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Abstract. This paper discusses and optimizes an HMM/GMM based User-Customized Password
Speaker Verification (UCP-SV) system. Unlike text-dependent speaker verification, in UCP-SV
systems, customers can choose their own passwords with no lexical constraints. The password
has to be pronounced a few times during the enrollment step to create a customer dependent
model. Although potentially more “user-friendly”, such systems are less understood and actually
exhibit several practical issues, including automatic HMM inference, speaker adaptation, and
efficient likelihood normalization. In our case, HMM inference (HMM topology) is performed
using hybrid HMM/MLP systems, while the parameters of the inferred model, as well as their
adaptation, will use GMMs. However, the evaluation of a UCP-SV baseline system shows that
the background model used for likelihood normalization is the main difficulty. Therefore, to
circumvent this problem, the main contribution of the paper is to investigate the use of multiple
reference models for customer acoustic modeling and multiple background models for likelihood
normalization. In this framework, several scoring techniques are investigated, such as Dynamic
Model Selection (DMS) and fusion techniques. Results on two different experimental protocols
show that an appropriate selection criteria for customer and background models can improve
significantly the UCP-SV performance, making the UCP-SV system quite competitive with a
text-dependent SV system. Finally, as customers’ passwords are short, a comparative experiment
using the conventional GMM-UBM text-independent approach is also conducted.
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1 Introduction

Speaker Verification (SV) is the task of automatically accepting or rejecting a claimed identity based
on the voice characteristics of a speaker [1]. Speaker verification can be divided into text-dependent
and text-independent. In Text-Dependent Speaker Verification (TD-SV), the text is constrained to be
a known phrase, which can be fixed or randomly prompted from a small vocabulary (usually digits) [2].
Hence, the system has a priori knowledge about the text. In Text-Independent Speaker Verification
(TI-SV), there is no constraint on the text during enrollment and verification steps. Test utterances
can be completely different from enrollment utterances. Consequently, TI-SV systems need a large
and rich training data to model properly the characteristics of the speaker’s voice. Because in TD-SV
systems, the speaker’s model encodes both the lexical properties and the speaker’s voice characteristics,
these systems usually achieve better performance compared to TI-SV systems. However, because user
has no freedom to choose the predefined password, TD-SV systems are less user-friendly and not fully
appreciated by users.

This paper studies another kind of TD-SV systems which are more user-friendly. That is customer
can choose easily his/her own password without any lexical constraints. The password has to be
pronounced a few times during a short enrollment step to create a customer specific model that will
be subsequently used for verification. Such a system is referred to as User-Customized Password
Speaker Verification (UCP-SV). Given that the password is chosen from an unconstrained lexicon, it
makes it more difficult for an impostor to guess the customer’s password. The main assumption in a
UCP-SV system is that no a priori knowledge about the password is available to the system. The goal
of this paper is to study how does this assumption affect the performance of the UCP-SV compared
to a TD-SV.

However, UCP-SV systems present new challenges. First, the system has to automatically infer
the topology of the Hidden Markov Model (HMM) associated with the password simply based on a
few utterances. The inferred model has then to be parameterized in terms of speaker-independent
parameters (in our case, Gaussian Mixture Models (GMM)) that can easily be adapted to the customer
characteristics. Finally, we have to design an appropriate likelihood normalization model that best
competes with the customer model with respect to the test utterance. The likelihood normalization
model will be used in the usual log likelihood ratio test. As we will see, this is considered as the main
problem of an HMM/GMM based UCP-SV system and it will be the focus of this paper.

2 HMM/GMM based UCP-SV system

Figure 1 illustrates the enrollment process of a new customer in the HMM/GMM based UCP-SV
system we have implemented. Each step will be discussed in more detail in the sequel of the paper.

1. HMM inference: The main assumption in UCP-SV systems is that no a priori information about
the lexical content of the password is available. This information should be inferred automati-
cally in terms of sub-word units like phonemes. A speech recognizer is used to transcribe each
utterance of the customer’s password to a sequence of phonemes. The inferred Phonetic Tran-
scriptions (PTs) should be representative of the lexical content of the password. The accuracy of
the inferred PTs depends on the accuracy and the consistency of the speech recognizer. Ideally,
the inferred PTs should almost be the same for all utterances of the same password, but in prac-
tice, this is never the case. Hence, we have to pick the one that best represents the enrollment
data or find ways to consolidate all resulting PTs. In our case, the HMM inference is performed
using a speaker-independent hybrid HMM/MLP system [3]. In this system, the Multi-Layer
Perceptron (MLP) is used to estimate HMM states posterior probabilities (or scaled likelihoods)
of an ergodic lexical model to map each of the enrollment utterance into a phonetic sequence.
The HMM/MLP systems are successfully used in speech recognition and are known to usually
yield better performance at the frame level compared to other systems like HMM/GMM, thus
being better suited to recognize utterances in terms of phone sequences.
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Figure 1: Block-diagram of the enrollment process in an HMM/GMM based UCP-SV system: For
each enrollment utterance Xℓ

c , corresponding to the ℓth repetition of the password pronounced by the
customer (c), first (1) we extract MFCC features, which will be used in an ergodic HMM/MLP model
(M,Θ) to (2) generate the most probable phonetic string M ℓ

c (still parameterized by Θ) associated
with each utterance. We then (3) parametrize the resulting HMM topologies M ℓ

c with the parame-
ter set λ, corresponding to speaker-independent GMMs, resulting in left-to-right speaker-independent
HMM/GMM models (M ℓ

c , λ) which will be used as background models for likelihood normalization.
Finally, (4) a MAP adaptation procedure is applied to (M ℓ

c , λ) to create the speaker-dependent
HMM/GMM model (M ℓ

c , λc).
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2. Speaker adaptation: Having inferred the HMM topology associated with the password, the next
step is to create the customer specific acoustic model. Since in the UCP-SV the amount of
enrollment data is very limited, a model adaptation techniques are used. The adaptation process
requires us to consider an appropriate parameter adaptation scheme as well as the number of
parameters to be adapted. If we stick to hybrid HMM/MLP model, we have to adapt the MLP
parameters. In [4], we reported all the attempts we made to adapt the parameters of the SI-MLP
for each new customer, where we tried different adaptation techniques based on the training of
a small linear input transformation [5]. However, none of the tested techniques were satisfactory
enough for such small amounts of adaptation data. Consequently, we decided to parametrize
the resulting HMM models in terms of speaker-independent GMMs, which are then used as a
priori distribution for Maximum A Posteriori (MAP) adaptation [6], yielding the customer and
password specific acoustic model.

3. Likelihood normalization: Speaker verification is an hypothesis testing, usually casted in terms
of a likelihood ratio test. That is the likelihood estimated by the speaker model is normalized
by the likelihood estimated by a background model (a model representing all other possible
speakers). This is still the case with UCP-SV systems, except that the hypothesis to test is
whether we have the right speaker pronouncing the right password. The background model
should be determined in such a way that the discriminant capability of the system against
impostor accesses will improve. Empirical studies, suggest that a background model which is
close to the target speaker is a reasonable choice [7]. This statement makes the design of such
a model in UCP-SV systems more difficult, since there is no a priori knowledge available about
the phonetic coverage of the customer password. This will be the main investigation of this
paper.

In this paper, we first describe and evaluate a baseline UCP-SV system similar to the one presented
in [8] for an open set speaker identification. This baseline system uses the best inferred PT to create
the customer password HMM model. A comparison with a reference TD-SV system that uses the
correct PT of the password (given by a dictionary) shows that the main difficulty in UCP-SV system
lies in the background model.

The main contribution of this paper is then to improve the performance of this baseline system
using multiple reference models for customer acoustic modeling and multiple background models
for likelihood normalization. That is for each inferred PT, a customer and a background HMM
models are created. The different inferred PTs provide us with information about how customer
pronounces his/her password. This information can be used to improve the performance of the UCP-
SV system1. This paper will demonstrate that the use of multiple reference and background models
allows us to select an appropriate customer and background models in terms of customer and password
characteristics with respect to the test utterance.

3 HMM inference

The goal of this step is to infer the speaker-independent password HMM. For this purpose, we have
used an ergodic speaker-independent HMM/MLP system with a set of MLP parameters Θ to map each
of the enrollment utterances Xℓ

c into a phonetic sequence. More precisely, for each acoustic sequence

Xℓ
c =

{
xℓ

(1,c), x
ℓ
(2,c), ..., x

ℓ
(T,c)

}
associated with each utterance of the customer password, the MLP

outputs provide, for each acoustic frame xℓ
(t,c) at its input, an estimate of the posterior probabilities

p(qt
k|x

ℓ
(t,c),Θ) of phones qk, with k = 1, ...,K and, where K is the total number of phones. These

posterior probabilities are then converted to scaled likelihood using Bayes rule2. Using these phone

1SuperSID project at the JHU summer workshop, 2002, http://www.clsp.jhu.edu/ws2002/groups/supersid

2 P (qt
k|xt)

P (qk)
=

p(xt|q
t
k)

P (xt)
.
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likelihoods and an ergodic HMM model M with minimum state duration constraints equal to 3 and
phone transition probability3 set to 0.5, a simple dynamic programming algorithm [9] is applied to
estimate the best phonetic sequence. This results in L phonetic transcriptions M ℓ

c (with 1 ≤ ℓ ≤ L
and L is the number of enrollment utterances) which are still parameterized with Θ. Once the PTs
have been inferred, we then aim to create the customer-dependent password HMM/GMM, that best
represents the lexical content of the password. In this work, we have investigated two approaches:
single reference modeling approach and multiple reference modeling approach.

4 Single reference approach

4.1 HMM/GMM parameterization

In this case, we simply select the phonetic transcription M̂c yielding the highest normalized (by the
number of frames) likelihood over all the enrollment utterances using forced alignment technique, i.e.:

M̂c = argmax
1 ≤ ℓ ≤ L

[
I∑

i=1

log P (Xi
c|M

ℓ
c ,Θ)

]
(1)

where I = L, the number of enrollment utterances (hence phonetic transcriptions), and log P (Xi
c|M

ℓ
c ,Θ)

is defined as follows:

log P (Xi
c|M

ℓ
c ,Θ) =

1

Ti

Ti∑

t=1

log



P (q
(t,ℓ)
k |xi

(t,c),Θ)

P (qk)



 (2)

where
P (q

(t,ℓ)
k

|xi
(t,c),Θ)

P (qk) is the local scaled likelihood of the decoded phone q
(t,ℓ)
k using forced Viterbi

alignment on the inferred model M ℓ
c at time t associated with the frame xi

(t,c) of the ith enrollment
utterance, and Ti is the length of the utterance Xi without silence frames.

The HMM password model is then built-up by strictly concatenating left-to-right (with only loops
and skips to the next state) HMM phone models from λ 4 corresponding to each of the phones in

the above “optimal” phonetic sequence M̂c. This results in an HMM model (M̂c, λ) which is lexically

customer-dependent but acoustically speaker-independent. The HMM model (M̂c, λ) will be used as
background model for likelihood normalization.

4.2 Speaker adaptation

Once the speaker-independent password models (M̂c, λ) has been inferred, a MAP adaptation proce-

dure [6] is then performed using the enrollment data to estimate (M̂c, λc), where λc represents the set
of speaker adapted phonetic HMM/GMM parameters. This procedure consists of adapting the mean

of state Gaussians of (M̂c, λ) models. We have used a modified version of the adaptation formula:

µ̂qi

jc
= αµqi

jλ
+ (1 − α)

∑T

t=1 P (j, qi|xt)xt∑T

t=1 P (j, qi|xt)
(3)

where µ̂qi

jc
is the new mean of the j-th Gaussian in the state qi for client Sc, µqi

jλ
is the corresponding

mean in the model (M̂c, λ), P (j, qi|xt) is the joint posteriori probability of the state qi and the Gaussian
j and α is the adaptation rate.

3Several of the values have been tested, including 1
K

(K is the number of phones). We have observed that this
probability has no significant effect on the topology of the model. We thus chose 0.5 as a uniform value for transition
probabilities.

4A context-independent and speaker-independent phonemes HMM speech recognizer (see Section 8.2 for more de-
tails).
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5 Multiple reference approach

Using the above selection criterion (1), the resulted customer dependent password HMM (M̂c, λc)
might match well with the speaker enrollment data, but it does not mean that during the access to the
system (test): (1) this model will be lexically the most likely during verification and (2) the associated

background model (M̂c, λ) will be lexically5 the appropriate model for likelihood normalization. To
alleviate these two problems, we propose the use of multiple reference and background modeling
approach. In this approach, for each phonetic transcription, we create a customer password and a
background models, using the same procedure described above in single reference approach. This
results in a set of L customer dependent password HMMs (M ℓ

c , λc) and a set of L background models
(M ℓ

c , λ).

6 Decision Rules

In speaker verification, the decision that a test speaker S is indeed verified as the claimed identity Sc

can be expressed as follows:
S = Sc if CS ≥ ∆ (4)

where CS is the estimated confidence score representing the reliability that the speech segment comes
from the claimed identity and ∆ is a speaker-independent threshold.

In UCP-SV system, we should verify both the identity of the speaker, as well as the validity of
the pronounced password. Formally, we are interested in estimating P (Mc, Sc|X), representing the
joint posteriori probability that the customer Sc has pronounced the expected password Mc given
the observed acoustic vector X. During verification, this probability is compared to (1) P (Mc, Sc|X),
representing the joint posterior probability that any other speaker (impostor) Sc may have pronounced
the expected password Mc, and (2) P (Mc, S|X), representing the joint posterior probability that any
speaker (impostor or customer) S may have pronounced any other password Mc. Hence, the decision
rules can be formulated as follows:

(S,M) = (Sc,Mc) if P (Mc, Sc|X) ≥ P (Mc, Sc|X) (5)

and P (Mc, Sc|X) ≥ P (Mc, S|X) (6)

Using Bayes’ rule, and assuming that the joint a priori probability of any speaker and any word is
equal for all combinations of speakers and words, decision rules (5) and (6) can be rewritten as follows:

p(X|Mc, Sc)

p(X|Mc, Sc)
≥

P (Mc, Sc)

P (Mc, Sc)
= ∆1 (7)

p(X|Mc, Sc)

p(X|M c, S)
≥

P (M c, S)

P (Mc, Sc)
= ∆2 (8)

where ∆1 and ∆2 are the decision thresholds. The normalization models (Mc, Sc) and (M c, S) in (7)
and (8) used to estimate the normalization scores p(X|Mc, Sc) and p(X|M c, S), respectively, have
two different roles. The first normalization model (Mc, Sc) is supposed to represent the correctly
pronounced password. So, it is used to discriminate between the customer and impostors pronouncing
the expected password. This likelihood normalization model will be referred to as background model
and the decision using (7) to as speaker verification decision. If the speech content of the test utterance
is different from the expected password, both customer and background models in (7) will have a poor
individual likelihood which might result in a good likelihood ratio and leads to the acceptance of an
impostor. A solution to this problem is to make a speech recognition or utterance verification step
to recognize or to verify the lexical content of the pronounced word. This is the role of the second

5In text-dependent speaker verification, the lexical content of the background model is important.
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likelihood normalization model in (8). This model is supposed to represent the incorrectly pronounced
password. This likelihood normalization model will be referred to as world model and the decision
using (8) to as utterance verification decision. The speaker is then, accepted if the two scores in (7)
and (8) exceed their respective thresholds ∆1 and ∆2 simultaneously. It has been found [10] that
the combination of these two scores can significantly improves the performance of the system. In this
paper, a weighted sum combination technique is used. The confidence score CS in (4) is then defined
as follows:

CS = α LLRs + (1 − α) LLRu (9)

with 0 ≤ α ≤ 1. LLRs is the normalized speaker verification log likelihood ratio, estimated as:

LLRs =
1

T
log

»
p(X|Mc, Sc)

p(X|Mc, Sc)

–
(10)

and LLRu is the normalized utterance verification log likelihood ratio, estimated as:

LLRu =
1

T
log

»
p(X|Mc, Sc)

p(X|Mc, S)

–
(11)

We used 1
T

to normalize the two log likelihood ratio for test utterance duration, where T is the length
of the test utterance after having removed the silence frames.

7 Speaker verification

7.1 Score normalization

To verify the identity of the speaker, we need to define the world model (M c, S) and the background
model (Mc, Sc) to estimate LLRs and LLRu. If we have some a priori knowledge about the content
of the password, this can help us in designing effective score normalization models for both speaker
and utterance verification parts. Unfortunately, in UCP-SV, such information is not available.

For the utterance verification part, the world model should represent all the words but the cus-
tomer’s password. Training a model satisfying this condition is a very difficult task (actually impos-
sible). In this work, we have used a general speech Gaussian mixture model (GMM) with a set of
parameters Λ.

For the speaker verification part, A straightforward way to define a background model in UCP-SV
system is to use the inferred speaker-independent password HMM. However, this model might not be
optimal. To improve the competitiveness of this model, a previous study [11] proposed the use of a
modified normalizing model (MNM) determined by perturbing the inferred background model using
the enrollment data to reflect the lexical content of the speaker’s password. In another study [12], the
authors proposed the use of the speaker enrollment data to (1) train a background model with fewer
number of parameters compared to the speaker model or (2) perturbing the temporal information by
reversing the state order of the previously trained background model. In the work reported here, we
will demonstrate that the use of multiple background models, corresponding to the inferred speaker-
independent password HMM models can improve the performance of the UCP-SV system.

7.2 Single reference approach

In single reference modeling approach, the two log likelihood ratios LLRs in (10) and LLRu in (11)
are estimated as follows:

LLRs =
1

T
log

"
p(X|cMc, λc)

p(X|cMc, λ)

#
(12)

LLRu =
1

T
log

"
p(X|cMc, λc)

p(X|Λ)

#
(13)
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During the forced Viterbi decoding [13], a silence phone model is applied at the beginning and

the end of the customer model (M̂c,λc) to detect the silence frames and ignore them during the log
likelihood estimation. The resulted speech/silence segmentation is used to estimate the log likelihoods

p(X|M̂c, λ) and p(X|Λ).

7.3 Multiple reference approach

Given a set of customer specific HMM models and a set of background models, the CS is now estimated
by selecting (1) the customer model that best represents the test utterance, and (2) the background
model that best competes with the customer model.

There are two possible solutions to that problem. The first solution consists in dynamically se-
lecting during the access to the system the customer and the background models that satisfy some
“optimal” criteria. Such techniques will be referred hereafter to as dynamic model selection (DMS)
techniques. The second solution is to fuse the confidence scores or the partial decisions estimated/made
by each individual subsystem 6 to derive the final score. Such techniques will be referred hereafter to
as confidence score fusion and partial decision fusion, respectively.

7.3.1 Dynamic Model Selection techniques

In multiple reference modeling approach, the confidence score in (4) will be estimated as follows:

CS = αCSs + (1 − α)CSu (14)

where CSs and CSu are the confidence scores of the speaker verification and the utterance verification
parts, respectively.

• Utterance verification part:
The performance of the utterance verification part will largely depend on how good the customer
model matches the test utterance, since the estimation of CSu uses a GMM as a score normal-
ization model. The optimal criterion, with respect to the role of the world model, is probably

to select the most likely customer model (M̂ ℓ
c , λc). That is:

(cM ℓ
c , λc) = argmax

1 ≤ ℓ ≤ L

1

T
log p(X|M ℓ

c , λc) (15)

The CSu in (14) is then estimated as follows:

CSu =
1

T
log

"
p(X|cM ℓ

c , λc)

p(X|Λ)

#
(16)

• Speaker verification part:
The performance of the speaker verification part does not depend only on how good the customer
model matches the test utterance, but also on how well the background model competes lexically
(as all of them are speaker-independent) with the customer model. Consequently:

– If we assume that (M ℓ
c , λc) and (M ℓ

c , λ) are statistically independent, then both customer
and background models may have different model selection criteria to optimize CSs.

– If we assume that (M ℓ
c , λc) and (M ℓ

c , λ) are statistically dependent7, then the selection
criterion might depend on some statistics applied directly to the LLRs estimated by each
subsystem.

In this work, three different criteria are tested. They are presented below according to the
competitiveness of the background model to the customer model from low to high level:

6In a subsystem, both the customer and background models have the same pronunciation model.
7At least they have the same topology and (Mℓ

c , λc) is adapted from (Mℓ
c , λ).
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1. Maximizing p(X|M ℓ
c , λc): Using this criterion, the background model associated with the

best customer model selected according to (15), is used for likelihood normalization. The
CSs in (14) is then estimated as follows:

CSs = LLR
cMℓ

c
s =

1

T
log

"
p(X|cM ℓ

c , λc)

p(X|cM ℓ
c , λ)

#
(17)

However, this criterion might not be a good criterion for the speaker verification part with
respect to the competitiveness constraint. As we will see in the results, a good customer
model might have a poor associated background model.

2. Maximizing p(X|M ℓ
c , λ): While keeping the same customer HMM model selection cri-

terion (15) as before, maximizing p(X|M ℓ
c , λ) aims to make the background model more

competitive by selecting the one that best matches the test utterance X as follows:

(cM ℓ′

c , λ) = argmax
1 ≤ ℓ ≤ L

1

T
log p(X|M ℓ

c , λ) (18)

Thus the CSs in (14) will be estimated as follows:

CSs =
1

T
log

"
p(X|cM ℓ

c , λc)

p(X|cM ℓ′
c , λ)

#
(19)

It might happen that both customer and background models will have the same topology
(i.e., ℓ = ℓ′). In this case, this criterion will be equivalent to the previous one.

3. Minimizing LLR
Mℓ

c
s : Because (M ℓ

c , λc) is derived from (M ℓ
c , λ) by adapting only the mean

of state GMMs, hence (M ℓ
c , λ) is probably, the most appropriate background model for the

customer model (M ℓ
c , λc). Consequently, it might be better if the model selection criterion

for the speaker verification part will be applied directly to the LLR
Mℓ

c
s , with respect to the

competitiveness constraint. That is the background model should be close to the customer
model. The criterion proposed here, selects the phonetic transcription M ℓ

c that minimizes

the LLR
Mℓ

c
s . Hence, the CSs in (14) will be estimated as follows:

CSs = min
1≤ℓ≤L

„
1

T
log

»
p(X|M ℓ

c , λc)

p(X|M ℓ
c , λ)

–«
(20)

The drawback of dynamic model selection criteria though is that there is no guarantee that the
selected set of parameters (customer and background models) are “optimal” in the sense of yielding
the optimal EER.

7.3.2 Confidence score fusion

In confidence score fusion, the inputs to the fusion system are the individual confidence scores estimated

by each subsystem, and the outputs are the average of LLR
Mℓ

c
s and LLR

Mℓ
c

u over all subsystems. The
confidence scores CSs and CSu are then estimated as follows:

CSs =
1

L

"
LX

ℓ=1

LLR
Mℓ

c
s

#
(21)

and

CSu =
1

L

"
LX

ℓ=1

LLR
Mℓ

c
u

#
(22)

where L is the number of subsystems. The final confidence score CS is then a weighted sum of CSs

and CSu:
CS = αCSs + (1 − α)CSu (23)

The use of the average criterion prevents us from the choose of a poor set of parameters (subsystem)
to estimate CSu and CSs.
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7.3.3 Partial decision fusion

In partial decision fusion, the inputs to the fusion system are the individual decisions made by each
subsystem and the output is the final confidence score. The fusion system uses a majority voting
technique, as suggested in [14]. The CS in (4) is then defined as follows:

CS =
1

L

LX

ℓ=1

f(csℓ) (24)

where

f(csℓ) =


1, if csℓ ≥ δ(c,ℓ)

0, otherwise
(25)

(26)

with csℓ being the combined individual confidence score estimated using the phonetic transcription
M ℓ

c , and δ(c,ℓ) being a local speaker and model dependent threshold. This CS, which belongs to the
[0, 1] interval, can be interpreted as a percentage of times that the local confidence score csℓ exceeded
its local threshold δ(c,ℓ).

One difficulty that can make the use of this technique undesirable in real application is the esti-
mation of the local threshold δ(c,ℓ) for each speaker’s subsystem. Indeed, it is desirable to have a local
threshold that:

1. Is customer and model independent (δ(c,ℓ) = δ), hence, it can be determined a priori on
separate data.

2. Is interpretable and adjustable, so it can easily be adjusted according to the application require-
ments.

3. Allows the parameter α to be optimized independently on the subsystem.

LLR
Mℓ

c
s and LLR

Mℓ
c

u have a large dynamic range, theoretically belonging to ] −∞,+∞[ interval. To
satisfy the above conditions, we introduce the normalized log likelihood ratio (NLLR) that transforms

LLR
Mℓ

c
s and LLR

Mℓ
c

u into more interpretable scores. The normalized log likelihood ratio uses the log
likelihood ratio of the train data to normalize the log likelihood ratio of the test data, and it is based
on the following assumption:

LLR(test)

LLR(train)
≤ 1 (27)

which states that the log likelihood ratio estimated using the train data is the best log likelihood ratio

we can get. We have used this assumption to normalize the LLR
Mℓ

c
s and LLR

Mℓ
c

u . Given a customer

model (M ℓ
c , λc), the NLLR

Mℓ
c

s can be defined as:

NLLR
Mℓ

c
s =

LLR
Mℓ

c
s

1
I

PI

i=1
1
Ti

log
h

p(Xi
c|M

ℓ
c ,λc)

p(Xi
c|M

ℓ
c ,λ)

i (28)

and NLLR
Mℓ

c
u as:

NLLR
Mℓ

c
u =

LLR
Mℓ

c
u

1
I

PI

i=1
1
Ti

log
h

p(Xi
c|M

ℓ
c ,λc)

p(Xi
c|Λ)

i (29)

where I is the number of enrollment utterances for the speaker Sc. The denominators in (28) and (29)
are the average log likelihood ratio estimated over all the enrollment data.

The new confidence score csℓ in (25) will be estimated as:

csℓ = α NLLR
Mℓ

c
s + (1 − α) NLLR

Mℓ
c

u (30)

Using (28) and (29), together with the assumption (27):
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• The NLLR
Mℓ

c
u and NLLR

Mℓ
c

s will have, theoretically, a limited dynamic range with an upper

bound equal to 1. Consequently, the csℓ in (30) will be bounded by 1. The value NLLR
Mℓ

c
s and

NLLR
Mℓ

c
u indicate how probable the test utterance belongs to the claimed identity. Closer are

NLLR
Mℓ

c
u and NLLR

Mℓ
c

s to 1, more probable the claimed identity is to be valid.

• The search for a local speaker and subsystem independent threshold δ will be in a fixed range
[0, 1]. So, depending on the application requirements, we can adjust the threshold without
difficulty.

Note that in this approach we now have two thresholds, a local threshold δ and a global threshold ∆.

8 Databases and Experimental Set-up

In this work, we have used two databases, the PolyPhone [15] database to train different speaker-
independent models, and the PolyVar [15] database to perform customer enrollment and verification
test.

8.1 PolyPhone database

The Swiss-French PolyPhone databases [15] contains telephone calls from about 4, 500 speakers
recorded over the Swiss telephone network. The calling sheets were made up of 38 prompted items and
questions. Among other items, each speaker was invited to read 10 sentences selected from different
corpora to ensure good phonetic coverage for the resulting database. Different kinds of irregulari-
ties (i.e; noise in the recording, strange utterances) were discovered, and the training set was finally
reduced to 3, 272 sentences, corresponding to approximately 5 hours of speech.

8.2 PolyVar database

The PolyVar database was recorded and designed at IDIAP as a complement to the PolyPhone
database to address the intra-speaker variability. This database comprises telephone recordings from
about 143 speakers (85 male and 58 female speakers). Each speaker recorded between 1 and 229
sessions. Several speakers pronounced the same set of 17 words several times, which makes this
database particularly well suited to test UCP-SV systems. i.e.,

• Assigning each of the words to one specific customer

• Providing enrollment utterances for each of those words, test utterances, as well as many im-
postor utterances pronouncing the right password.

• Providing several utterances associated with words different than the chosen password, from
both the customer and potential impostors.

A set of 38 speakers (24 males and 14 female) who have more than 26 sessions were selected. The set
of 17 words is divided into data1 and data2 with 14 and 3 words, respectively. For each speaker and
each word in data1, the first 5 utterances (corresponding to the first 5 sessions) of the word are used
for training, to create the customer-dependent password HMM. For testing, two protocols are defined:

1. Protocol P1:
In this protocol (summarized in Table 1), between 18 and 22 utterances of the same word are
used as a customer accesses with the expected password. Each speaker has a subset of 18
speakers as impostors (11 males and 7 females if the user is a male and 6 females and 12 males
if the customer is a female). Each impostor has two accesses with the expected password. Each
speaker, including customers and impostors, has 3 accesses with three different words taken from
data2 to simulate the case where speaker pronounces wrong password.
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Type of access #nb of accesses

Training 5

Testing: C-EP 18-22
Testing: C-IP 3
Testing: I-EP 36
Testing: I-IP 54

Table 1: Distribution of customer (C) and impostor (I) accesses with expected password (EP) and
invalid passwords (IP).

2. Protocol P2:
To evaluate our approach on more difficult conditions, a second protocol P2 where customers
and impostors pronounce only the expected password was defined. There were 12930 customers’
accesses and 23256 impostors’ accesses.

8.3 Experimental set-up

For acoustic features, 12 MFCCs coefficients with energy complemented by their first derivatives were
calculated every 10 ms over 30 ms window, resulting in 26 coefficients every 10 ms.

The approach studied here assumes the availability of some a priori speaker-independent acoustic
models for HMM inference, speaker adaptation and score normalization. Three speaker-independent
speech recognizers are trained using PolyPhone databases:

1. A Hybrid HMM/MLP system: The speaker independent MLP (SI-MLP) used for HMM inference
consisted of 234 input units with 9 consecutive 26 dimensional acoustic vectors, 600 hidden units
and 36 outputs, such that each output is associated with a specific phone. The phone level
accuracy obtained by this system on PolyVar using customer enrollment data is 56.6%.

2. A Hidden Markov model with a set of parameter Λ is trained using the segmental K-means
algorithm [16] followed by EM algorithm. This HMM has 36 context-independent phone models.
The phone models consisted of 3 states left-to-right HMM with 3 mixtures/state. This HMM is
used as a priori distribution for maximum a posteriori (MAP) adaptation.

3. A Gaussian mixture model with a set of parameters Λ is modeled by 240 (diagonal covariance)
Gaussian and trained using the segmental K-means algorithm followed by EM algorithm. This
GMM is used for utterance verification score normalization.

9 Experiments

All experiments described here were conducted using the Torch library [17]. For comparison purposes,
results for a SV system uses the correct phonetic transcription of the password given by a dictionary
are also reported. This will be referred to as TD-SV system. The combined parameter α as well as
the speaker-independent decision threshold are determined a posteriori to optimize the Equal Error
Rate (EER). This is not realistic, but it gives a good way to evaluate the discrimination capabilities
of the modeling approach. Note that for the second protocol P2, the evaluation is made using only
the speaker verification part based on LLRs.

9.1 Single reference approach evaluation

The goal of this experiment is to evaluate and analyze the performance of the UCP-SV system using
single reference approach. This system will be referred to as baseline system. The obtained EER is
compared to that obtained by a TD-SV system.
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Figure 2 shows the EER variations of the UCP-SV and the TD-SV systems as a function of the
combined parameter α using the first protocol P1. Table 2 shows the EER for both systems using P1
and P2. It is clear that the use of a priori information about the lexical content of the password helps
in improving the verification performance of a TD-SV system. This performance becomes significant
as the parameter α increases.
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Figure 2: Equal error rate variations of the reference TD-SV and the baseline UCP-SV systems as a
function of the combined parameter α using the first protocol P1.

Protocol System LLRs LLRu EER(α)
α = 1 α = 0

P1
TD-SV 3.6 3.2 3.0 (0.3)
UCP-SV 4.2 3.2 3.1 (0.2)

P2
TD-SV - - 5.3
UCP-SV - - 5.8

Table 2: EER of the UCP-SV and TD-SV systems using both first (P1) and second (P2) protocols.

9.1.1 Analysis

There are two informative values that can help us to analyze the results. These values correspond to
the performance of the two systems for α = 0 and α = 1.

• α = 0: The performance of both TD-SV and UCP-SV systems using the combined confidence
score (9) becomes equal to the performance using only the utterance verification part (LLRu).
In this case, the TD-SV and the UCP-SV systems have the same world model (GMM) for
likelihood normalization, but they use a customer HMM model created from two different PTs.
So, if one of these systems performs better than the other, this should be attributed to the
customer HMM model. The EERs associated with α = 0 show comparable performance for
both TD-SV and UCP-SV systems. This indicates that the improvement of the TD-SV system
cannot be completely attributed to the fact that this system uses the correct PT to create the
customer HMM model while the UCP-SV uses the inferred PT.

• α = 1: The performance of both TD-SV and UCP-SV systems becomes equal to the per-
formance using only the speaker verification part (LLRs). Both UCP-SV and TD-SV systems
have two different customer HMM models and two different background models. Within the
same system, the customer and the background models have the same topology (i.e.; the same
states and the same connections between states). In this case, if one system performs better
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than the other, this improvement can be attributed either to the customer HMM model or to
the background model. As we have seen in the case of α = 0, the customer model performs
comparably in both TD-SV and UCP-SV systems. Hence, the improvement in the TD-SV sys-
tem is in great part due to the background model which -in the case of TD-SV system- is more
competitive than the one used in the UCP-SV system. This explains why the difference between
the two EERs obtained by the TD-SV and the UCP-SV systems increases as the weight given
to the speaker verification part increases and why the TD-SV system performs better than the
UCP-SV system using P2.

This is consistent with what has been found in [8]. One possible explanation is that the background
model should cover as much as possible the acoustic space of how other speakers pronounce the
expected password, and not only how a specific speaker (customer) pronounces it.

9.2 Multiple reference approach evaluation

9.2.1 Dynamic Model Selection techniques

Tables 3 reports EERs of the speaker verification part (2 column), the utterance verification part (3
column) and the UCP-SV system using DMS criteria and P1. Table 4 reports EERs of the UCP-SV
system using DMS criteria and P2.

DMS criterion CSs CSu EER(α)

Baseline UCP-SV 4.2 3.2 3.1 (0.2)

Max p(X|M ℓ
c , λc) 5.0 3.3 3.3 (0.1)

Max p(X|M ℓ
c , λ) 4.5 3.3 3.3 (0.2)

Min LLR
Mℓ

c
s 3.5 3.3 3.1 (0.5)

Table 3: EER of the UCP-SV system using P1 with different dynamic model selection criteria. The
second raw corresponds to the EER of the UCP-SV Baseline system using single reference model.

DMS criterion EER

Baseline UCP-SV 5.8

Max p(X|M ℓ
c , λc) 6.2

Max p(X|M ℓ
c , λ) 6.0

Min LLR
Mℓ

c
s 5.5

Table 4: EER of the UCP-SV system using P2 with different dynamic model selection criteria, The
second raw corresponds to the EER of the UCP-SV Baseline system using single reference model.

9.2.2 Discussion

Several observations can be made from these results:

1. Second protocol evaluation:

• The performance using the background model associated with the best customer model
(17) is worse than that obtained with the baseline system. A possible reason is that

the (M̂ ℓ
c , λc) is selected dynamically according to the maximum likelihood criterion. For

many impostors, the alignment of the test utterance against (M̂ ℓ
c , λc) results in a good
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likelihood score, and because (M̂ ℓ
c , λ) is not necessarily an appropriate background model,

many impostor accesses will get accepted8.

• The selection of (M̂ ℓ
c , λc) and (M̂ ℓ′

c , λ) separately, according to the maximum likelihood
criterion (15) and (18), improved the performance compared to the use of (17). But the
obtained performance is still worse than the baseline system. This indicates that the

appropriate selection criterion might well applied to the LLR
Mℓ

c
s .

• Significant improvement is obtained using the Minimum LLR
Mℓ

c
s as a selection crite-

rion (20). The EER dropped from 5.8% to 5.5%. As we can see, the performance of
the UCP-SV system is quite competitive with the TD-SV system. We should mentioned
here, that the use of (20) might not be optimal and depends on the experimental set-up,
making the selection of the optimal model not obvious [18].

2. First protocol evaluation:

• The use of (15) to select the customer HMM model did not improve the performance of the
utterance verification part. Taking into account our acoustic modeling approach, it seems
that the value of 3.2% is the best we can achieve.

• Surprisingly, and despite the significant improvement in the speaker verification part (see
Table 3, column 2), no improvement in the performance of the UCP-SV system is obtained
(column 4). A possible reason is that the GMM world model (Λ) is trained with general
speech data from a large set of speakers. It covers the general acoustic space including the
customer password. Hence, it has some acoustic characteristics of the background model
(M ℓ

c , λ), making the amount of new (complementary) information given by the speaker
verification part very low. The correlation coefficients between CSu and CSs for customer
and impostor accesses were found to be 0.90 and 0.80, respectively. This indicates that
these two scores are highly correlated.

9.2.3 Confidence scores fusion

Figure 3 shows the EER variations of the UCP-SV system using (21) and (22) with the first protocol
P1 as a function of the combined parameter α. Results of the reference TD-SV and the baseline
UCP-SV systems are also shown. Table 5 reports the EER of the UCP-SV system using P1 and P2.
It can be seen from Table 5 that the use of average confidence score criterion improves the UCP-SV
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Figure 3: ERR variations of the UCP-SV systems as a function of the combined parameter α using
the confidence score fusion technique (21), (22) and (23) with the first protocol P1. Results of the
reference TD-SV and the Baseline UCP-SV systems are also shown.

8It is worth mentioning that an appropriate background model is useful in reducing the false acceptance rate.
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Protocol CSs CSu EER(α)

P1 3.6 3.2 3.0(0.2)

P2 - - 5.6

Table 5: EER of the UCP-SV system using confidence score fusion technique (21), (22) and (23) with
P1 and P2. For P2, only CSs are used.

performance. Figure 3 shows that both systems (i.e., the UCP-SV and the TD-SV) have the same
performance for all the values of the parameter α. Also, It can be noted that the use of average
score criterion gives comparable results with those obtained using the best dynamic model selection
criteria, i.e., the min function (20) for CSs estimation and the maximum likelihood criterion (17) for
CSu estimation. This indicates that (20) and (17) are a good criteria.

We should note here, that, for a given customer, the verification score estimated by each subsystem
are not statistically independent. Indeed, all subsystems are trained using the same adaptation data
and the same adaptation procedure, only phonetic transcriptions are different. Consequently, given
a test utterance X, there is a set of optimal parameters corresponding to only one customer HMM

model (M ℓ
c , λc) that gives the best LLR

Mℓ
c

u and a set of optimal parameters corresponding to only

one phonetic transcription M ℓ′

c that gives the best LLR
Mℓ′

c
s . The combination of these two scores

will give the best performance. The use of the other models will be useless as they do not carry any
complementary information. Because the search for these optimal models is not obvious, using the
average score will prevent us from the choose of the poor parameters.

9.2.4 Partial decisions fusion

Table 6 shows the EER of the UCP-SV for both protocols. The global threshold ∆ is set to 0.6. This

Protocol Loc.thrd Glob.thrd EER(α)
δ ∆

P1 0.28 0.6 3.1 (0.2)

P2 0.25 0.6 5.6

Table 6: EER of the UCP-SV system with its optimal local and global thresholds using partial decision
fusion technique (24) with the first and second protocols.

is mean that the speaker is accepted if 3/5− th of local confidence scores exceeded the local threshold
δ. We can see that we have got an improvement in the performance compared to the baseline system,
but not as significant as in the two previous techniques. For comparison purposes, we also used the

original LLR
Mℓ

c
u and LLR

Mℓ
c

s to estimate the combined score, and we have got the same performance
with P1 and P2. The advantage of the NLLR, however, is that the threshold has a meaningful
interpretation and is easily adjustable according to the application requirements. Another advantage
is that the NLLR can be used as a criterion to select the utterance test that has a high NLLR for
incremental adaptation.

9.3 GMM-UBM approach

It can be argued that when a GMM is trained with a limited data that covers a few phonemes (ac-
tually this is our case), the GMM becomes speaker and text dependent. For the sake of comparison,
we have conducted an experiment using the conventional Gaussian Mixture Model-Universal Back-
ground Model (GMM-UBM) text-independent speaker verification approach [19], where a speaker-
independent GMM referred to as Universal Background Model (UBM) is used as a priori distribution
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for speaker adaptation. In the approach tested here, the enrollment step consists of using the 5 repe-
titions of the customer’s password for adaptation using MAP adaptation. The UBM consists of 120
mixtures trained on PolyPhone database. For testing, the usual log likelihood ratio test is used.

Protocol EER

P1 3.5

P2 5.5

Table 7: EER of the UCP-SV system using GMM-UBM approach on both protocols P1 and P2

Table 7 reports the obtained results on both protocols P1 and P2. Compared to the multiple ref-
erence approach, the GMM-UBM approach performs comparably on P2 but poorly on P1. A possible
reason is that, the GMM-UBM system does only speaker verification. In contract, the HMM/GMM
system performs both utterance and speaker verification. Because the protocol P2 contains only ac-
cesses with expected password, we are only interested in verifying the claimed identity, hence, both
systems become equivalent. However, the protocol P1 contains some customer’s accesses with invalid
passwords. Hence, there could be an overlap in the acoustic space between the customer password
and customer test accesses with invalid password. In the case of GMM-UBM system, this might result
in a good log likelihood ratio. Consequently, the customer gets accepted even if the pronounced word
is not correct, which is not the case in HMM/GMM approach.

10 Conclusion

This paper has developed and compared HMM/GMM based User-customized password speaker ver-
ification (UCP-SV) systems using single reference and multiple reference approaches. A speaker-
independent HMM/MLP is used to infer the phonetic transcriptions associated with the enrollment ut-
terances. These phonetic transcriptions are then used to create customer-dependent password HMMs
and background models.

First, a UCP-SV system using single reference approach is developed. This system used the best
phonetic transcription determined during the enrollment step to create the background model which is
then adapted towards customer voice’s characteristics. This system achieved acceptable performances
but not competitive with TD-SV system using the correct phonetic transcription of the password.
Our analysis has revealed that the main reason of this limitation lies in the background model.

Second, to improve the performance of the baseline UCP-SV system, we have investigated the use
of multiple reference approach. Different scoring criteria are proposed and evaluated. Results showed
that significant improvement could be achieved if an appropriate selection criterion of the customer
and background models is used. However, comparable improvement could be obtained by taking the
average log likelihood ratios estimated by each subsystem or fusing partial decisions made by each
subsystem.

Finally, a comparative experiments using the conventional GMM-UBM text-independent speaker
verification is conducted. Results showed that under certain conditions, the GMM-UBM approach
performs comparably with multiple reference approach. This indicates that when a GMM is trained
(adapted) with data associated with a short password, the GMM becomes text and speaker dependent,
although the temporal phonetic structure is not preserved.
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