Given this limitation, a 3-fold cross-validation was used for the classification experiments.

Each experiment consisted of a number of independent tests, in which the models were trained on two

subsets of the data, and tested on the third one. Moreover, all tests were performed in two conditions,

i.e. gender-independent and gender-dependent. The gender-independent data sets were defined as three

non-overlapping train/test sets, each containing the vowel data of 60(train)/30(test) speakers, with an

equal number of males and females in each set. For the gender-dependent data, three independent train/

test sets were defined for males and females, respectively. Each train/test set consisted of 30(train)/

15(test) speakers. For the gender-independent data sets, the classification results reported below corre-

spond to the mean value of the three independent tests. The gender-dependent results were obtained by

averaging the classification results of the six independent experiments (three male and three female).

Feature extraction was done on speech data downsampled to 8kHz3. All acoustic analyses adhered to

the same time resolution used in (Hillenbrand et al., 1995), i.e. the frame rate was set to one frame per

8ms. For each of the feature sets described below and for each of the mixed/male/female cross-valida-

tion sets defined above, a three state HMM was trained for each vowel using the EM training algorithm

implemented in HTK. Each state consisted of a mixture of 10 continuous density Gaussian distribu-

tions. 

Using these basic definitions, the following feature were tested: 

• MFCC, as state-of-the-art ASR features,

• FF2, employed as the basic features for the HMM2 feature extractor,

3Although this might not be optimal for the frequency filtered filterbank features which are the base for HMM2

feature extraction, this option was chosen as it is consistent with the other methods described in this section and

moreover with the experiments on the Numbers95 database reported in previous chapters.
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• HLF: hand-labeled formants F1, F2 and F3, as provided with the AEV database (described in Sec-

tion 6.3.1),

• RF: robust formants, i.e. automatically extracted formant tracks with the method described in Sec-

tion 6.1.2, and

• HMM2 features.

Before evaluating the vowel classification performance of formant-related features (i.e., HLF, RF,

and HMM2 features) in Section 6.4, we first give some details on the results obtained with MFCCs, and

describe the HMM2 system setup (including results on FF2).

6.3.3 MFCC Baseline Results

In this section, a standard baseline system for the present vowel classification task is established,

using standard ASR techniques. In particular, Mel-frequency cepstral coefficients (MFCC) are used as

features, as they are employed in many conventional ASR systems. As stated before, a quite common

configuration is to use 13 MFCCs (including energy, denoted in the following as MFCC-13) and their

first and second order time derivatives (denoted D and A respectively). However, the feature dimension

of such a system is much larger than that of systems using exclusively formant features (13 vs. 3 feature

vector components). For that reason, test were also done on 3-dimensional MFCCs, using the first three

coefficients4 (and no energy, denoted as MFCC-3). Table 6.1 gives an overview of the baseline system

results for 13- and 3-dimensional MFCCs, as well as for the same features with additional time deriva-

tives. 

While this table is meant as a baseline and thus as reference for the following sections, there are sev-

eral points worthwhile noting when comparing the different features. As expected, MFCC-13 performed

significantly better than MFCC-3. For most cases, best performances were obtained when the first order

time derivatives were included, and performance dropped when additional second order time derivatives

were used. Especially for the low-dimensional features, the gender-dependent tests are better than the

gender-independent ones. MFCC-13 + D outperformed all other settings for both gender-independent

and gender-dependent tests.

4However, it should be noted that the choice of using the first three MFCCs might not be the optimal one.

Although these coefficients contain a lot of discriminant information, performance could certainly be improved if

performing a feature transformation (e.g., PCA or LDA, such as described in Section 1.2.3) over the entire feature

vectors in order to calculate new 3-dimensional features.

Feature Type dim Gender-   
independent

Gender- 
dependent

MFCC-13 13 88.1 89.4

MFCC-13 + D 26 92.3 92.1

MFCC-13 + D + A 39 90.6 90.9

MFCC-3 3 68.7 78.2

MFCC-3 + D 6 77.6 81.2

MFCC-3 + D + A 9 78.2 79.6

Table 6.1: Classification rates of MFCC features when used in

conventional HMMs.
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6.3.4 HMM2 System Setup and Design Choices

In this section, we will give some details about the FF2 features which were employed for the HMM2

system, as well as the HMM2 system setup. As discussed before, the choice of FF2 features was moti-

vated by the fact that they are rather decorrelated features in the spectral domain whose baseline perfor-

mance is comparable to that of other widely used state-of-the-art features such as mel frequency

cepstral coefficients (MFCC). In contrast, the Rasta PLP spectra (not to be confused with Rasta PLP

cepstra) used in Section 6.2.1 generally achieve lower recognition rates. Moreover, in a previous study,

FF2 features outperformed all other features when used for HMM2 (in terms of recognition rates

obtained from HMM2 features in the second pass). The particular kind of FF2 features used here is

based on fourteen filterbank coefficients, equally spaced on the Mel scale, extracted every 8ms over

16ms long Hamming windows. These filterbank coefficients were then used to compute 12 second order

frequency filtered filterbank coefficients (FF2) as described in Section 1.2.5.

For the sake of completeness, let us mention the results obtained when using FF2 features in conven-

tional HMMs. For the experiments reported here, similar settings as for the MFCC baseline system

described in Section 6.3.3 were used. Table 6.2 gives an overview of the performance of FF2 features5.

It can be seen that recognition rates of FF2 features are in the same order as those obtained with MFCC.  

However, in contrast to the case of MFCCs, using additional second order time derivatives shows

slightly better results. For this reason, the 36-dimensional FF2 + DA features were used as features for

the HMM2 system. An additional advantage of using those derivatives is that they may increase the

smoothness of the final HMM2 feature tracks (in addition to the effects of the frequency coefficient (as

discussed in Section 3.4). Together with their first and second order time derivatives plus an additional

frequency coefficient, the FF2 coefficients form a sequence of 12 4-dimensional sub-vectors.

The frequency mapping of FF2 features is visualized in Figure 6.3. In the left part of the figure, 14

conventionally used triangular frequency filters, equally spaced on the mel scale, are plotted on the fre-

quency axis. The approximate cut-off frequencies of these filters are also shown. From the obtained fil-

terbank coefficients, second order frequency filtered filterbank coefficients are calculated through

differencing, as shown in the middle part of the figure. On the right, a vector of these FF2, together with

the frequency range which contributed to the calculation of each of them, is displayed. Due to the large

frequency overlap between two adjacent FF2 coefficients, it is probably not appropriate to define an

exact frequency value as the transition frequency (corresponding to the HMM2 frequency segmenta-

tion). However, if such a value was required, it seems appropriate to choose the mean value (given the

Mel scale) of the frequencies contributing to the adjacent FF2 coefficients, as displayed on the far right.

5Preliminary tests, using conventional HMMs, were also done on first order FF coefficients (FF1). For both FF1

and FF2, tests were also done with an additional energy coefficient. Results obtained from all those tests were not

significantly different.

Feature Type dim  Gender 
Independent

Gender
Dependent

FF2 + D 24 90.8 91.8

FF2 + D + A 36 92.4 92.8

Table 6.2: Classification rates of FF2 features when used in

conventional HMMs.
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Although it seems more appropriate to simply use frequency indices (FI, as discussed in Section 5.2.2),

these frequency values give an idea about an approximate segmentation frequencies.   

Figure 6.4 shows an example of the features in a spectrogram-like display, where the time evolution

is shown on the horizontal and the frequency evolution on the vertical axis respectively. Each square

corresponds to one coefficient, where the color intensity indicates its value. In the left part, the speech

data is visualized using 14 filterbank coefficients, while in the right part, their frequency derivatives (12

FF2 features) are shown. The corresponding hand-labeled formant tracks of the first three formants (F1,

F2, and F3) are overlaid as white lines onto both sub-figures. As expected, for the filterbanks, the for-

mant tracks follow spectral peaks, while they separate high and low energy regions for the case of FF2

features. However, as F2 and F3 are very close, the resolution of the features does not permit a distinc-

tion between these two formant tracks.

As in the previous chapters, all training and testing was done with HTK, and the HMM2 system was

realized as a large, unfolded HMM, made possible with synchronization constraints as described in Sec-

tion 4.1.2. As already explained previously, the design of HMM2 systems can vary substantially,

depending, e.g., on the task and on the data to model. As before, we here chose a strict “left-right” topol-

ogy for the temporal HMM (such as typically used for HMMs applied to ASR) and an equivalent “bot-

tom-up” topology for the frequency HMM. With this topology, it can be assured that for each temporal

feature vector, 3 segmentation values are found under all circumstances. As stated before, a certain

smoothness of these 3 feature tracks is obtained through the temporal derivatives and the frequency

coefficient, which are all part of the frequency sub-vectors.

The sequences of 3-dimensional HMM2 features (only consisting of the frequency indices, FI, as

described in Section 5.2.2) are then used as features for a conventional HMM in a second recognition

pass. As in the baseline experiments, this HMM had 3 states and mixtures of 10 Gaussians were used to

model the emission distribution in each HMM state.
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Figure 6.3: Frequency mapping of second-order frequency filtered filterbank features (FF2) as used
in HMM2.
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However, there are some restrictions imposed by the choice of features and model topology, limiting

a priori the quality (i.e., exactness) of the HMM2 features. Particularly, HMM2 features are rather

crude. As was demonstrated in Section 5.2.2, there are only very few possible frequency segmentation

values for any transition to a new state in the frequency HMM. Moreover, in Figure 6.4 it becomes

apparent that the resolution of FF2 features does not permit to distinguish between two formants which

are close in frequency. In spite of these limitations, 12 FF features can be expected to provide some rel-

evant structural information, which could be extracted by an HMM2 system.

Above, we have discussed the features employed for HMM2 and the choice of HMM2 topology. As

discussed before, there is a multitude of other design choices. In Section 5.3, some design options con-

cerning the model and the initialization were already mentioned. These as well as some additional

design choices are investigated below.

a) OM and PDM systems

In Section 5.3.2, we have already introduced the OM variant, featuring only one temporal state which is

trained on all the training data. Both the OM system and the PDM (i.e., the full HMM2, featuring 3 tem-

poral states per phoneme) system are also considered in the experiments reported in this chapter. 

b) Frequency Coefficient

A further HMM2 design decision concerns the use of a frequency coefficient as additional component

of the frequency sub-vectors. It has been shown that using this frequency information improves discrim-

ination between the different phonemes. However, the impact of the frequency coefficient is different

depending on it being treated (1) as an additional feature component (feature combination, FC) or (2) as

a second feature stream, where the likelihoods of the two streams are locally combined for each time

step (likelihood combination, LC). In the latter case, additional parameters are the stream weights. In

fact, it is possible to use the stream weights for regulating the smoothness of the HMM2 features. The

higher the weight of the frequency coefficient stream, the greater is its impact as compared to the other,

“real” features, and the more the frequency segmentation is constrained. In its extreme, the frequency

segmentation would be constant throughout the data, and consequently the HMM2 features would be

meaningless. On the other hand, if the frequency coefficients’ weight is too low, the segmentation tends

to be very irregular, with sudden transitions, peaks, etc. Setting an appropriate stream weight might

assure the desired smoothness of the HMM2 feature track.

Figure 6.4: Features displayed in spectrogram format. Time evolution is displayed on the horizontal
and frequency resolution on the vertical axis. Each square corresponds to a coefficient, where the
color intensity indicates different values. In the left panel, 14 mel-scaled filterbank coefficients are
shown, which were used as basis in order to extract 12 FF2 features, as displayed on the right. Hand-
labeled formant tracks are projected onto both sub-figures. 
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c) Initialization

As already discussed in Section 5.3.3, the initialization of the HMM2 models can be done in different

ways. For instance, a linear segmentation along the (Mel) frequency axis can be assumed for each fea-

ture vector. In the experiments reported here, there are four secondary HMM states. While a higher

number of secondary HMM states might be advantageous towards a more formant-like feature extrac-

tion, the restriction of using only four secondary HMM states was motivated by the relatively low reso-

lution of the data. Each of the secondary HMM states is initialized using three frequency sub-vectors

assigned to it according to the linear segmentation. Another option is to assume an alternation of low (L)

and high (H) energy bands of the FF features, and initialize the HMM2 with expected values for these

lows and highs, thereby forcing an HLHL or LHLH segmentation along the frequency axis. Alterna-

tively, as formant frequencies are provided with the AEV database, these can be used in order to obtain

an initial non-linear frequency segmentation (FMT). E.g., for each phoneme, the parameters of the fre-

quency indices can be initialized to the corresponding average formant values.

d) Training and Testing

For both OM and PDM, training can be done using the EM algorithm. For the OM model, a forced

alignment can be used in order to extract HMM2 features for all data. In contrast, for PDM, HMM2 fea-

ture vectors can be obtained in two different ways, depending on whether or not the labeling is known.

If the labeling is known, forced alignment (FA) can be used to align the speech data to the correspond-

ing HMM2 model and extract the frequency segmentation. Alternatively, and imperatively if the label-

ing is not known, a Viterbi recognition (VR), using all phoneme-dependent HMM2 models can be

employed. In that case, the segmentation finally extracted by the HMM2 system corresponds to the seg-

mentation produced by the HMM2 phoneme model which has the highest probability of emitting the

given data sequence. As discussed before, the features extracted by VR suffer from the fact that the

HMM2 system makes recognition errors, resulting in sub-optimal HMM2 features, i.e. features

extracted by the “wrong” HMM2 phoneme model. In spite the VR HMM2 features being error-prone, it

might be advantageous to use them even for the train data because of the fact that it can be seen as train-

ing in a kind of “noise”, or “matched” conditions.

Different combinations of FA an VR can be used for the train/test data. As in a classification applica-

tion the labeling is generally not known for the test data, we focused on FA/VR and VR/VR. However,

an FA/FA system could be realized if the labeling was known also for the test data, e.g. if the task is not

classification, but to extract HMM2 features for a labeled speech segment- or, as in our case, to estimate

a theoretical upper limit of the system performance, assuming HMM2 recognition is perfect.

6.4 Experimental Results on Formant-related Features

6.4.1 Evaluation of Formant Tracks for ASR

The purpose of the experiment described in this section was to evaluate the classification perfor-

mance of true formant features using state-of-the-art speech recognition methods. In (Hillenbrand et al.,

1995), it was demonstrated that first three formant frequencies, extracted at defined points in time of the

vowel duration (e.g., “steady state”, or 20%, 50%, and 80% of vowel duration) represented discriminant

information and achieved good classification results when Quadratic Discriminant Analysis (QDA) was

applied. However, in a speech recognition task, the segmentation is generally not known, which makes
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it impossible to extract features at such defined points in time. Therefore, methods like QDA can gener-

ally not be applied. 

Here, we investigate the performance of formant features using HMMs. We used three HMM states,

where the emission distributions were modeled by mixtures of 10 Gaussians. The entire formant tracks

were used (i.e., the values of F1, F2, and F3, in 8ms intervals over the whole vowel duration). As

described in Section 6.3.1, where mergers occurred in the hand-labeled formants, the frequency of the

higher formant was set to zero. However, it seems more judicious to resolve these mergers, e.g. by

replacing the zeros in the higher formant slots by the frequency values in the lower ones, therefore using

two equal values. Experiments have been run on the original formant tracks (including zeros) and on the

new formant tracks with resolved mergers, and no significant performance differences were observed. It

can be assumed that in the case of the original tracks, one Gaussian mixture component takes care of the

zeros, and the remaining 9 components are still sufficient to model the other data. Moreover, in keeping

with what has become standard practice in ASR, the formant frequencies can be mel-scaled. Again,

experiments on the formant tracks on the linear as compared to the mel scale did not show significant

differences. 

As mel-scaled formant tracks with resolved mergers are more consistent with what might be

expected from the methods used for automatic extraction of formant related features discussed below,

the results reported here are based on this variant of HLF features. Results are shown in Table 6.3.

Vowel classification rates of 83.2% for the gender-independent and 85.9% for the gender-dependent

experiments were achieved. In both cases, the performance improved when first order time derivatives

were added. Although these results are not competitive with what Hillenbrand et al. (1995) reported on

QDA6, it can be stated that good recognition rates can be achieved when using ASR technology for for-

mant features.

In comparison with MFCC-13, HLF features achieved significantly lower classification rates, for

both the gender-independent and the gender-dependent cases. However, the performance of MFCC-3 is

far below that of both MFCC-13 and HLF7. 

6 In contrast, Hillenbrand et al. (1995) reported 91.8% on gender-independent tests using QDA for 3 samples at

20%, 50% and 80% of vowel duration. This difference might partly be attributed to differences in the used data sets

(using the whole AEV database instead of a subset, as well as larger train sets), but the main reason lies probably in

the discriminant training method for the QDA classifier, in contrast to conventional EM training for the HMM.

These issues are discussed in more detail in de Wet et al. (2002), where additional results using an LDA (linear dis-

criminant analysis) classifier are presented.

Feature Type dim  Gender 
Independent

Gender
Dependent

HLF 3 83.2 85.9

HLF + D 6 87.2 89.6

HLF + DA 9 86.5 89.2

Table 6.3: Classification rates of hand-labeled formants.

7In fact, Figure 6.7 summarizes these results and the results reported further below. Moreover, confidence inter-

vals are given.
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6.4.2 Evaluation of Robust Formants

In this section, we evaluate the performance of one kind of automatically extracted formant features:

Robust Formants, as briefly introduced in Section 6.1.1. We will first give some specifications about the

experimental setup directly concerned with the RF extraction, followed by classification results and a

visual evaluation.

As mentioned before, the AEV data was downsampled to 8 kHz. It is usually assumed that there are

four vocal tract resonances in this frequency band. However, the data in (Hillenbrand et al, 1995) show

that F4 could not be found in 15.6% of the vowels. The scope of this study is therefore limited to F1, F2,

and F3. Moreover, in the AEV database the mean value (taken over all the relevant data) of F4 is 3.536

kHz for males and 4.159 kHz for females. Thus, it is clear that an automatic formant extraction proce-

dure applied to the AEV corpus must be able to deal with a potential discrepancy between the “true”

number of formants in the signal and the requirement that only the first three formants must be returned.

For the RF extractor, the simplest way to cope with this requirement that only three formants should be

found is to use a 6th order LPC analysis. However, the accuracy of the LPC analysis is bound to suffer if

a 6th order analysis is used to analyze spectra with four maxima. In these cases an 8th order LPC would

seem more appropriate, although it would introduce the need to select three RFs from the set of four. 

Given these constraints, there are a number of choices that can be made concerning the calculation

of the RFs. We considered two of these: (1) calculate three RF features per frame (RF3), and (2) calcu-

late four RF features per frame and use only the first three (3RF4). These two sets of RF features were

subsequently calculated every 8 ms over 16 ms Hamming windowed segments. The output of the two

procedures was evaluated by means of a frame-to-frame comparison with the hand-labeled formants, in

terms of their Mahalanobis distance. It was shown (de Wet et al., 2002) that the RF features are closer to

the HLF features if the order of the analysis is chosen according to the gender-specific properties of the

true formants. If there is a mismatch between the number of spectral peaks the algorithm tries to model

and the number of spectral maxima that actually occur in the data, the distance between the automati-

cally derived data and the hand-labeled data increases. Thus, the distance between RFs and the hand-

labeled formants decreases if the order of the analysis corresponds to the inherent signal structure.

Therefore, in the gender-dependent experiments, the RF3 and 3RF4 features will be used for the female

and male data, respectively. However, as for the gender-independent tests the gender is obviously

assumed to be unknown, the RF3 features were used in this case, as they yielded the smallest Mahalano-

bis distance for the mixed data set.

Figure 6.5: Hand-labeled formant tracks (left panel) and “Robust Formants” (right panel) for one
example of phoneme /er/, overlaid onto a spectrogram-like representation of FF2 features.
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a) Analysis of Results on RF Features

Table 6.4 shows classification rates for Robust Formant features, for both the gender-independent and

the gender-dependent cases. Moreover, results including first order time derivatives are shown. It can be

seen that, for both the gender-independent and the gender-dependent systems, performance improves

significantly when these augmented (6-dimensional) feature vectors are used, in comparison to using

the 3 RF values alone. This indicates that, as in the case of HLF, additional information on spectral

change patterns contributes to the discrimination between different speech sounds. 

As for the case of HLF (Table 6.3), the gender-dependent RF system works better than the gender-

independent one. In fact, while for the gender-dependent case the classification rates of RF features are

comparable to those obtained with the gender-dependent HLF system, the performance of RF are signif-

icantly lower for the gender-independent case. This may be attributed to the fact that, in contrast to the

HLF case, different RF features are used for these two conditions. As described above, for the gender-

dependent tests different features were used for female and male data (RF3 and 3RF4 respectively).

This kind of optimization is possible because it is assumed that the gender of the speaker is known.

However, for gender-independent tests this kind of a priori knowledge is usually not available, and

therefore the same set of (sub-optimal) features (RF3) had to be used throughout. Consequently, in addi-

tion to a more difficult modeling of the gender-independent data due to a larger overlap between differ-

ent phoneme classes (from which gender-independent systems using either HLF or RF features suffer),

the RF features themselves are inherently worse for the gender-independent case than for the gender-

dependent case. 

b) Visual comparison

Figure 6.5 compares Robust Formant tracks (obtained using the gender-dependent set-up, shown in the

right panel) with HLF (left panel). It can be seen that the automatically extracted formant tracks are

fairly similar to the hand-labeled ones. The example suggests that the spectrum of this vowel contains

multiple peaks in the F2-F3 region, and that the automatic RF procedure has generally preferred a peak

at a higher frequency than the human labeler. This effect might be explained by the tendency of the RF

algorithm shift formants which are close (or merged) away from each other. In addition, the RF features

exhibit more frame-to-frame variance than their hand-labeled counterparts, especially for F3. The dip in

the F3 track at the vowel onset may be due to the fact that there the “true” formant (frequency peak) was

comparatively strong so that the RF procedure could find it, despite its close proximity to F2. Although

the RF feature tracks differ form the HLF tracks, the results in Table 6.3 and Table 6.4 suggest that the

differences do not seem to significantly affect classification rates. This might be explained by the fact

that the differences between RF and HLF may be consistent (i.e., in our example, F2 and F3 would be

close for all pronunciations of this vowel, and therefore F3 would be systematically overestimated).

This indicates that, to obtain competitive classification performances, it might not be necessary to

extract feature tracks which resemble as close as possible to true formants. It might be more important

to extract consistent (formant-related) features than true formants.

Feature Type dim  Gender 
Independent

Gender
Dependent

RF 3 76.1 86.3

RF + D 6 84.1 90.5

Table 6.4: Classification rates of Robust Formants.
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6.4.3 Evaluation of HMM2 Features

In order to evaluate HMM2 features, all of the design, initialization and training/testing options intro-

duced in Section 6.3.4, as well as combinations of them, have been tested. Most important results using

the best HMM2 system are reported below, while more detailed results are given in Appendix C. The

systems were compared in terms of the vowel classification performance obtained from the respective

HMM2 features. However, no tests were done in order to evaluate the resemblance of HMM2 features

to formant tracks, or in terms of formant-related constraints such as the smoothness of the feature track.

Best classification results were obtained with 12 phoneme-dependent HMM2 models, with a 3-state,

left-right topology in the time domain and a 4-state bottom-up topology in the frequency domain. Fre-

quency coefficients used as a second feature stream gave best results for OM, but the 12 PDMs finally

used generally showed a higher performance when including the frequency coefficients as additional

feature components in the frequency sub-vectors (FC). For the gender-independent HMM2 models, the

LHLH initialization worked best. However, for the gender-dependent models the FMT initialization

seemed to be more advantageous, allowing to directly consider the gender-related formants (character-

ized by generally higher formant frequencies for female than for male speakers) in the initial model

parameters. The HMM2 features that are used for training are best obtained by means of forced align-

ment while those that are used for testing should obviously be obtained from a free recognition (FA/

VR). However, for most cases the VR/VR system showed a comparable performance. Naturally, the FA/

FA system outperformed both FA/VR and VR/VR, but as this setting is unrealistic, this result has only

theoretical value as an upper limit of HMM2 feature performance for the used parameter settings.

In summary, the HMM2 system which was used for the experiments reported in the following sec-

tion had the following setup: 

• 12 phoneme-dependent HMM2 (with 3 primary states, composed of 4 secondary states each), which

were realized with HTK as large, unfolded HMMs (as described in Section 4.1.2),

• processing, at every time step, a sequence of 12 4-dimensional frequency sub-vectors comprising a

second-order frequency filtered filterbank (FF2) coefficient and its first and second order time deriv-

atives as well as an integer frequency coefficient in a single feature stream, 

• using the assumption of subsequent low-high-low-high bands of FF2 coefficients for initialization of

the gender-independent models, and using an initialization of the frequency index based on pho-

neme-dependent average formant values for the gender-dependent models,

• and using forced alignment to obtain HMM2 features of the train set, and Viterbi recognition to

obtain HMM2 features of the test set.

Tables 6.5 gives an overview of the performance of HMM2 features, obtained from the HMM2 sys-

tems using the settings as described above. It can be seen that these features compare well to the RF fea-

tures in Table 6.4. Like RF features, HMM2 features are competitive to HLF features for the case of the

gender-dependent systems, while the performance is significantly inferior to that of HLF for both auto-

matically extracted formant related features in the case the gender-independent models.

Feature Type
(Initialization method)

dim  Gender 
Independent

Gender
Dependent

HMM2 (FMT) 3 71.2 87.2
HMM2 (LHLH) 3 77.0 83.0

Table 6.5: Classification rates of HMM2 features (second pass)

obtained with FA/VR.
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Tests were also run on HMM2 features including first order time derivatives, where significant per-

formance drops were observed. In contrast, for all other features tested, performance improved when

their first order time derivatives were included. The poor performance of HMM2 feature derivatives can

be explained by the very crude nature of the HMM2 features. As seen above, they consist of only a few

integer values, and HMM2 feature tracks are typically constant over relatively long time intervals, and

otherwise present sudden jumps (or even oscillations). After a more general analysis of the errors made

by HMM2 features, HMM2 feature tracks will be visually evaluated, demonstrating these problems.

a) Analysis of Results on HMM2 Features

As explained before, HMM2 features (from a full HMM2 system) are prone to errors, as they are

extracted in a first recognition pass (on the base of FF2 features processed in an HMM2 system). In a

second recognition pass, these HMM2 features are used in a conventional HMM, which is error-prone

as well. As a result, employing this kind of two-pass system means that recognition errors can be made

at two different levels. In the following, the contribution of errors of the two passes is investigated.

Table 6.6 shows classification rates achieved by HMM2 in the first pass (i.e. when HMM2 is applied

as a decoder, not as a feature extractor). Comparing results with those obtained when using conventional

HMMs (given the same features, see Table 6.2), they are significantly worse for the gender-independent

data. Results on the gender-dependent data do not differ significantly. However, the errors made by the

HMM2 system mean that a significant proportion of the HMM2 features has been extracted using the

wrong model. As a result of this first recognition pass, HMM2 features are therefore inherently error-

prone.  

To determine the contribution of the second recognition pass to the error rates, HMM2 features were

extracted under the assumption that HMM2 recognition is perfect. Given the correct phoneme model,

forced alignments was applied for training as well as for testing. Using the resulting “ideal” HMM2 fea-

tures in the second recognition pass, we get an idea about the theoretical upper limit of the HMM2 fea-

tures extracted by the two selected models. Results are shown in Table 6.7. Again, performance on the

gender-independent sets is much worse than that on the gender-dependent ones. In fact, comparing

these features to HLF (Table 6.3), these “ideal” HMM2 features are not as good as their HLF counter-

parts for the gender-independent sets, but significantly better for the gender-dependent sets. It might be

argued that using “ideal” HMM2 features signifies doing recognition given a priori the knowledge of

Feature Type
(Initialization method)

dim  Gender 
Independent

Gender
Dependent

FF2 (FMT) 12*4 86.5 91.7
FF2 (LHLH) 12*4 88.2 91.8

Table 6.6: Classification rates of FF2 features when used in an

HMM2 system in the first pass (using different initializations).

Feature Type
(Initialization method)

dim  Gender 
Independent

Gender
Dependent

HMM2(FMT) 3 77.9 93.6
HMM2(LHLH) 3 81.6 89.0

Table 6.7: Classification rates using “ideal” HMM2 features

(obtained from FA/FA) in the second recognition pass.



6.4. Experimental Results on Formant-related Features 89

what has been said. However, this situation (unrealistic for the case of ASR) is in fact quite similar to

what happens when formant tracks are hand-labeled by professionals. Usually, the class of the speech

segment is known to the labeler, and the labeler will (consciously or not) use a priori information about

expected formant positions during the labeling process. This basically means that, when using hand-

labeled formant tracks as features (as well as “ideal” HMM2 features) for phoneme classification,

knowledge is used that normally is not available. 

Comparing the results in Tables 6.6 and 6.7 with those in Table 6.5, it can be seen that recognition

rates are lowest for the “realistic” HMM2 features. Classification errors made by HMM2 in the first pass

and classification errors made by the second-pass HMM using error-prone HMM2 features accumulate. 

As already discussed before, the use of HMM2 features as such might be questioned because the

recognition rates of HMM2 features used in a second recognition pass (Table 6.5) are worse than those

of an HMM2 system directly applied as a decoder (Table 6.6). However, there are several arguments in

favour of using an HMM2 system for feature extraction. Firstly, HMM2 features may be useful for the

analysis of speech signals. Secondly, in spite of their obvious disadvantages, their classification perfor-

mance is competitive with that of RF, a more common example of automatically extracted formant

related features, and in the case of the gender-dependent tests even with that of HLF. Thirdly, although

HMM2 features, RF and even HLF achieve worse results than state-of-the-art features such as MFCCs,

formant related features can be supposed to represent complementary information, and can therefore be

used not instead of but in addition to these state-of-the-art features, especially in difficult conditions (as

has already been shown in Section 5.4.3)8. 

b) Visual comparison

 In the following, we will give a visual comparison of hand-labeled formant tracks and HMM2 fea-

ture tracks obtained from these models. Figure 6.6 shows HLF tracks in the left and HMM2 feature

tracks (of the same speech segment) in the right part of each sub-figure, both projected onto the corre-

sponding spectrograms of FF2 features. While the HLF tracks are denoted F1 (for the formant track in

the lowest frequencies), F2 and F3, the HMM2 feature tracks will be called T1, T2 and T3 respectively.

Generally, it has to be stated that the correspondence between HMM2 feature tracks and hand-labeled

formants is marginal. However, in many cases it can be seen that the HMM2 model was able to separate

high delta-energy regions from low ones. As the underlying features are frequency derivatives (i.e.,

delta-energies, representing changes of energy along the frequency axis), the transitions from one fre-

quency HMM state to the next may correspond to spectral peaks or valleys of the original spectral fea-

tures, as was argued in Section 6.2.1.

Let us consider for example a pronunciation of the vowel /er/ as shown in Figure 6.6(a)9. Starting

from the lowest frequencies, there is an alternation of increasing and decreasing energies. In the case of

HMM2 (right panel), the frequency HMM states 1 and 3 seem to model positive changes in energy,

while states 2 and 4 model negative changes. T1 (i.e., the transition between state 1 and state 2) would

thus correspond to a spectral maximum, which, as argued further above and visualized in Figures 6.4,

could be related to a formant. Indeed, a visual comparison between T1 and F1 (in the HLF figure, left

panel) shows that their positions are rather close. While T2 corresponds to a spectral valley, T3 is again

close to the position of an HLF track (in this case, F2). Even a small upward tendency of F2 towards the

8However, contrary to the results reported in Section 5.4.3, an improved robustness for speech degraded by

additive noise was not observed in our experiments with the AEV database (de Wet et al., 2002).
9This is in fact the same example as in Figures 6.2(a), 6.4, 6.5.
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end of the speech segment is reflected by T3 (although T3 is much more crude than the smooth formant

track). F3 is not represented by the HMM2 feature tracks. In fact, F2 and F3 are quite close, and the low

frequency resolution of the FF2 features does not permit to distinguish these two formants. Figure

6.6(b) shows a different pronunciation of phoneme /er/, and it can be seen in the HLF tracks that a

Figure 6.6: Comparison of hand-labeled formant tracks (left column) and HMM2 feature tracks
(right column), overlaid onto a spectrogram of FF2 features. In (a), (b), and (c), examples of
phoneme /er/ are shown, (d) figures an example of /oa/ and (e) of /ae/. The HMM2 feature tracks of
(a) and (b) were obtained using gender-dependent models, those of (c), (d), and (e) using gender-
independent models. (b) and (c) are showing the same example for a direct comparison between
HMM2 feature tracks obtained from gender-dependent and gender-independent models.

(b)

(a)

(c)

(d)

(e)

HLF HMM2 features
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merger between F2 and F3 occurred. For the HMM2 tracks, T1 and T3 again reflect approximately for-

mant positions. As compared to example (a), the frequencies of F2 are slightly lower, and also T3 is sit-

uated one feature below the T3 track in Figure (a) for most of its duration. The T2 track is quite

irregular: oscillations occur around a certain frequency band, which is sometimes assigned to state 2 or

state 3 respectively. This effect might for example occur when the “right” track would be situated just

between two discrete frequency positions. 

While the HMM2 features tracks in Figure 6.6(a) and (b) originated from gender-dependent models,

those in (c), (d) and (e) were obtained using gender-independent models. Figures 6.6(b) and (c) show

the same pronunciation, but the HMM2 feature tracks in (c) do not correspond to what would have been

expected in terms of separation between high and low energies, and was obtained in (b). This discrep-

ancy might be explained by the larger variation of formant positions in the gender-independent data, and

therefore a higher potential of confusion. 

Figure 6.6(d) shows an example pronunciation of phoneme /oa/. While T2 is quite similar to F2, F1

and F3 are not so well represented. Intuitively, F3 can not be well derived from the FF2 data used, and

the T3 track (which seems to follow a spectral valley) seems indeed to make more sense (given these

features). While the first part of T1 seems to approximately correspond to F1, there is a transition to

much higher frequencies at the end of the speech segment. This may be explained with a transition from

one temporal HMM state to the next, which sometimes accounts for rather unexpected transitions (as

also seen, e.g., in Figure 6.6(c)). In Figure 6.6(e), yet another example (of phoneme /ae/) is shown,

where T1 is close to F1 and T3 to F2 respectively. 

Summarizing the HMM2 feature tracks in the figure, it can be stated that often one or two tracks cor-

respond to a certain degree to hand-labeled formants. Another HMM2 feature track frequently follows a

spectral valley. However, the accuracy of the HMM2 feature tracks is severely limited by the low fre-

quency resolution of the FF2 features employed. 

6.4.4 Summary of Results and Discussion

Figure 6.7 visualizes the most important results obtained on the AEV database. The left cluster shows

the results for the gender-independent (GI), and the right cluster for the gender-dependent (GD) tests.

Generally, it can be stated that the performance of the GD tests is higher than that for GI. However, the

differences between GI and GD results are comparatively small for the case of MFCC-13, suggesting

that these features are well-suited for modeling speech rather than speaker dependent characteristics of

the signal. This is however not the case if only the first 3 MFCC features are used, where the differences

between GI and GD results are rather large. Large differences for GI vs. GD performance could also be

observed for both automatically extracted formant related features.

For each cluster, 95% confidence intervals are given with respect to the HLF results, as the aim of

these experiments was a comparison based on the performance of hand-labeled formants. It can be seen

that MFCC-13 perform significantly better than HLF, for both gender-independent and gender-depen-

dent models. For the gender-independent case, HLF achieve significantly higher classification rates than

both automatically extracted features. On the other hand, for the gender-dependent case, RF as well as

HMM2 features are comparable to HLF. 

The generally poorer performance (especially of formant related features) in the GI as compared to

the GD experiments can be explained by a greater overlap between features belonging to different pho-

nemes, and thus a higher confusability. In addition to that, a priori knowledge about the gender may be

used during feature extraction. In fact, for the case of HLF it is likely that the human labeler made (con-
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sciously or not) use of such a priori knowledge (and even of knowledge concerning the phoneme iden-

tity, possibly resolving ambiguities in candidate formant tracks). Therefore, the HLF features might be

extracted in a gender-dependent way, which would positively influence the classification performance

also of the GI models. In contrast, for the GI tests on the RF and HMM2 features, such a priori knowl-

edge was supposed to be unavailable, resulting in a gender-independent way of extracting these fea-

tures. Therefore, for each of the automatically extracted formant related features, there are two different

sets of features, i.e., a gender-dependent and a gender-independent set. Consequently, the features used

for the GI tests are likely to be sub-optimal as compared to those used in the GD tests. This adds up with

a greater overlap between different phonemes, as discussed above. These two reasons might explain the

rather large differences for GI and GD experiments for the case of automatically extracted formant

related features, as compared to the HLF.

Comparing RF and HMM2 features, it can be stated that the differences in the classification rates are

minor for both the GI and the GD tests. However, this is only true for the case where no temporal deriv-

atives are appended (de Wet, 2002). When using additional first-order temporal derivatives, RF perfor-

mance increases significantly. In contrast, due to the very crude nature of HMM2 features (as

demonstrated in Figure 6.6), temporal derivatives are meaningless for this case. However, it should be

noted that this is a consequence of the present choice of features and HMM2 system topology, and may

not necessarily generalize to other HMM2 feature extractor implementations.

60

65

70

75

80

85

90

95

[%]

MFCC-13 MFCC-3 HLF RF HMM2

C
la

ss
ifi

ca
tio

n
 R

a
te

Gender
Independent

Gender
Dependent

Figure 6.7: Summary of important results. The left cluster shows average classification rates for the
gender-independent tests, the right cluster for the gender-dependent ones. The bars in each cluster
correspond to the following features (from left to right): MFCC-13, MFCC-3, HLF, RF, and HMM2
features. Moreover, where appropriate, results using the same features with additional first order
temporal derivatives are indicated with broken lines. The errorbars shown for each cluster are based
on the HLF results and indicate the 95% confidence interval.



6.5. Conclusion 93

6.5 Conclusion
The principal goal of this chapter was to investigate the vowel classification performance of HMM2 fea-

tures as compared to state-of-the-art features, hand-labeled formants, and other automatically extracted

formant related features. It can be stated that (higher-dimensional) MFCCs outperform all kinds of for-

mant related features. Considering that the study presented in this chapter was limited to a vowel classi-

fication task (due to the limitations imposed by the database), it might be expected that MFCCs even

more significantly outperform formant-like features for the case of consonants. Therefore, the results

are rather theoretical, and can be seen as an upper limit of the performance of formant related features

under ideal, appropriate conditions.

Given these limitations, very encouraging results were observed. In particular, comparable classifi-

cation rates were obtained in the case of gender-dependent models for hand-labeled formants, robust

formants and HMM2 features. However, a visual comparison between these features demonstrates the

limits of the current implementation of the HMM2 system. In fact, the HMM2 feature tracks are very

crude, and typically at least one of the three tracks follows a spectral valley rather than a spectral peak.

For these reasons, the correspondence to real formant tracks is rather limited. The competitive classifi-

cation results obtained from HMM2 features suggest however that the consistency of the features is pos-

sibly more important than an exact correspondence to formant values.

It is however still an open research issue if even better results could be obtained if HMM2 features

were more formant-like. In fact, the HMM2 system could be changed in order to obtain HMM2 features

which closely resemble formant tracks. Firstly, a more appropriate signal representation should be cho-

sen, featuring a higher frequency resolution. It is a clear priori that using only 12 FF features will not

allow to extract real formant features. Instead, a higher number of narrower sub-bands should be used.

Possibly, a more sophisticated signal processing method is needed than simple filterbank differences.

However, contrary to the benefit of a better frequency resolution, the higher feature dimension might

also cause problems, such as a much higher complexity during HMM2 training and recognition / fea-

tures extraction.

A better frequency resolution is likely to result in a higher number of spectral peaks and valleys. For

instance, two formants close in frequency (i.e., which are represented by a single spectral peak in the

present features) could be resolved. This necessitates an adapted the HMM2 system topology. The num-

ber of frequency HMM states should be increased, resulting in a higher number of frequency segmenta-

tions. Of these, the ones corresponding to spectral valleys could be discarded, only using the ones

corresponding to spectral peaks (which are obviously more formant-like) as features. Additionally, a

more sophisticated, possibly even phoneme-dependent frequency HMM topology could be employed,

in combination with an adequate post-processing of the resulting frequency segmentations in order to

extract the relevant formant-like feature tracks.
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Chapter 7

Conclusions and Outlook

7.1 General Summary
In this thesis, the modeling of temporal and frequency correlation of speech signals by HMMs, with

application to robust automatic speech recognition, was investigated. Particular attention was devoted to

the HMM2 approach, where the HMM paradigm (on which the temporal modeling of speech signals is

typically based) was extended towards the frequency dimension of speech. The most important results

achieved in this thesis are summarized in the following.

• Information from relatively long time scales, appended to conventional feature vectors, can be

used to improve ASR robustness (Weber, 2000). This can be seen as a shift of the modeling of

temporal correlation from the HMM part towards the GMM part of the GM-HMM. As these

long-term features generally do not provide any additional information as compared to a

sequence of conventional, temporal feature vectors, it can be supposed that the performance

improvements observed are related to a better modeling of this temporal correlation in GMMs. 

• On the other hand, the inverse approach consists of splitting up each temporal feature vector into

a sequence of sub-vectors. Instead of modeling the entire original vector by a GMM, this

sequence of sub-vectors can then be modeled by a (secondary) HMM, where the emission distri-

butions are again represented by (low-dimensional) GMMs. This is the essential idea of the

HMM2 approach (Weber, Bengio, and Bourlard, 2000). First experiments related to HMM2

were done using wavelet features and an adapted, tree-like secondary HMM (Keller, Ben-

Yacoub, and Mokbel, 1999). Other variants include ergodic and trellis-like secondary HMMs

(Weber, Bengio, and Bourlard, 2000). However, further research focused on a particular HMM2

implementation, using filterbank-based spectral features and a bottom-up looped secondary

HMM topology (Weber et al., 2002).

• Potential advantages of HMM2 include the modeling of correlation through the secondary HMM

topology and a better and more flexible modeling and parameter sharing. Moreover, the non-lin-

ear state-dependent spectral warping performed by the secondary HMM could be useful for an

(implicit or explicit) vocal tract normalization (Ikbal, Weber, and Bourlard, 2002). Also, HMM2

can be seen as a more flexible extension to multi-band processing (Bourlard, Bengio, and Weber,

2001; Bourlard, Bengio, and Weber, 2002).

• The EM algorithm, conventionally used to train HMMs, can be adapted to the case of HMM2

(Bengio, Bourlard, and Weber, 2000). An HMM2 system can be implemented either using this
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adapted EM algorithm (Ikbal et al., 2001), or by using conventional EM training on a large,

“unfolded” HMM2 with additional synchronization constraints (Weber, Bengio, and Bourlard,

2001b).

• From a practical point of view, some attention has to be devoted to the realization of an HMM2

system. In particular, an additional frequency coefficient, appended to each feature sub-vector,

was shown to be useful (Weber, Bengio, and Bourlard, 2001c). Moreover, as for conventional

HMMs, the choice of hyper-parameters is important. Care has to be taken in order to set appro-

priate minimum Gaussian variances, and to choose a suitable initialization procedure (Weber et

al., 2002).

• When using HMM2 for the recognition of clean speech, performance drops were observed as

compared to standard HMMs. This suggests that the correlation between the coefficients of a

feature vector (e.g., corresponding to correlation in frequency) can be more efficiently modeled

by GMMs than by HMMs. This experimental result also confirms the results of theoretical inves-

tigations made on this subject (Weber, Bengio, and Bourlard, 2001b).

• In the case of noisy speech, the HMM2 approach was shown to outperform conventional GM-

HMMs when using the same spectral features for both systems (however, it should be noted that

this comparison is not completely fair, as HMMs using MFCCs and noise reduction techniques

yield better results). This suggests that the modeling of frequency correlation in GMMs (i.e., the

conventional way) is suitable for matched training and testing conditions, but might be sub-opti-

mal where there is a mismatch between training and test data. In the case of mismatch, a more

flexible approach to modeling, such as that provided by HMM2, seems more appropriate (Weber,

Bengio, and Bourlard, 2002).

• HMM2 was also shown to model pertinent structural information of the speech signal (Weber,

Bengio, and Bourlard, 2000; Weber, Bengio, and Bourlard, 2001c). This information can be

extracted and converted to features that are useful for ASR. While the recognition performance

obtained using these “HMM2 features” is not competitive with systems using state-of-the-art

MFCCs, the combination of these different features in a multi-stream approach has led to

improvements in ASR robustness (Weber, Bengio, and Bourlard, 2001a; Weber, Bengio, and

Bourlard, 2002). This result (again) indicates that the HMM2 model may provide the flexibility

necessary for dealing with mismatched conditions. 

• A further comparison between HMM2 features and other formant-related features (and addition-

ally with MFCCs) in terms of their vowel classification performance was motivated by the

assumption that the structural information modeled by HMM2 could be related to formants.

While all formant-related features yielded results inferior to MFCCs, the differences between

HMM2 features, hand-labeled formants and other formant-related features were not significant.

This suggests that, although the HMM2 features tested here do not generally correspond to true

formants, the information content of these different features in terms of their capacity to discrim-

inate between different speech sounds is comparable (Weber et al., 2002; de Wet et al., 2003).

• Although the focus of this thesis was not on multi-stream processing, it can be confirmed from

several experiments that different kinds of additional features, if combined with conventional

state-of-the-art features at either the feature or the local likelihood level, can enhance ASR

robustness (Keller, Ben-Yacoub, and Mokbel, 1999; Weber, 2000; Weber, Bengio, and Bourlard,

2001a; etc.). 



7.2. Future Directions Towards a More Flexible Modeling of Speech 97

7.2 Future Directions Towards a More Flexible Modeling of Speech
The HMM2 approach, as a generalization of the conventional GM-HMM systems, offers a powerful

framework for the modeling of the variability inherent in the (possibly degraded) speech signal, which

has not yet been fully investigated. Consequently, there is still much scope for improvement, and for

discovery of promising new fields of application. Several possible directions for future research are out-

lined below.

First and foremost, future investigations related to the work presented in this thesis in general and to

the HMM2 approach in particular should aim at finding a better trade-off between the modeling of tem-

poral and frequency correlation in HMMs vs. GMMs. The results presented in this thesis indicate that,

while the modeling of sequences of coefficients by GMMs is suitable in many cases, HMMs may be

especially advantageous for the case where variability in the data is high and unpredictable (e.g., where

training can not be done on all possible conditions of data variability). The HMM2 approach offers a

framework for investigating these issues, allowing a shift of the modeling by GMMs further towards

HMMs. 

A first research issue is related to the choice of features in general. Staying in the spectral domain, it

might be advantageous to consider a higher degree of detail in the features, pointing towards larger fea-

ture vectors offering a finer frequency resolution. On the other hand, it could be considered to include

more temporal information into the feature vector. While research results (presented in this thesis, but

also by other researchers) indicate advantages of using multi-resolution features, the optimal trade-off

between the temporal and frequency resolution is not yet clear. This question might be even more cru-

cial for the particular case of HMM2. Here, it should further be determined which information needs to

be represented by a single feature vector, i.e., at which level the (original, temporal) feature vector

should be split up into smaller sub-vectors, which are then modeled by a GMM. Selection criteria might

be the degree of correlation, or the mutual information, between different coefficients.

Secondly, and closely related to the choice of features and the partition of coefficients into distinct

vectors, is the search for an adapted HMM2 topology. This includes more complex (and possibly pho-

neme-dependent) structures within the secondary HMM, but also a more sophisticated modeling of cor-

relation in both the temporal and frequency dimensions could be considered. Moreover, similar to

hybrid HMM/ANN systems, ANNs could be advantageous for modeling the local emission probabili-

ties associated with the HMM2 states.

Given such optimizations to the HMM2 system, it could also be used for a more sophisticated (and

possibly more formant-related) modeling of the speech signal, improving also its application as a fea-

ture extractor. An additional research issue especially related to this application would be to determine

what kind of speech unit should be modeled (e.g., considering broader classes than phonemes or sub-

phone units, thereby diminishing the problem of inaccuracies of HMM2 features due to misclassifica-

tions performed by the HMM2 systems).

The HMM2 approach also opens up new perspectives for multi-band processing, e.g., allowing for a

dynamic and data-dependent definition of sub-bands, an issue which has been only briefly touched upon

in this thesis. Another related research issue might be concerned with the relationship between HMM2

and missing data processing, possibly leading to new modeling variants which combine the advantages

of these two approaches. Furthermore, the HMM2 framework could provide new methods for speaker

adaptation (e.g., based on a non-linear vocal tract normalization, or using a flexible and adaptive,

speaker (and phoneme) dependent variants of the Mel scale (as a function of the frequency warping per-
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formed by HMM2). These issues are in fact currently under investigation (Ikbal, Weber, and Bourlard,

2002). Finally, the HMM2 approach could possibly be adapted to speaker recognition or verification.

7.3 Final Thoughts
When I started working on this thesis, I had the choice to either continue on well-beaten tracks of

speech recognition research, or to pursue more innovative and novel ideas. The former option appeared

to have the advantage of offering higher chances of fast success, while the latter seemed to be more

adventurous and risky, but infinitely more interesting (Mokbel, 1999). Following the spirit of (Bourlard,

Hermansky, and Morgan, 1996), I chose the second option, and I indeed succeeded in improving speech

recognition error rates in the first place. While a lot of progress has been made since these early days,

the work accomplished in this thesis can only be seen as a first step, in which a novel approach was only

touched upon and as yet remains far from being exhaustively explored. Nor is the list of possible future

research directions intended to be complete. In this sense, I firmly hope that this thesis might give new

inspirations to speech recognition (and possibly other fields of) research, whether or not they are based

on the exact methods presented here.

“We cannot reach new horizons if we fear to leave the shore.”



Appendix A

Results for HMM2 Decoder

In the following, more results on the application of HMM2 as a decoder are given. This completes the

results given in Section 4.2.2. As features, second order frequency filtered filterbanks were used. The

tables below report word error rates (WER) obtained on the Numbers95 database with different additive

noises on different signal-to-noise ratios (SNR). Results obtained on HMM2 are compared to those

obtained using conventional HMMs (baseline system).

HMM
Baseline

HMM2

6.4 13.2

Table A.1: Comparison of

HMM2 decoder performance:

WER on clean speech.
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SNR HMM
Baseline

HMM2

18 8.6 15.3

12 14.2 20.7

6 31.7 35.7

0 64.9 62.4

Table A.2: Comparison of HMM2 decoder

performance: WER on factory noise.

SNR HMM
Baseline

HMM2

18 7.9 14.4

12 12.4 16.9

6 26.8 26.1

0 56.1 45.8

Table A.3: Comparison of HMM2 decoder

performance: WER on lynx noise.

SNR HMM
Baseline

HMM2

18 9.3 14.8

12 16.7 19.4

6 36.8 32.3

0 66.2 56.1

Table A.4: Comparison of HMM2 decoder

performance: WER on car noise.



Appendix B

Results for HMM2 Feature Extractor

In the following, more result on the application of HMM2 as a feature extractor are given. This com-

pletes the results given in Section 5.4.3. The tables below report word error rates (WER) obtained on the

Numbers95 database with different additive noises on different signal-to-noise ratios (SNR). The base-

line system uses MFCCs (including cepstral mean subtraction and spectral subtraction) as features. The

HMM2 features were obtained from the OM system. Moreover, results obtained when combining

MFCCs with HMM2 features are shown.

MFCC-SS
(baseline)

HMM2
features
(OM)

MFCC-SS +
HMM2
features

5.7 43.2 5.6

Table B.1: Comparison of HMM2 feature

performance: WER on clean speech.
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SNR MFCC-SS
(baseline)

HMM2
features
(OM)

MFCC-SS +
HMM2
features

18 7.4 42.3 7.3

12 11.9 49.8 11.4

6 23.0 62.2 21.4

0 48.6 76.4 46.6

Table B.2: Comparison of HMM2 feature performance:

WER on factory noise.

SNR MFCC-SS
(baseline)

HMM2
features
(OM)

MFCC-SS +
HMM2
features

18 6.2 41.0 6.0

12 7.4 43.5 7.4

6 12.3 50.5 12.1

0 24.2 62.6 23.6

Table B.3: Comparison of HMM2 feature performance:

WER on lynx noise.

SNR MFCC-SS
(baseline)

HMM2
features
(OM)

MFCC-SS +
HMM2
features

18 6.6 41.7 6.2

12 8.6 45.8 8.8

6 14.7 56.7 14.8

0 33.5 70.2 33.5

Table B.4: Comparison of HMM2 feature performance:

WER on car noise.



Appendix C

Results on the
American English Vowels Database

In the following, a summary of preliminary results obtained on the American English Vowels database is

given. Different design, initialization and training/testing options, such as described in Section 6.3.4,

have been tested. While the most important results are outlined in Section 6.4.3, some more details will

be given below. However, first the abbreviations as used in the tables are summarized.

Abbreviations

OM one model comprising one temporal HMM state, trained on all data

PDM-1 phoneme-dependent models, each comprising one temporal HMM state

PDM-3 phoneme-dependent models, each comprising three temporal HMM states

LHLH initialization assuming alternating high and low energy bands, starting with low energy

in the lowest frequencies

HLHL initialization assuming alternating high and low energy bands, starting with high energy

in the lowest frequencies

FMT initialization considering formant frequencies for the frequency segmentation

Lin initialization assuming a linear segmentation in frequency

FC feature combination between frequency coefficient and other features

LC likelihood combination between frequency coefficient and other features

FA forced alignment for HMM2 feature extraction

RC recognition for HMM2 feature extraction
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a) OM and PDM systems

b) Frequency Coefficient

c) Initialization

 d) Training and Testing

Model 
topology

Frequency 
Coefficient

Initialization Training/
Testing

All Male Female

OM FC LHLH FA/RC 33.0 44.8 40.2

PDM-1 65.2 82.6 81.9

PDM-3 77.0 82.4 83.7

Table C.1 Comparison (classification rates) of OM and PDM systems.

Model  
topology

Frequency 
Coefficient

Initialization Training/
Testing

All Male Female

OM FC LHLH --- 33.0 44.8 40.2

LC 61.9 76.5 57.2 

PDM-1 FC FA/RC 65.2 82.6 81.9

LC 68.6 79.4 78.5

PDM-3 FC 77.0 82.4 83.7

LC 75.8 79.4 82.4

Table C.2 Comparison (classification rates) of using the frequency coefficient in feature

combination (FC) vs. likelihood combination (LC). For the case of LC, different stream weights

have been tested and only the best results are reported here.

Model  
topology

Frequency 
Coefficient

Initializa-
tion

Training/
Testing

All Male Female

PDM-3 FC Lin FA/RC 70.0 77.0 86.3

LHLH 77.0 82.4 83.7

HLHL 71.7 74.8 86.3

FMT 71.2 84.4 90.0

Table C.3 Comparison (classification rates) of different initialization methods.

Model  
topology

Frequency 
Coefficient

Initialization Training/
Testing

All Male Female

PDM-3 FC LHLH RC/RC 74.4 82.8 83.0

FA/RC 77.0 82.4 83.7

(FA/FA) 81.6 89.1 88.9

FMT RC/RC 71.2 84.4 89.4

FA/RC 71.2 84.4 90.0

(FA/FA) 77.9 94.1 93.0

Table C.4 Comparison (classification rates) of different options for training/testing.



Notations

auxiliary function

transition probability, where  is the transition probability in the primary HMM (to go

from state  to state ), and  is the transition probability in secondary HMM associ-

ated with primary HMM state  (to go from secondary state  to secondary state )

frequency band

mixture weight, where  is the weight of the -th mixture component associated with

primary HMM state  and secondary state 

dimension (of a feature vector)

length of sequence of (frequency) sub-vectors

frequency, where  and  denote low and high cut-off frequencies respectively, and

 is the maximum frequency

frequency index

number of Gaussian mixtures

-th mixture component

designate a primary HMM state

-th training iteration

designate a secondary HMM state

number of primary states

number of secondary states in primary state 

probability

probability density function

a path in the primary HMM

best path in the primary HMM

a path in the secondary HMM associated with temporal HMM state visited at time 

a path in the HMM2 (primary and secondary HMM)

primary HMM state at time step 

secondary HMM state at time step  and frequency 

stream

A

a aij

i j ai
lm

i l m

b
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i l

d
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f f l f h

f max
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g g
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Q
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length of acoustic feature vector sequence

time, where  and  denote the start and stop time of a speech unit respectively

time index

observed feature vector at time step 

observed feature vector sequence from time step  to 

observed feature component at time  and frequency 

equivalent to 

mean of components of frequency band  at time 

indicator variables

parameter set

mean, where  is the mean of -th Gaussian mixture of the -th temporal and the -

th frequency HMM state 

variance, where  is the variance of -th Gaussian mixture of the -th temporal and

the -th frequency HMM state 

T

t ts te

TI

w

xt t

x1 T, 1 T

xt
f t f

xt
1 F, xt

xt b( ) b t

Z Z',

θ

µ µilg g i l

σ2 σilg
2 g i

l



Abbreviations

A Acceleration (or delta-delta) feature coefficient

ANN Artificial Neural Network

ASR Automatic Speech Recognition

C Feature Coefficient

CI Confidence Interval

CMS Cepstral Mean Subtraction

D Delta feature coefficient

EM Expectation Maximization algorithm

FF Frequency Filtered filterbanks

FF2 second order frequency Filtered Filterbanks

FI Frequency Index

F1, F2, F3 first three Formants

GMM Gaussian Mixture Model

GM-HMM HMM employing a GMM for phoneme emission probability (likelihood) estimation

HMM Hidden Markov Model

HMM/ANN HMM employing an ANN for phoneme emission probability estimation

HMM2 HMM employing an HMM for phoneme emission probability estimation

LDA Linear Discriminant Analysis

MFCC Mel Frequency Cepstral Coefficient

OM One Model variant of HMM2

PCA Principal Component Analysis

PDF Probability Density Function

PDM Phoneme-Dependent Model

RF Robust Formants

SLA Split Levinson Algorithm

SNR Signal-to-Noise Ratio

SS Spectral Subtraction

TI Time Index

WER Word Error Rate

WHMT Wavelet-domain Hidden Markov Tree
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