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Abstract. Head Tracking and pose estimation are usually considered as two sequential
and separate problems: pose is estimated on the head patch provided by a tracking
module. However, precision in head pose estimation is dependent on tracking accuracy
which itself could benefit from the head orientation knowledge. Therefore, this work
considers head tracking and pose estimation as two coupled problems in a probabilistic
setting. Head pose models are learned and incorporated into a mixed-state particle filter
framework for joint head tracking and pose estimation. Experimental results on real
sequences show the effectiveness of the method in estimating more stable and accurate
pose values.
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1 Introduction

Head detection and tracking are essential components in video applications related to human
behaviour understanding. It is commonly used as a first step before applying algorithms
for other higher level tasks, such as face and facial expresion recognition or gaze direction
estimation. At the same time, the estimation of the head pose could be useful for behaviour
understanding and to improve the higher level tasks.

Many methods have been proposed to estimate head pose [1], [3], [4], [7], [10],[11].
To our knowledge, the previous work consider tracking and head pose estimation as two
sequential but independent problems. The principle of these methods is to first track the
head to extract its location, and then to estimate head orientation by exploiting this location.
As a consequence, the head pose estimation process is very dependent on the accuracy of
the tracking since, as reported in [1], head pose is very sensitive to the localization of the
extracted head box. At the same time, the knowledge of the head pose could improve the
head modeling and thus the accuracy of the tracking. This paper addresses these issues by
coupling the tracking and head pose estimation processes in a probabilistic setting. For this
purpose, a mixed-state particle filter framework is used [9], where a head spatial configura-
tion (e.g. position and scale) and its pose are represented in a joint state-space model. The
joint posterior distribution of the state given the sequence of images is estimated at each in-
stant and propagated to the next time instant using the state dynamic. The pose at a given
instant is then obtained by marginalyzing over the spatial configuration part of the state. As a
result, in the approach we propose, the spatial configurations leading to a better pose model-
ing will have a greater impact on the pose result, leading to a more accurate estimation of the
pose than with the tracking then pose estimation approach. This is supported by experiments
performed on several real sequences.

This paper is organized as follows. Section 2 describes our head pose modeling. Section
3 shows the embedding of these pose models in a mixed-state particle filter framework. Sec-
tion 4 reports results of pose estimation on still images and tracking results on real sequences.
Section 5 gives the conclusions.

2 Head Pose Modeling and Estimation

2.1 Head Pose Modeling and Learning

The head poses are defined by a pan angle denoted θ and ranging from -90 to 90 degrees1.
Allowed values are discretized with a 22.5 degrees step. Training data patches are extracted
from head images by locating a tight bounding box around the head. These patch images are
resized to the same 64× 64 resolution and preprocessed by histogram equalization to reduce
the effect of lighting conditions. Four filters, one Gaussian and three rotation invariant Gabor

1An additional tilt angle is also considered but is left aside for brievity in the presentation.
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a) b)

Figure 1: a) Reference grid on a frontal head pose b) The four image features computed from
the frontal head pose.

wavelets, are then applied on these patches (Fig. 1). A simple Gabor wavelet is defined by:

ψω0,σ,α(x, y) = exp

(

−
1

2σ2

(

x′
2
+ y′

2
)

)

cos(2πω0x
′)

x′ = x cosα− y sinα and y′ = x sinα + y cosα

where ω0 denotes the angular frequency, σ the scale parameter and α the orientation of
the wavelet. A rotation invariant wavelet is obtained by integrating a simple wavelet over
the orientation α. The rotation invariant Gabor wavelet we used are defined by the scales
σ = 1, 2, 4 and and angular frequency w0 = 1

2
, 1

4
, 1

8
. The resulting images are sampled at

191 points of a grid G regularly located inside a reference disk C of center (32.5, 32.5) and
of radius 31.5 (Fig. 1a).

For each filter Ψi, the features computed from an image {f i
j , j ∈ G} are normalized to

give f̃ i = {f̃ i
j =

f i
j−mi

si
, j ∈ G}, where mi and s2

i represent the mean and variance of the i
features, and are given by :

mi =
1

|G|

∑

j∈G

f i
j and s2

i =
1

|G|

∑

j∈G

f i
j
2
−m2

i (1)

This normalization is made to prevent the features of a filter to dominate the other because
their values are higher. These features are then concatenated in a single feature vector z =
{f̃ i, i = 1, 2, 3, 4}.

To learn the model of a head pose we use the CMU PIE database [8], which contain 68
persons at the needed head poses. For each head pose θ, the feature vectors are clustered inK
clusters using a Kmeans algorithms. The K centers of cluster, eθ

k, k = 1, ..., K are taken to be
the models of the head pose. For each head pose the standard deviation of the features σθ

k and
the normalized number of element of each cluster πθ

k are kept. The Kmeans procedure was
preferred to others modeling methods like Gaussian mixture model because our interest is in
modeling representative exemplars of head pose and not directly the probability distribution
of the features.
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2.2 Head Pose Estimation

The head pose of an input image characterized by its feature z is estimated using the maxi-
mum a posteriori principle :

θ∗ = arg max
θ
p(θ|z) = arg max

θ

p(z|θ)p(θ)

p(z)
. (2)

Assuming for static images that p(θ) is uniformly distributed, the MAP estimation resume
to θ∗ = arg maxθ p(z|θ). We assume that for each head pose θ the components of the
feature vector are independent and can be modeled by a Gaussian mixture having as center
the examplars eθ

k, k = 1, ..., K, as diagonal covariance matrix Σθ = diag(σθ
k
2
) and as

probability mixtures πθ
k. The probability of data given a head pose is modeled by:

p(z|θ) =

K
∑

k=1

πθ
kp(z|k) with: (3)

p(z|k) =
∏

i

1

σθ
k,i

exp−
1

2

(

zi − eθ
k,i

σθ
k,i

)2

. (4)

As components of a feature vector can be outliers, we will also use the saturated Gaussian
likelihood:

pT (z|k) =
∏

i

1

σθ
k,i

max







exp−
1

2

(

zi − eθ
k,i

σθ
k,i

)2

, T







. (5)

where T = exp−3 is a lower threshold. This term is usefull to avoid local differences between
an examplar and the input image (e.g. in the hair cut) to conduct to a very low likelihood
even when the majority of the remaining component features are in good agreement.

3 Joint Tracking and Head Pose Estimation

Head tracking and pose estimation are performed in a probabilistic framework.

3.1 Mixed-State Particle Filter.

Particle filtering (PF) implements a recursive Bayesian filter by Monte-Carlo simulations.
Let X0:t = {Xl, l = 0, . . . , 1} (resp. z1:t = {zl, l = 1, . . . , t}) represents the sequence
of states (resp. of observations) up to time t. Furthermore, let {X i

0:t, w
i
t}

Ns

i=1 denote a
set of weighted samples that characterizes the posterior probability density function (pdf)
p(X0:t|z0:t), where {X i

0:t, i = 1, . . . , Ns} is a set of support points with associated weights
wi

t. The samples and weights can be chosen using the Sequential Importance Sampling (SIS)
principle. Assuming that the observations {zt} are independent given the sequence of states,
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the state sequence X0:t follows a first-order Markov chain model, and that the prior distribu-
tion p(X0:t) is employed as proposal, we obtain the following recursive update equation [2]
for the weight:

wi
t ∝ wi

t−1 p(zt|X
i
t) (6)

To avoid sampling degeneracy an additional resampling step is necessary [2]. The standard
PF is given by :

1. Initialisation : ∀ii∈1:Ns
, sample X i

0 ∼ p(X0); set t = 1

2. IS step: ∀i sample X̃ i
t ∼ p(X i

t |X
i
t−1); evaluate w̃i

t using (6).

3. Selection: Resample Ns particles {X i
t , w

i
t = 1

Ns
} from the sample set {X̃ i

t , w̃
i
t}; set

t = t + 1; go to step 2.

In the mixed state particle filter approach of [9], the state X = (k, x) is the conjunction
of a discrete variable k labeling a discrete set of objects models ek, called exemplars and a
continuous variable x specifying the spatial configuration of the object (e.g. position, the
size, image rotation). In order to implement the filter, three elements have to be specified: a
state model, a dynamical model and an observation model.

3.2 State space

The stateX is a mixed variableX = (k, x). The discrete variable k = (θ, l) labels an element
of the set of head pose models {eθ

l , θ, l = 1, .., K} built in the previous Section. The
continuous variable x = (tx, ty, sx, sy) is a vector parameterizing the transform Tx defined
by:

Txu =

(

sx 0
0 sy

)

u+

(

tx
ty

)

. (7)

which characterizes the object configuration, where (tx, ty) specifies the translation of the
object in the image plane, and (sx, sy) the scale of the width and the height of the object
according to a reference size.

3.3 Dynamics

The process density on the state sequence Xt = (kt, xt) is modeled as a second order au-
toregressive process P (Xt|Xt−1, Xt−2). We assume that the two components of the states,
kt and xt, are independent. Also it is assumed that a head pose at a given time t, kt, depends
only on the head pose at the previous time kt−1. Then the equation of the process density is:

P (Xt|Xt−1, Xt−2) = p(kt|kt−1)p(xt|xt−1, xt−2) (8)

The dynamic of the continuous variable x is modeled as a classical second order auto re-
gressive dynamical mode. The dynamic of the discrete variable k, defined by the transition
process p(kt|kt−1) = p(θt, lt|θt−1, lt−1):

p(θt, lt|θt−1, lt−1) = p(lt|θt, lt−1, θt−1)p(θt|θt−1). (9)
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NEP State of The Art [1] Gaussian Sat. Gaussian
1 90% 90% 94%
2 Not Relevant 87.5% 94.8%

Table 1: Recognition rate table for a given number of exemplar per head pose (NEP)

p(θt|θt−1) is based on the distance between the two head poses. p(lt|θt, lt−1, θt−1) is a prob-
ability table learned using the training set of faces. More precisely, for different head poses,
the examplars are more related when the same persons were used to build them. When θ 6= θ ′

p(l|θ, l′, θ′) is taken proportional to the number of persons who belong to the class of eθ
l and

who are also in the class of eθ′

l′ . When θ = θ′, p(l|θ, l′, θ′) is large for l = l′ and small
otherwise.

3.4 Observation model

Finally, let us define the object likelihood. For each state X = (k, x) the observations are
obtained by first extracting an image patch from the image according to C(x) = {Txu, u ∈
C}, and then filtering this image patch at the points specified by the grid G with the four
filters defined in the previous Section, and concatenating the filtered values in a feature vector
z(x). The likelihood p(z|X) = p(z|k, x) is finally modeled by p(z|k, x) = pT (z(x)|k), pT

referring to Equation 5.
The head pose is then estimated a each time as the mode of the head pose distribution

after marginalization over the spatial configuration :

θ?
t = arg max

θ

∑

i/θi
t=θ

wi
t (10)

4 Results

4.1 Head Pose Estimation Results

To test the efficiency of the pose modeling we used the 68 persons of PIE database and their
head pose. For the first experiments we use the same setup than [1]. The 34 first persons
were selected and their head poses used to train the head pose models. The half remaining
were used to test the models. Table 1 shows the recognition rates when the number of
examplars per head pose are 1 and 2. This table shows that smoothing the likelihood is
indeed very useful, helping in reducing the effect of outlier feature components. Besides,
Table 2 displays the confusion matrix of the recognition. It shows that estimation errors
occur in general between close head poses. These errors are still acceptable, there is not a
total mismatch of different profile views.

To further study the effect of the number of examplars, we included in the database 72
persons of the FERET database [6], leading to a total of 140 persons. Then, 70 persons were
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90 67.5 45 22.5 0 -22.5 -45 -67.5 -90

90 100 0 0 0 0 0 0 0 0
67.5 14.7 85.3 0 0 0 0 0 0 0
45 0 0 100 0 0 0 0 0 0

22.5 0 0 5.9 94.1 0 0 0 0 0
0 0 0 0 0 100 0 0 0 0

-22.5 0 0 0 0 5.9 94.1 0 0 0
-45 0 0 0 0 0 5.9 94.1 0 0

-67.5 0 0 0 0 0 0 3.1 91 5.9
-90 0 0 0 0 0 0 0 0 100

Table 2: Confusion matrix for NEP=2 and saturated Gaussian likelihood

Gaussian Sat. Gaussian
NEP 3 4

Av. of R.R. 67.2% 70.5%
St.dev. of RR 2.4 2.3

Table 3: Best recognition rates for PIE+FERET

ramdomly selected and their head pose used to train the models, and the half remaining used
to test the models. We ran this set up 100 times and computed the average and standard
deviation of recognition rates for NEP=1,2,3,4. Table 3 gives the best results that were
achieved with NEP=3 for the Gaussian likelihood and NEP=4 for the Saturated Gaussian
likelihood. These results show that more exemplars improve the recognition and that the
saturated Gaussian likelihood is still doing better than the Gaussian likelihood (this indeed
true for all NEP).

4.2 Tracking Results

The tracking algorithm described previously was tested on several video sequences. None
of the tracked persons belonged to the training database. The positions of the camera for
the video sequences used to test the algorithm were different than those used in the training
database. Also the illumination condition were very different in the training database and in
our test video sequences. Despite this mismatch between training and test sets, the tracking
was correctly done and the estimation of the head pose was visually very satisfying. Fig. 2
shows tracking results of a typical sequence. Videos of more tracking results are available
on the web.

We conducted experiments to compare our method to the traditional sequential head
tracking then pose estimation approach. We used a color-based state-of-the-art particle filter
tracker described in [5], which provides at each time a patch image corresponding to the
head. The patch image is processed as described in Section 2 to extract the features, then
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t=1 t=50

t=61 t=79

t=89 t=95

t=120 t=140

Figure 2: Tracking and head pose estimation results. First clock: pan angle; second clock:
tilt angle.

compared to the exemplars using Equation 5 for pose evaluation. For the sequence of Figure
2 we generated head orientation ground truth by manually extracting a tight bounding box
around the head and applying the pose estimation method. At each time t, the surface of the
ground truth box is denoted GS(t). We ran the two trackers that output at each time a box
containing the head with surface TS(t) and an estimated head pose. If at each time JS(t) is
the joint surface between the ground truth and the tracker, we choose to measure the tracking

error by e(t) = 1
2

(

GS(t)−JS(t)
GS(t)

+ TS(t)−JS(t)
TS(t)

)

. This error is 0 when tracking is perfect, and 1

when it totally fails. Figure 3 shows tracking errors for the two methods and the estimated
head orientations. The results in Fig. 3, left, shows that our method leads to smaller tracking
errors in average. The color tracker, on the other side, can be confused by similar color in the
background. This results in an over-estimate of the head patch size (cf. the two error peaks
at the end of the sequence), which in turn results in pose estimation failures (Fig. 3, right),
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Figure 3: Left: spatial configuration errors. Right: Pan head orientation estimation.

t=109 t=138

Figure 4: Sample of head pose estimation failure due to bad head location.

as illustrated by Fig. 4.

5 Conclusion

We described in this paper a joint head tracking and pose estimation algorithm. The novelty
of the approach lie in the coupling of the tracking and head pose estimation processes. This
coupling is handled in a probabilistic framework within a mixed state particle filter frame-
work. By implicitly allowing to test multiple head configurations, it reduces the sensitivity
of the pose estimation process on the tracking accuracy, a drawback of methods that perform
head tracking then pose estimation in a sequential manner, and results in more stable and
accurate pose estimates.
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