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Abstract. In several research domains concerned with classification tasks, including person
authentication and text categorization, ROC curves are often used to assess the quality of a
particular model or to compare two or more models with respect to various operating points.
Researchers also often publish some statistics coming from the ROC curve, such as the so-called
break-even point or equal error rate. The purpose of this paper is to first argue that these mea-
sures can be misleading and should be used with care. Instead, we propose to use the Expected

Performance Curves (EPC) which are unbiased versions of ROC curves. Furthermore, we show
how to adapt adequately a non-parametric statistical tests in order to produce EPC curves with
confidence intervals or assessing the statistical significant difference between two models under
various settings.
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1 Introduction

Two-class classification problems are common in machine learning. In several domains, on top of
selecting the appropriate discriminant function, practitioners also modify the corresponding threshold
in order to better suit an independent cost function. Moreover, they compare models with respect
to the whole range of possible values this threshold could take, generating curves such as ROCs. In
order to also provide quantitative comparisons, they often select one particular point on this curve
(such as the so-called break-even point or equal error rate).

The main purpose of this paper is to argue that such curves, as well as particular points on it like
break-even point or equal error rate can be misleading when used to compare two or more models, or
to obtain a realistic estimate of the expected performance of a given model.

We thus propose instead the use of a new set of curves, called Expected Performance Curves (EPC),
which really reflect the expected (and reachable) performance of systems. While EPCs are presented
here for general machine learning tasks, they were first presented specifically in the context of person
authentication in [1].

Furthermore, we propose here the use of a simple non-parametric technique to show a confidence
interval along the EPCs or to show regions where two models are statistically significantly different
from each other with a given level of confidence.

In Section 2, we review the various performance measures used in several research domains in front
of 2-class classification tasks, such as person authentication and text categorization. In Section 3, we
explain why some of these measures can be misleading. In Section 4, we present the family of EPCs,
that really reflects the expected performance of a given model, hence enabling a fair comparison
between models. Finally, in Section 5, we present a technique to compute confidence intervals and
statistical significance tests together with EPCs. Section 6 concludes the paper.

2 Performance Measures for 2-Class Classification Tasks

Let us consider two-class classification problems defined as follows: given a training set of examples
(xi, yi) where xi represents the input and yi is the target class ∈ {0, 1}, we are searching for a function
f(·) and a threshold θ such that

f(xi) > θ when yi = 1 and f(xi) <= θ when yi = 0, ∀i . (1)

Desired Class
1 0

Obtained 1 TP FP
Class 0 FN TN

Table 1: Types of errors in a 2-class classification problem.

The obtained function f(·) (and associated threshold θ) can then be tested on a separate test
data set and one can count the number of utterances of each possible outcome: either the obtained
class corresponds to the desired class, or not. In fact, one can decompose these outcomes further, as
exposed in Table 1, in 4 different categories: true positives (where both the desired and the obtained
class is 1), true negatives (where both the desired and the obtained class is 0), false positives (where
the desired class is 0 and the obtained class is 1), and false negatives (where the desired class is 1 and
the obtained class is 0). Let TP, TN, FP and FN represent respectively the number of utterances of
each of the corresponding outcome in the data set.

Note once again that TP, TN, FP, FN and all other measures derived from them are in fact
dependent both on the obtained function f(·) and the threshold θ. In the following, we will sometimes
refer to, say, FP by FP(θ) in order to specifically show the dependency with the associated threshold.
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Several tasks are in fact specific incarnations of 2-class classification problems. However, often for
historical reasons, researchers specialized in these tasks have chosen different methods to measure the
quality of their systems. In general the selected measures come by pair, which we will call generically
here V 1 and V 2, and are simple antagonist combinations of TP, TN, FP and FN. Moreover, a unique
measure (V ) often combines V 1 and V 2. For instance,

• in the domain of person authentication [10], the chosen measures are

V 1 =
FP

FP + TN
and V 2 =

FN

FN + TP
(2)

and are called false acceptance rate (FAR) and false rejection rate (FRR) respectively. Several
aggregate measures have been proposed, the simplest being the half total error rate (HTER)

V =
V 1 + V 2

2
=

FAR + FRR

2
= HTER , (3)

• in the domain of text categorization [9],

V 1 =
TP

TP + FP
and V 2 =

TP

TP + FN
(4)

and are called precision and recall respectively. Again several aggregate measures exist, such as
the F1 measure

V =
2 · V 1 · V 2

V 1 + V 2
=

2 · Precision · Recall

Precision + Recall
= F1 , (5)

• in medical studies,

V 1 =
TP

TP + FN
and V 2 =

TN

TN + FP
(6)

and are called sensitivity and specificity respectively [11].

In all the cases, in order to use the system effectively, one has to select the threshold θ according
to some criterion which is in general of the following generic form

θ? = arg min
θ

g(V 1(θ), V 2(θ)) . (7)

Examples of g(·, ·) are the HTER and F1 functions already defined in equations (3) and (5) respectively.
However, the most used criterion is called the break even point (BEP) or equal error rate (EER) and
corresponds to the threshold nearest to a solution such that V 1 = V 2, often estimated as follows:

θ? = arg min
θ

|V1(θ) − V2(θ)| . (8)

Note that the choice of the threshold can have a significant impact in the resulting system: in
general θ represents a trade-off between giving importance to V 1 or V 2. Hence, instead of commit-
ting to a single operating point, an alternative method to present results often used in the research
community is to produce a graph that presents V 1 with respect to V 2 for all possible values of θ.
Such a graph is called the Receiver Operating Characteristic (ROC) [7]1. Figure 1 shows an example
of two typical ROCs. Note that depending on the precise definition of V 1 and V 2, the best curve
would tend to one of the four corners of the graph. In Figure 1, the best curve corresponds to the one
nearest to the bottom left corner (corresponding to simultaneous small values of V 1 and V 2).

Instead of providing the whole ROC, researchers often summarize it by some typical values taken
from it; the most common summary measure is computed by using the BEP, already described in
equation (8), which produces a single value of θ and to produce some aggregate value V (θ) (such as
F1 or HTER). On Figure 1, the line intersecting the two ROCs is the BEP line and the intersections
with each ROC correspond to their respective BEP point.

1Note that the original ROC plots the true positive rate with respect to the false positive rate, but several researchers
use the name ROC with various other definitions of V 1 and V 2.
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Figure 1: Example of two typical ROCs.

3 Cautious Interpretation of ROC and BEP

As explained above, researchers often use ROC and BEP to present and compare their results; for
example, all results presented in [9], which is a very good survey of text categorization, are presented
using the BEP; a recent and complete tutorial on text independent speaker verification [2] proposes
to measure performance through the use of DET curves, which are non-linear versions of ROCs, as
well as the error corresponding to equal error rate, hence the BEP. We would like here to draw the
attention of the reader to some potential risk of using ROC or BEP for comparing two systems, as it
is done for instance in Figure 1, where we compare the test performance of models A and B. As can
be seen on this Figure, and reminding that in this case V 1 and V 2 must be minimized, the best model
appears to always be model A, since its curve is always below that of model B. Moreover, computing
the BEP of models A and B yields the same conclusion.

Let us now remind that each point of the ROC corresponds to a particular setting of the threshold
θ. However, in real applications, θ needs to be decided prior to seeing the test set. This is in general
done using some criterion of the form of equation (7) such as searching for the BEP, equation (8),
using some development data (obviously different from the test set).

Hence, assuming for instance that one decided to select the threshold according to (8) on a devel-
opment set, the obtained threshold may not correspond to the BEP on the test set. There are many
reasons that could yield such mismatch, the simplest being that assuming the test and development
sets to come from the same distribution but be of fixed (non-infinite) size, the estimate of (8) on one
set is not guaranteed to be the same as the estimate on the other set.
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Let us call θ?
A the threshold estimated on the development set using model A and similarly for θ?

B .
While the hope is that both of them should be aligned, on the test set, with the BEP line, there is
nothing, in theory, that prevents them to be slightly or even largely far from it. Figure 1 shows such
an example, where indeed,

V 1(θ?
B) + V 2(θ?

B) < V 1(θ?
A) + V 2(θ?

A) (9)

even though the ROC of model A is always below that of model B, including at the intersection with
the BEP line2. One might argue that this may only rarely happen, but we have indeed observed
this scenario several times in person authentication and text categorization tasks, including a text
independent speaker verification application where the problem is described in more details in [1].
We replicate in Figure 2 the ROCs obtained on this task using two different models, with model B
apparently always better than model A. However, when selecting the threshold on a separate validation
set (hence simulating a real life situation), the HTER of model A becomes lower than of model B (the
graph shows the operating points selected for the two models).
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Figure 2: ROCs of two real models for a Text-Independent Speaker Verification task.

In summary, showing ROCs has potentially the same drawbacks and risks as showing the training

2Note that at BEP, V 1 = V 2 = 1

2
(V 1 + V 2).
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error (indeed, one parameter, the threshold, has been implicitly tuned on the test data) and expect
that it reflects the expected generalization error: this is true when the size of the data is huge, but
false in the general case. Furthermore, real applications often suffer from an additional mismatch
between training and test conditions which should be reflected in the procedure.

4 The Expected Performance Curve

We have seen in Section 2 that given the trade-off between V 1 and V 2, researchers often prefer to
provide a curve that assesses the performance of their model for all possible values of the threshold.
On the other hand, we have seen in Section 3 that ROCs can be misleading since selecting a threshold
prior to seeing the test set (as it should be done) may end up in obtaining a different trade-off in the
test set. Hence, we would like here to propose the use of new curves which would let the user select a
threshold according to some criterion, in an unbiased way, and still present a range of possible expected
performances on the test set. We shall call these curves Expected Performance Curves (EPC).

4.1 General Framework

The general framework of EPCs is the following. Let us define some parametric performance measure
C(V 1(θ, D), V 2(θ, D); α) which depends on the parameter α as well as V 1 and V 2 computed on some
data D for a particular value of θ. Examples of C(·, ·; α) are the following:

• in person authentication, one could use for instance

C(V 1(θ, D), V 2(θ, D); α) (10)

= C(FAR(θ, D), FRR(θ, D); α)

= α · FAR(θ, D) + (1 − α) · FRR(θ, D)

which basically varies the relative importance of V 1 (FAR) with respect to V 2 (FRR); in fact,
setting α = 0.5 yields the HTER cost (3);

• in text categorization, since the goal is to maximize precision and recall, one could use

C(V 1(θ, D), V 2(θ, D); α) (11)

= C(Precision(θ, D), Recall(θ, D); α)

= −(α · Precision(θ, D) + (1 − α) · Recall(θ, D))

where V 1 is the precision and V 2 is the recall;

• in general, one could also be interested in trying to reach a particular relative value of V 1 (or
V 2), such as I am searching for a solution with as close as possible to 10% false acceptance rate;
in that case, one could use

C(V 1(θ, D), V 2(θ, D); α) = |α − V 1(θ, D)| (12)

or
C(V 1(θ, D), V 2(θ, D); α) = |α − V 2(θ, D)| . (13)

Having defined C(·, ·; α), the main procedure to generate the EPC is to vary α inside a reasonable
range (say, from 0 to 1), and for each value of α, to estimate θ that minimizes C(·, ·; α) on a development
set, and then use the obtained θ to compute some aggregate value (say, V ), on the test set. Algorithm 1
details the procedure, while Figure 3 shows an artificial example of comparing the EPCs of two models.
Looking at this figure, we can now state that for specific values of α (say, between 0 and 0.5), the
underlying obtained thresholds are such that model B is better than model A, while for other values,
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this is the converse. This assessment is unbiased in the sense that it takes into account the possible
mismatch one can face while estimating the desired threshold.

Let us suppose that Figure 3 was produced for a person authentication task, where V is the HTER,
V 1 is the FAR, and V 2 is the FRR. Furthermore let us define the criterion as in (10). In that case, α

varies from 0 to 1, and when α = 0.5 this corresponds to the setting where we tried to obtain a BEP
(or Equal Error Rate, as it is called in this domain), while when α < 0.5 it corresponds to settings
where we gave more importance to false rejection errors and when α > 0.5 we gave more importance
to false acceptance errors.

Algorithm 1 Method to generate the Expected Performance Curve

Let devel be the development set
Let test be the test set
Let V (θ, D) be the value of V obtained on the data set D for threshold θ

Let C(V 1(θ, D), V 2(θ, D); α) be the value of a criterion C that depends on α, and is computed on
the data set D

for values α ∈ [a, b] where a and b are reasonable bounds do

θ? = argminθ C(V 1(θ, devel), V 2(θ, devel); α)
compute V(θ?, test)
plot V(θ?, test) with respect to α

end for

In order to illustrate EPCs in real applications, we have generated them for both a person au-
thentication task and a text categorization task. The resulting curves can be seen in Figures 4 and 5.
Note that the graph reporting F1 seems inverted with respect to the one reporting HTER, but this is
because we are searching for low HTERs in person authentication but high F1 in text categorization.
Note also that the EPC of Figure 4 corresponds to the ROC of Figure 2. Finally, note that we kindly
provide a C++ tool that generates such EPCs3.

4.2 Areas Under the Expected Performance Curves

In general, people often prefer to compare their models according to a unique quantitative performance
measure, rather than through the use of curves which can be difficult to interpret. One solution
proposed by several researchers is to summarize the ROC by some approximation of the area under
it.

Knowing that the ROC may in fact be a misleading measure of the expected performance of a
system, the corresponding area under it may also be misleading. Would it be possible to obtain
a measure of the expected performance over a given range of operating points? We propose here to
compute E[V̄ ], the expected value of V̄ , which would be defined as the average between two antagonist
measures V 1 and V 2 given a criterion C(·, ·; α). We will show that this is in fact related to the area
under the ROC curve (AUC), although it now concerns an area under a curve of reachable solutions
instead of theoretical solutions. Note that there are several theoretical properties of the AUC measure
which makes it appealing, such as the fact that, when V 1 and V 2 are respectively defined as the true
and false positive rates, it corresponds to the well-known Mann-Whitney statistical test which can be
used to compare two independent groups of sampled data [8].

Let θf=α be the threshold such that

θf=α = arg min
θ

|α − f(θ)|, (14)

3An EPC generator is available at http://www.Torch.ch/extras/epc as a package of the Torch machine learning
library.
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Figure 3: Example of two typical EPCs.

we can write the expected value of V̄ = V 1+V 2
2 using V 1 as a threshold selection criterion, as follows:

EV 1[V̄ ] =
1

2

∫

α∈[0,1]

[V 1(θV 1=α) + V 2(θV 1=α)] dα, (15)

and using V 2 as criterion,

EV 2[V̄ ] =
1

2

∫

β∈[0,1]

[V 1(θV 2=β) + V 2(θV 2=β)] dβ. (16)

Note that if we select the thresholds θ on the test set then,

V 1(θV 1=α) = α, V 2(θV 2=β) = β,

∫

α∈[0,1]

V 2(θV 1=α)dα = AUC and (17)

∫

β∈[0,1]

V 1(θV 2=β)dβ = AUC .

Thus, using the fact that
∫ 1

0
γdγ = 1

2 , we can obtain the relation between the expected V̄ when the
thresholds are computed on the test set (which we will call E[V̄ ]post) and the area under the ROC,
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Figure 4: Expected Performance Curves for person authentication, where one wants to trade-off false
acceptance rates with false rejection rates.
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Figure 5: Expected Performance Curves for text categorization, where one wants to trade-off precision
and recall and print the F1 measure.

by computing the average of equations (15) and (16) when the threshold is chosen on the test set:

G(V̄ )post =
1

2

{

EV 1[V̄ ]post + EV 2[V̄ ]post

}

=
1

2

{

AUC +
1

2

}

. (18)

Of course, if we select the thresholds using a separate development set, the result obtained in
(18) is not true anymore. However, in this case the average G(V̄ ) remains interesting since it can be
interpreted as a measure summarizing two EPCs. Indeed, the two components of the average, (15)
and (16), are the area under an EPC computed using respectively criteria (12) and (13), hence it
integrates two antagonist performance measures over a large range of operating points.

Note that in equations (15) and (16), we integrate V̄ over expected values of V 1 and V 2 from 0
to 1. However in some cases, a value of V 1 around, say 0, may be reachable but of no interest. In
the field of person authentication it is common to only pay attention to “reasonable” values of FAR
and FRR (hence it is not useful to take into account values of FAR greater than 0.5 for instance).
The values of “reasonable” bounds are task dependent, but their choice can be decisive, and should
be taken into account when computing the expected performance of the system.
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5 Confidence Intervals and Statistical Difference Tests

While producing unbiased quantitative measures is important when assessing the performance of
a model, it is also important to take into account some of the possible variability induced by the
training or testing procedure involved in the process. Several statistical techniques do exist to estimate
confidence intervals around an obtained performance or to assess the statistical significantness of the
difference between the performance of two models (see for instance [5] for a good comparison of some
of the available tests used in machine learning).

However, in most cases, these tests involve several hypotheses that cannot be met in the general
case where the reported measure is some arbitrary combination of TP, TN, FP and FN (for instance
the F1 measure used in text categorization cannot be considered as following a Normal distribution
for which one could easily estimate the variance; moreover, the difference of two F1 measures cannot
be decomposed into a sum of independent variables, since the numerator and the denominator are
both non-constant sums of independent variables).

Hence, we would like to propose here the use of a non-parametric test based on the Bootstrap
Percentile Test [6] which has recently been applied to compute confidence intervals around ROCs [4].
We here suggest its use for the practical case of EPCs. The aim of this test is to estimate a given
distribution using bootstrap replicates of the available data. Given the estimated distribution, it is
then easy to compute the probability that the random variable of interest is higher than a given
threshold, which is the basis of most statistical tests.

Let us here give a generic example where the goal is to verify whether a given model A is statistically
significantly better than a second model B, when their respective performance is measured with VA and
VB , which are aggregates of V 1A, V 1B , V 2A and V 2B , which are themselves defined using TP, TN, FP
and FN, as explained in Section 2. Let us further assume that these measures were computed on some
test set containing N examples, for a given threshold (normally selected on a separate development
set, as explained in Section 4).

Let T be a table of two columns and N rows containing, for each of the N test examples, whether
it was considered as a true positive, a true negative, a false positive or a false negative, for both models
A (first column) and B (second column). It should be clear that with such a table, one can compute
again any aggregate value V based on the numbers TP, TN, FP, and FN gathered from the table.

Let us now create M (where M should be a big integer, the bigger the better, say 10000) bootstrap
replicates of table T . The ith bootstrap replicate of T is done by creating a new table Ti also containing
N rows of two columns, and where each row is a copy of one of the row of T , selected randomly with
replacement. Thus, replicate Ti may contain some of the original rows of T in more than one copy,
and may not contain some other rows of T . Interestingly, it can be shown that the Ti are drawn
from the same distribution as T which is an empirical, unbiased and exhaustive estimate of the true
distribution [6].

Using each bootstrap replicate Ti, we now compute an estimate of our aggregate measure of
interest, normally based on VA and VB : it could be the signed difference of VA and VB if we are
interested in estimating whether model A is better than model B, or it could be only based on VA

if we want to estimate a confidence interval around VA. This yields M estimates of our statistics of
interests.

Figure 6 shows an example of a histogram plot of M estimates of VA − VB . Using this histogram,
one can for instance verify whether 0 (which corresponds to the point where VA = VB) is inside or
outside a 95% confidence interval centered at the empirical mean; if it is outside (as it is the case in
Figure 6), then one can assert with 95% confidence that VA is statistically significantly different from
VB (in the case of Figure 6, VB is higher than VA more than 95% of the times); on the other hand, if
0 lies inside the bounds, then we cannot assert any statistical difference with 95% confidence.

The same technique could be used to compute a confidence interval around a single measure (say,
VA) by generating a histogram of VA and looking at the points in the histogram corresponding to the
bounds of the interval centered at the empirical mean of VA and comprising 95% of the distribution.

Note that in [4], the authors further modify the procedure to take into account possible depen-
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Figure 6: Example of an obtained histogram distribution of VA−VB, where the frequency of particular
values of VA − VB is plotted with respect to the values of VA − VB . The two vertical thick lines show
the bounds of the 95% confidence interval and the vertical dashed line shows the value of 0, which in
that case is not inside the interval.

dencies between examples. Note furthermore that this technique has also been used recently in other
research areas such as in automatic speech recognition where the measure of interest is the word error
rate and is an aggregate of word insertions, deletions and substitutions between the target sentence
and the obtained sentence [3].

Going back to EPCs, one can now combine any EPC with a confidence interval by simply computing
the interval for all possible values of α using the above technique, and the result is depicted in Figure 7.
Note that the width of the interval will vary with respect to α, showing the importance of such graph.
Alternatively, one can compute the statistical significance level of the difference between two models
over a range of possible values of α, as shown in Figure 8 where we highlighted in gray the range of
α for which the two models were statistically significantly different with 95% confidence.

6 Conclusion

In this paper, we have explained why the current use of ROCs in machine learning, as well as measures
such as EER and BEP, used regularly in several publications related to domains such as person
authentication, text categorization, or medical applications, can be misleading when used to compare
performance between models or to assess the expected performance of a given model.

We have thus proposed the use of new curves called Expected Performance Curves (EPC), which
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Figure 7: Example of an EPC and its corresponding 95% confidence interval

reflect more precisely the criteria underlying the real application and therefore enable a more realistic
comparison between models as well as a better analysis of their respective expected performance. From
these curves, several single measures can also be obtained, and all of them should reflect a realistic
performance comparison for a particular (and reachable) operating point of the system. Moreover,
a summary measure, similar to the AUC, reflecting the expected performance of the system under a
large range of reachable conditions, has also been proposed. Note that a free software is available to
compute these curves and statistics (http://www.torch.ch/extras/epc).

Finally, we have proposed to link such EPCs with a non-parametric statistical test in order to
show confidence intervals or statistical significant differences along a range of operating points.

It might be argued that one weakness of this new set of measures is the need for a separate
development set. While this is true and necessary in order to obtain realistic expected performances,
one could always rely on cross-validation techniques to solve this problem of a lack of training data.

ROCs can certainly still be used when the goal is to understand the behavior of a model without
taking into account the selection of the threshold, however this should be done with caution, since it
does not correspond to a real application setting.
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