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Abstract. For classi�cation problems, it is important that the classi�er is trained with datawhich is likely to appear in the future. Discriminative models, because of their nature to focus onthe boundary between classes rather than data itself, usually do not have the capability to dealwith noisy training data. We propose the use of generative models as �lters to make discriminativemodels more robust against noise. Firstly the distribution of the training data is estimated, thenexamples which do not satisfy some criterion, like having low likelihood, will be considered asoutliers and discarded before training discriminative models. The idea was tested on a noisy dataset from the UCI Machine Learning Repository.



2 IDIAP�RR 03-401 IntroductionAn important feature of a classifer is its ability to generalize. A good classi�er is the one which givesgood answer not only for training examples but also with unseen data. Discriminative approacheslike Support Vector Machines (SVMs) are often favored to solve the classi�cation problems becausethey directly optimize the discrimination criterion and �nd the boundary between classes, whereasthe generative models solve the task by solving a more general task (estimating the distribution ofdata belonging to each class, then the decision will be induced using some criterion like the BayesianCriterion). It is, however, the nature of focusing on the boundary between classes rather than dataitself that makes discriminative models less robust when dealing with noisy data. Some anomalouspattern in the training data set (whose values are generated by �aws in data ascertainment, like faultymeasurement instruments) can confuse discriminative models and cause the solution to be incorrect.Examples of problems with outliers can be found in [1].It is important to have some way to assesswhether some training examples are abnormal and preprocess them before feeding training data todiscriminative models.We propose to use generative models to �lter out bad examples (outliers) before training discrim-inative models. For our system, Gaussian Mixture Models (GMMs) were used as generative modelsand the discriminative models were the Support Vector Machines (SVMs).The rest of the paper will be organized as follows. In the Section 2 we introduce the SVM andanalyse the problem of dealing with noisy data. Section 3 describes the use of generative models forassessing noisy data. Our preliminary experiments will be presented in Section 4. Conclusions aredrawn in section 5.2 SVM and Noisy DataThe Support Vector Machine is a discriminative learning algorithm proposed by Vapnik [8],[3], andsince then has been applied to many problems. The key idea in SVM is:In case data is linearly separable, the SVM looks for the separating hyperplane with the largestmargin, with respect to the labeled training set.
fmax = argmax

f
min

i

yif(xi)

‖w‖where f(x) = (x ·w) + b =
∑

i αiyi(xi · x) + b.

w =
∑

i αiyixifor x, w ∈ <N , b ∈ <, αi ∈ < is the contribution of the sample i in the �nal solution , yi ∈ {−1, 1}are the labels corresponding to the training set {xi}. αi and b are determined in the training process.This is achieved by minimizing the square of l2-norm of w
1

2
‖w‖2 (1)subject to the inequalities

(xi · w + b)yi ≥ 1for all i.Here comes the problem of the SVM, since it does not take into account �the importance� oftraining example and treats noisy data just as others, some bad examples can signi�cantly a�ect thehyperplane solution and make it not generalize well with future data. This phenomenon is illustratedin �gure 1Another important feature of SVM is the soft margin, which is applied when training examplesare linearly inseparable in feature space. To overcome this problem positive slack variables ξi areintroduced into the inequalities such that:
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Figure 1: One bad example can change the solution, making it not generalize well to future data.
xi ·w + b ≥ 1 − ξi for yi = +1

xi ·w + b ≥ −1 + ξi for yi = −1
ξi ≥ 0 ∀i.Then ∑

i ξi is an upper bound on the number of training errors. A natural way for choosing theresulting problem to minimize is then
1

2
‖w‖2 + C

∑

i

ξi (2)subject to inequalities 2.Parameter C is chosen by user and can be used as a trade o�: a low value of C means we prefer thesolution with a large margin (it will be more robust against noise), a high value of C means we preferthe solution with less classi�cation errors on the training set (but small margin). Usually this is doneby validation technique, for which various values of C in a prede�ned range of value will be tried, andthe one which gives the best performance on a separate validation set will be chosen. However, theprocess of choosing C is not simple since it is not �invariant�.Proposition 1 When we �nd the hyperplane in the input space, if the value of all data points is scaledup n times, in order to make the new C have the same e�ect as it is before scaling data one need toscale it down n2 times.Sketched Proof 1 After scaling up process we have x
new
i = n · xi , consider the hyperplane for thescaled up data set which correspond to the hyperplane in the orginal data set we have the margin willbe scaled up n times. Hence the new normal vector w

new = 1

n
w.Since w

new =
∑

i αnew
i yix

new
i . From equation 2 we can infer:

αnew
i =

1

n2
αi. (3)Minimizing the objective function (2) for the original data set is equal to maximizing the dual objectivefunction:

L(w, b, α, ξ, η) = −
1

2

∑

i,j

αiαjyiyj(xi · xj) +
∑

i

αi (4)
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i αiyi = 0 and 0 ≤ αi ≤ C.The solution is the minimum of (2) and maximum of (4).For the scaled up dataset, the new dual function would be:
L(wnew

, b, α
new

, ξ, η) = −
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i · x

new
j )

+
X

i

α
new
i (5)subject to ∑

i αnew
i yi = 0 and 0 ≤ αnew

i ≤ Cnew.From (3), for having the same hyperplane in scaled up data set which corresponds to the previoushyperplane of the original data set, the new value of C would be Cnew = 1

n2 C. The correspondingvalue of the solution of the objective function will also be scaled down 1

n2 times.In case the hyperplane is to be found in the feature space, the choice of kernel and kernel parameterswill decide the mapping feature space, so as the role of C in feature space. This means it can not beprede�ned in which range of value C should fall into. If there is a local minimum of the classi�cationerror rate in the range of value C for doing validation, the user would be misled and take the wrongvalue of C. So although the SVM has its own mechanism to deal with noisy data, it may not be goodenough.3 Outlier Detection based on Generative ModelsTo make discriminative models less a�ected by noisy data, our solution is to �nd out which datapoints in the training data set are outliers (or data points which are not likely to occur in the future)and reject them before training discriminative model.Here the generative models' capability of modeling the distribution of data will be used. Once thedistribution of data examples of each class has been estimated, the Bayes rule can be used to assesseach example:
P (y|x) =

p(x|y)P (y)

p(x)
. (6)for which y is the label of the class, p(x|y) is the class based probability density function, P (y) is theprior of each class, p(x) is the likelihood of the example, and P (y|x) is the posterior probability ofclass y.From (6), various criterions can be used to decide whether an example is outlier. It could be thelikelihood of the example given its true class (p(x/y)), the posterior probability of class given theexample (P(y/x)), or p(x).. Other methods for outlier detections can be found in [5][7][2].As for estimating the distribution of data, we choose the Gaussian Mixture Models (GMMs). Theyare a �exible semi parametric class of probability distributions. Given d-dimensions data examplesthe density of a GMM is de�ned as:

p(x|θ) =

k
∑

j=1

wj

(2π)
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√

|Σj |
exp

(

−
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(x − µj)

T
Σ

−1

j (x − µj)

)

. (7)where the parameter set of the GMM is θ = (wj , µj , Σj)
k
j=1

with µj ∈ <d, Σj ∈ <d2 being respectivelyrespectively the mean vector and the covariance matrix of the jth Gaussian component . The priorprobability of a data example belonging to the jth Gaussian of the GMMs wj ≥ 0 ∈ < , therefore theyneed to ful�ll the condition ∑

j wj = 1 . The number of Gaussian component k controls the capacityof the GMM, with k big enough the GMMs can approximate arbitrary distributions.To learn the parameters of a distribution, usually the Expectation Maximization (EM) algorithmis employed [4]. The number of component in the GMMs can be chosen by validation method, in ourcase the criterion is the classi�cation error.



IDIAP�RR 03-40 54 ExperimentsTo check the idea, we chose a noisy data set from the UCI Machine Learning Repository [6], the Forestdatabase. The problem is to classify data examples between seven major forest cover types. The dataset has been preprocessed to turn from a multiple class problem to a binary classi�cation task, thedimensions of data is 53. For our experiments, we chose 1000 examples as the training data set, 1000examples as validation set and 1000 examples as test set.Since the EM algorithm is known to be sensitive to initial parameter values, the K-means algorithmwas used to initialize the parameters of GMMs. Diagonal covariance matrix GMMs were used toconstraint the capacity of generative models. The number of Gaussian components for each class wasvaried and chosen by 5-fold cross-validation on the training data set (The validation data set wasused for choosing other hyperparameters- the rejection rate and the variance of Gaussian kernels).Thecriterion for measuring the performance of GMMs systems was the classi�cation error rate (usingBayesian Criterion for taking decision). This process ended up with 15 Gaussians GMMs for eachclass.The noise rejecting process for the training data set would be as follows:
• Using the GMMs with number of Gaussian chosen previously to model data of each class.
• For each example in the training data set, compute its likelihood (or loglikelihood ratio) givenits true class.
• For each class, sort the likelihood of all examples in descending order.
• The rejection rate r for each class was varied, for each r rejecting r% of examples in each classwhich has lowest values.The training data set after rejecting outliers was used for training the SVM with Gaussian kernel.The rejection rate r was varied from 1% to 8% for each class, for each r the standard deviation σof the Gaussian kernel was varied from 3 to 55. Firstly the rejection rate r and then the standarddeviation σ was chosen based on the performance of the system on the validation data set.Performance of the system on the validation data set with various rejection rates are shown in�gure (2). Results of the validation process, in �gure (3), show that the error rate of the discriminativemodels after rejecting 4% examples of each class were always better than without rejecting noisy data:5 ConclusionWe analyze and point out some di�culties of the SVM when dealing with noisy data. A proposedsolution is using generative models to �lter out noisy data before training the SVM. The idea wastested on a noisy data set from the UCI Machine Learning Repository. For the future work thealternative approach might be to keep all data examples but use robust methods to avoid being ledastray by outliers (such as weighting value of C on the optimization algorithm for each example).AcknowledgmentThe authors would like to thank the Swiss National Science Foundation for supporting this workthrough the National Center of Competence in Research (NCCR) on �Interactive Multimodal Infor-mation Management (IM2)�.
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Figure 2: Performance of the system on the validation set with various rejection rate.References[1] V. Barnett and T. Lewis. Outliers in Statistical Data. John Wiley & Sons, 1994.[2] Alex J. Smola Bernhard Schölkopf, Robert C.Williams and John Shawe Taylor.[3] C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data mining andKnowledge Discovery, 2(2):1�47, 1998.[4] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum-likelihood from incomplete data viathe EM algorithm. Jrnl. of Royal Statistical Society B, 39:1�38, 1977.[5] Martin Lauer. A mixture approach to novelty detection using training data with outliers. In 12thEuropean Conference on Machine Learning, 2001.[6] P.M. Murphy and D. W. Aha. UCIrepository of machine learning databases. Technical report,University of California, Department of Information and Computer Science, 1992.[7] D.M.J. Tax and R.P.W Duin. Outlier detection using classi�er instability. In Proceeding of Sta-tistical Pattern Recognition, 1998.[8] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New-York, NY, USA,1995.
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Figure 3: Performance of the system on the test data set, corresponding with 0 and 4% rejection rate,the std value was chosen from the validation set.


