
 
 

E
S

E
A

R
C

H
R

E
P

R
O

R
T

I
D

I
A

P

D a l l e M o l l e I n s t i t u t efor Perceptua l Art i f i c ia lIntelligence � P.O.Box 592 �Martigny �Valais � Switzerlandphone +41� 27� 721 77 11fax +41� 27� 721 77 12e-mail secretariat@idiap.chinternet http://www.idiap.ch

Short-Term Spatio-TemporalClustering of Sporadic andConcurrent EventsGuillaume Lathoud a,b Jean-Marc Odobez aIain A. McCowan aIDIAP{RR 04-14
April 2004to appear inProceedings of the 2004 ICASSP-NIST Meeting Recognition Workshop,Montreal, Canada, May 2004

a IDIAP Research Institute, CH-1920 Martigny, Switzerlandb Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland





IDIAP Research Report 04-14
Short-Term Spatio-Temporal Clustering ofSporadic and Concurrent Events

Guillaume Lathoud Jean-Marc Odobez Iain A. McCowan
April 2004to appear inProceedings of the 2004 ICASSP-NIST Meeting Recognition Workshop, Montreal, Canada, May 2004

Abstract. Accurate detection and segmentation of spontaneous multi-party speech is crucial fora variety of applications, including speech acquisition and recognition, as well as higher-level eventrecognition. However, the highly sporadic nature of spontaneous speech makes this task diÆcult.Moreover, multi-party speech contains many overlaps. We propose to attack this problem as amultitarget tracking task, using location cues only. In order to best deal with high sporadicity, wepropose a novel, generic, short-term clustering algorithm that can track multiple objects for a lowcomputational cost. The proposed approach is online, fully deterministic and can run in real-time.In an application to real meeting data, the algorithm produces high precision speech segmentation.We also de�ne a con�dence measure for short-term clustering, and show on synthetic data thatit can be used to detect and solve trajectory crossings.



2 IDIAP{RR 04-141 IntroductionUsually, the task termed as \object tracking" aims at producing a single spatio-temporal trajectory foreach tracked object, over the entire data. From data we can extract location estimates of the object,as well as cues on the identity of the object - e.g. acoustic features extracted from recorded speech,visual features extracted from images containing the face of a person. We can term these data-derivedfeatures as \location cues" and \identity cues" respectively. Each event is the observation of a signalemitted by an object. Ideally, both types of cues are integrated in a probabilistic framework thattries to �nd the hypothesis for objects' trajectories that optimize best the likelihood of the observedevents, given the probabilistic model and chosen parameters. A lot of extremely valuable work hasbeen done along this line: Kalman Filtering [1] and its variants [2, 3, 4], and Particle Filters [5] aretwo examples of such approaches.However, for some modalities such as spontaneous speech, we have to deal with events that aresporadic and concurrent. \Sporadic" means that an event happens only a minor part of the time. Forexample in spontaneous speech, each person is silent most of the time: silences between utterancesconstitute the major part of that person's recording. \Concurrent" means that multiple events canhappen concurrently. For example in multi-party speech, speakers overlap on each other in a non-negligible part of the recordings [6]. For these two reasons, using the frameworks mentionned aboveon real multi-party speech can lead to the de�nition of heuristical object birth and death processesand/or require strong hypotheses on motion dynamics. Determining the number of objects is a hardtask in itself.In the literature we found an excellent example of approach that uses event location cues only, withParticle Filtering [7]. It stresses the interest of jointly estimating the trajectories with the number ofobjects. It achieves correct multitarget tracking of varying number of sources on several simulationexamples, including one case of trajectories crossing, without need for parameter tuning. However,it relies on complex rules called birth, death, split and merge. Moreover, in all simulation examplesobjects are emitting at all time frames, which may well be the case for radar-based localization butnot for speech. Indeed, in the middle of speech segments, there are often a few frames for which theemitted signal is either null or too weak to be localized. While that approach is certainly useful e.g. formultitarget radar tracking, one can question its use on modalities that are highly sporadic. This byno means reduces the interest of using Particle Filters in the case of modalities where each individualevent is observable continuously over a long duration of time, such as radar or video.To avoid these data association issues, we propose to �rst solve the multitarget tracking andsegmentation problem in the short-term. The idea is to produce short segments and trajectories inrespectively time and space, where each such segment corresponds to only one object for sure. Weargue that such segments are a solid basis for further long-term processing, e.g. speaker clustering usingspeech signals acquired within those segments. On the application side, successfully implementing this�rst step is already interesting in itself: this paper reports a speech segmentation evaluation in thecase of real multi-party meetings recorded with arrays of far-distance microphones. Results show thatthe produced segmentation compares well with lapels, while providing an additional speaker locationinformation. This is particularly important, considering the fact that location information allows fora less constrained environment, namely no lapel to wear and variable number of persons or acousticobjects. This opens the way towards a wide range of applications that could hardly be implementedwith lapels, such as audio-visual speaker tracking, surveillance, camera steering and high-level meetinganalysis [8].We propose to view this problem as short-term multitarget tracking of individual events, usinglocation cues only. The core idea is that locally, an object's location remains constant. Thereforelocally, the location of an observed event (e.g. a speech utterance) also remains constant. We willdemonstrate in this paper that a very simple model for local dynamics is suÆcient to extract short-term trajectories with high con�dence. In order to achieve this, we propose to attack the multitargettracking problem as a clustering approach: given two instantaneous location estimates obtained attwo di�erent times, we determine whether or not we are highly con�dent that they correspond to the



IDIAP{RR 04-14 3same object. The result is a partition of all instantaneous location estimates into clusters. We puttwo location estimates in the same cluster only when we are highly con�dent that they correspondto the same object. Our approach aims at �nding the partition that optimizes the likelihood ofinstantaneous location estimates, given the local dynamics model and the chosen partition. The localdynamics model is extracted from simple statistics over the data.To summarize, we are targetting tracking and segmentation of events in the short-term only,without trying to identify objects causing the events. The closest existing work we found is [9], whichis close in essence to our approach. However, it deals with visual observations, where events areobservable almost all the time. It therefore seemed diÆcult to apply it to the present context ofsporadic events. Moreover, a fundamental di�erence is that our work does not rely on object identitycues, but on event location cues only.The aim of this paper is twofold. The �rst goal is to introduce a generic approach for short-termclustering of sporadic and concurrent events. The proposed Maximum Likelihood (ML) approach isonline, threshold-free, fully deterministic and does not require any random sampling. We then proposeto turn the ML approach into a con�dent clustering approach, that detects and solves trajectorycrossings. In all synthetic data test cases, the con�dent approach was found to be fully e�ective.The second aim of this paper is to prove the validity of this approach on real data. We describea multi-party speech segmentation application that uses the short-term clustering algorithm. It useslocation information extracted from a microphone array, without prior voice activity detection. Resultson a publicly available corpus of meetings validate the approach, and show that it compares well witha lapel baseline, which instead uses energy from lapel microphones.The rest of this paper is organized as follows: in Section 2 we present the model for local dynamics,justifying it with observations on real data. In Section 3 we describe the clustering approach, alongwith a sliding-window algorithm. Section 4 presents a con�dence-based approach to detect and solvetrajectory crossings. Section 4.3 presents tests on synthetic data that validate the proposed algorithm.Section 5 presents a speech segmentation application on 17 real meetings. We conclude on furtherpossible applications of the proposed approach.2 Local DynamicsThroughout the paper the notation p designates a probability density function (pdf) or likelihood.The notation P designates a probability or a posterior probability.Let Xi = (�i; ti) for i = 1 : : :N be all instantaneous location estimates of events emitted by thevarious objects (e.g. speech sounds). This include the desired events as well as noise. �i 2 RD is alocation in a D-dimensional space, while ti 2 N n f0g is a time frame index: ti 2 (1; 2; 3; : : : ).For each time frame t, there can be zero, one or multiple location estimates. For example:� There may not exist any location estimate Xi such that ti = t.� There may exist two location estimates Xi and Xj such that ti = tj and i 6= j.For any pair of estimates (Xi; Xj) such that i < j, we de�ne the following two hypotheses:� H0(i; j) , 00Xi and Xj correspond to di�erent objects:00H1(i; j) , 00Xi and Xj correspond to the same object:00 (1)The two hypotheses are complementary: H1(i; j) = H0(i; j). In the rest of this Section we willde�ne a likelihood model for each of the two propositions. We �rst give some preliminary observationson real data that justify the following model.2.1 Observations on Real DataIn the rest of this paper, we will use the following 1-dimensional context to both explain our approachand illustrate its bene�ts: one horizontal planar circular microphone array, placed on a table in a
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Figure 1: Histograms of azimuth angle variation for 1-frame and 2-frame delays.

−150 −100 −50 0 50 100 150

5

10

15

20

25

30

35

40

45

50

(θ
i
 − θ

j
) in degrees

%
 o

f f
ra

m
es

|t
i
 − t

j
| = 10 frames

Figure 2: Histogram of azimuth angle variation for a 10-frame delay.meeting room. We chose \event location cues" �i to be azimuth estimates (1-dimensional) of thedominant sound source. One location estimate is provided per frame: all frames are consideredregardless of whether they contain speech or not.We used 5 minutes of real meeting data from a corpus publicly available at http://mmm.idiap.ch.32 ms-long time frames were de�ned every 16 ms (62.5 Hz, 50% overlap). We �rst ran a direct grid-based search for the dominant sound source location �i at each time frame ti, based on the SRP-PHATmeasure [10]. We plotted the histogram of di�erences �i � �j for each possible delay jti � tj j up toTshort = 10 frames (160 ms). See Figs. 1 and 2 for some of these histograms.A �rst glance at those histograms shows that they share a similar structure: a central peak aroundzero deviation, in the middle of a background noise. We note that the central peak gets smaller as thedelay jti � tj j gets longer. We can therefore expect this structure to be valid in the short term only.How to choose a proper statistical model? We �rst thought of using a single Gaussian pdf forthe H1 hypothesis (central peak of the histogram) and a uniform pdf for H0 hypothesis. To checkwhether the uniform pdf over [�pi;+pi] is a correct model forH0, we computed the mean and standarddeviation of all values with j�i��j j � 10 degrees (this excludes the central peak). Results are reportedin Table 1. We see that the distribution is zero-mean, but also that the standard deviation dependson jti � tj j. In the following, we therefore chose to use a single Gaussian pdf for p(�i � �j jH0), ratherthan a uniform pdf, in order to capture this dependency.To precise observations in a numerical manner, for each possible delay jti � tj j we divided the
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T �(u)T �(u)T �����(u)T�(u)T ����1 -0.970 107.318 -0.0092 -0.633 115.021 -0.0053 -0.314 120.361 -0.0034 0.942 123.371 0.0085 0.488 125.615 0.0046 0.131 126.818 0.0017 0.279 127.444 0.0028 -0.605 127.711 -0.0059 0.008 128.370 0.00010 -0.105 128.448 -0.00111 -0.222 128.738 -0.00212 0.242 128.967 0.00213 0.044 129.066 0.00014 -0.478 129.137 -0.004Table 1: Mean �(u)T and standard deviation �(u)T , in degrees, of all values (�i � �j) � 10 degrees, andincreasing delay T = jti� tj j. We can see the distribution is approximately centered around zero, andthat the standard deviation depends on T .

T �T �T ����T�T ��� �noiseT �noiseT ����noiseT�noiseT ���1 0.006 0.480 0.012 -0.710 88.656 -0.0082 0.010 0.749 0.013 -0.499 102.587 -0.0053 0.100 1.145 0.088 -0.363 113.069 -0.0034 0.005 1.858 0.003 0.859 121.719 0.0075 0.002 2.074 0.001 0.447 124.828 0.0046 0.024 2.107 0.012 0.077 125.938 0.0017 -0.016 2.027 -0.008 0.238 126.360 0.0028 0.009 2.027 0.004 -0.629 126.673 -0.0059 -0.010 2.041 -0.005 -0.040 127.358 -0.00010 0.004 2.119 0.002 -0.131 127.731 -0.00111 0.012 2.151 0.006 -0.250 127.975 -0.00212 -0.017 2.151 -0.008 0.195 128.178 0.00213 -0.019 2.134 -0.009 0.017 128.115 0.00014 -0.035 2.149 -0.016 -0.512 128.180 -0.004Table 2: Result of the bi-Gaussian training for each possible time di�erence T = jti � tj j, on meetingdata. T is a value in frames, � and � are values in degrees.



6 IDIAP{RR 04-14T �T �T ����T�T ��� �noiseT �noiseT ����noiseT�noiseT ���1 -0.022 2.726 -0.008 -2.012 78.027 -0.0262 -0.028 3.256 -0.009 1.856 79.546 0.0233 -0.292 4.187 -0.070 0.965 84.572 0.0114 -0.435 5.453 -0.080 0.247 86.172 0.0035 -0.516 5.581 -0.092 0.703 87.713 0.0086 -0.593 6.878 -0.086 -1.082 89.274 -0.0127 -0.646 6.544 -0.099 -0.174 89.413 -0.0028 -1.066 6.688 -0.159 0.435 88.029 0.0059 -0.917 7.205 -0.127 -0.621 88.600 -0.00710 -1.399 6.879 -0.203 0.107 87.755 0.00111 -1.337 7.605 -0.176 0.759 89.388 0.00812 -1.496 7.759 -0.193 0.521 88.885 0.00613 -1.316 8.624 -0.153 0.911 89.777 0.01014 -1.893 9.558 -0.198 3.859 91.838 0.042Table 3: Result of the bi-Gaussian training for each time di�erence T = jti� tj j, on data with severalspeakers, always moving when speaking. T is a value in frames, � and � are values in degrees.histogram in two parts, each part modelled by a Gaussian and recursively estimated the Gaus-sians/relabelled the data. This converged to the values indicated in Table 2 for a 5-minute meetingand Table 3 for a recording with mostly moving speakers. In both cases we can see that all Gaussiansare essentially centered around zero, and that the standard deviation mostly increases with increasingdelay jti � tj j.2.2 Proposed ModelWe now make the following assumption:26666666664 8(i; j) such thatjti � tj j � Tshort 8<: p(�i � �j jH0(i; j)) � N �0; �diffjti�tj j�p(�i � �j jH1(i; j)) � N �0; �samejti�tj j�8T �sameT < �diffT8T < Tshort �sameT � �sameT+1
37777777775 (2)

where the standard deviations �sameT and �diffT only depend on the delay (time di�erence) jti� tj j,and Tshort is the maximum delay for which we assume this model to be true. This model can beinterpreted as follows:� The zero-centered Gaussian assumption for p(�i � �j jH1(i; j)) can be seen as a zero-motionassumption for any given object. This means we do not make any assumption on motiondirection. This is a weak constraint, which allows the model to take into account a high varietyof situations, as will be seen in Section 4.3. We note that the variance captures not onlymeasurement noise but also actual motion of the object. We can see in Tables 2 and 3 thatthe variance increases with the time di�erence jti � tj j, then reaches a plateau. The value ofthe plateau is more or less high, depending whether people are mostly moving or seated. Wealso note that the simple fact of having this model for each possible time di�erence of severaltime frames, allows for short interruptions in the emission of an object. This can be compared
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Figure 3: Example of partition of 3 elements: 
 = ffX1; X2g; fX3gg. We have !1 = fX1; X2g and!2 = fX3g. The equivalent graph notation is: (H
1;2 = 1; H
1;3 = 0; H
2;3 = 0).to other solutions such as auto-regressive model �tting, which would need explicit de�nitionof birth/death processes, and may not easily recover from short interruptions (silences) in theemission and sharp turns in the trajectories. The explicit model would potentially be verycomplex, and rely on many tunable parameters.� The zero-centered Gaussian assumption for p(�i � �j jH0(i; j)) corresponds to the observed factthat the variance depends on the time di�erence jti � tj j, as mentioned in Section 2.1.� The �sameT < �diffT hypothesis corresponds to the observed, very large value for �noise in Sec-tion 2.1. Intuitively, it simply means that if two locations are very close, there is a high chancethat they correspond to the same object.� The last hypothesis �sameT � �sameT+1 is not really necessary on real data. It is only included hereto allow the model to cope with very speci�c cases of synthetic data, having peculiar, not peakydistribution for speci�c values of the time di�erence jti � tj j. We note that it also correspondsto the observed increasing behaviour of the variance mentioned above.In this Section, we have introduced and justi�ed an assumption on local dynamics. Experimentsreported in Sections 4.3 and 5 will demonstrate the validity of this assumption.3 Threshold-Free Maximum Likelihood ClusteringGiven the dynamics, our task is to detect and track events. We propose to view the problem as follows:�nd a partition 
 = f!1; � � � ; !N
g (3)of X = (X1; X2; : : : ; XN) that maximizes the likelihood of the observed data p(X j
). Each cluster !kis a subset of X , it ideally contains locations for one event, e.g. a speech utterance. We are not tryingto produce a single trajectory per object, but rather an oversplitted solution where N
 is the numberof individual events, for example speech utterances. The exact value of N
 is not important for thisalgorithm: the main goal is to be sure that all location estimates within each cluster !k correspondto the same object.The event \partition 
" can be written with the equivalent graph notation:\i<jH
(i; j) (4)where H
(i; j) is either H0(i; j) or H1(i; j), depending on whether or not Xi and Xj belong to thesame cluster !k in candidate partition 
. See Fig. 3 for an example of partition.Ideally the goal is to maximize the posterior probability p(
jX). Here we make an equal priorassumption on all possible partitions f
g, thus viewing the problem as a Maximum Likelihood ap-proach. Although this assumption is not fully justi�able, we argue that it corresponds well to the



8 IDIAP{RR 04-14nature of the data. Intuitively, since there can be many discontinuities, and many noisy locationestimates whenever no object is active, we cannot use priors that would favor e.g. partitions withmany continuities. In other terms, no regularization constraint is used in this approach.The joint distribution of the observed location estimates and the candidate partition can be ex-pressed as: P (X;
) = P 0@X;\i<jH
(i; j)1A = P 0@\i<j �Xi; Xj ; H
(i; j)�1A (5)With a simplifying independence assumption:P (X;
) =Yi<j P �Xi; Xj ; H
(i; j)� (6)The equal priors assumption on f
g implies equal priors on all possible pair-wise decisions fH
(i; j)g.Therefore: P (X;
) /Yi<j p �Xi; Xj jH
(i; j)� (7)Finally the likelihood of the observed data X given the candidate partition 
:p(X j
) /Yi<j p �Xi; Xj jH
(i; j)� (8)Using location cues alone, we can relate location estimates in the short-term only. We thereforepropose to maximize the following \short-term criterion":pST (X j
) / Yi < jjti � tj j � Tshort p �Xi; Xj jH
(i; j)� (9)Each term can be expressed using Eq. (2). This criterion is parameter-free: no threshold is needed,and the number of active objects does not need to be explicitely de�ned, as would be the case withe.g. the K-means algorithm. Here the number of objects is implicitely modelled and selected throughoptimization of this criterion.A practical implication of the choice of a value for Tshort is that whenever a source stops emittingduring about Tshort frames, the emissions before and after this pause will be clustered separately.This directly impacts on the granularity of the clustering. For example, in speech, Tshort determinesthe order of magnitude of the minimum silence duration.Optimization AlgorithmWe naively counted all possible partitions for an increasing number of elements. Results are reportedin Table 4. We can see that trying all possible partitions in order to �nd
̂ML = argmax
 p (X j
) (10)quickly becomes intractable: even with only one location estimate per time frame, real recordingsinvolve thousands of time frames and therefore thousands of location estimates.Hence the proposed suboptimal implementation of Eq. (9) and Eq. (10): we will construct 
̂MLprogressively, using a sliding analysis window spanning Tshort = Tpast+Tfuture time frames. We note



IDIAP{RR 04-14 9number of elements number of possible partitions1 12 23 54 155 526 2037 8778 41409 2114710 11597511 678570>11 prohibitiveTable 4: Number of possible partitions, for each possible number of elements (Step 2 of the algorithm).1. Train standard deviations �sameT and �diffT over the entire data X for 1 � T � Tshort.Initialize t0  0.2. F  [t0; t0 + Tfuture].De�ne all possible partitions of location estimates in F .Choose the most likely partition 
̂MLF .3. P  [t0 � Tpast; t0 � 1].De�ne all possible merges between 
̂MLP and 
̂MLF .Choose the most likely merged partition and update 
̂ML[1;t0+Tfuture ].4. t0  t0 + Tfuture and loop to Step 2.Table 5: The sliding window Maximum Likelihood (ML) algorithm. Tshort = Tpast + Tfuture. Thelikelihood of a partition is de�ned by Eq. (9).that Tpast and Tfuture are not necessarily equal. Two consecutive analysis windows have an overlapof Tfuture frames. The implementation is described in Table 5.The result of this algorithm is an estimate 
̂ML of the ML partition of all data X . We note thatthe entire process is deterministic and threshold-free.Of course there are other possibilities for optimizing Eq. (9). We made this choice for the followingreasons:� Online analysis leads to easy real-time implementation, which allows other applications such ascamera steering towards the active speaker.� Locally, we have a true optimum - within \future" frames of each window.� We tried to implement Steps 2 and 3 in a single step, but it did not yield particular improvement,and had a much higher computational cost. Pruning strategies were necessary.Computational ComplexityOne interest of this approach is bounded computational load. For both Step 2 and Step 3,evaluating a candidate partition (Step 2) or merge (Step 3) following Eq. (9) is easily implemented



10 IDIAP{RR 04-14Thalf Nworst1 22 73 344 2095 1,5466 13,3277 130,9228 1,441,7299 17,572,11410 234,662,231Table 6: Worst case number of merges to evaluate (Step 3 of the algorithm)through a sum in the log domain over location estimates within F (Step 2) or P [ F (Step 3). Thequestion is: how many partitions must be evaluated?We calculated the number of partitions to evaluate at Step 2, shown in Table 4. We can see thatfor Tfuture � 6, there are at most 203 such partitions.We also calculated the worst case number of merges to evaluate at Step 3, when each half of theanalysis window has Thalf 1-element clusters ( Tpast = Tfuture = Thalf = Tshort=2 ). It is possible toshow that this is: Nworst = ThalfXk=0 1k! � Thalf !(Thalf � k)!�2 (11)Values of Nworst for increasing values of Thalf are shown in Table 6. We can see that for Thalf � 6, thenumber of merges is at most 13,327. With unoptimized code and full search, we obtained real-timecomputations for Thalf � 6.We also tried to use larger windows : Thalf = 7 and 8. In practice, we found that, although thecomputations are slower than real-time, the number of merges in Step 3 very rarely was above 10,000.Even when it is the case, it is possible to design a simple heuristic to prune most of the merges: forbidwindow partitions 
 including \new" decisions H
(i; j) = H1(i; j) wheneverp(�i � �j jH1(i; j))p(�i � �j jH0(i; j)) � � (12)where � is a small value, e.g. 10�10. This pruning is required only in periods where most clusterscontain only one element in both past frames and future frames, which happens only when mostlocations estimates are unrelated to each other. On those periods, oversplitting is therefore not a bigloss. On tests with synthetic data (Section 4.3) we obtained the same results with pruning or withoutpruning.Online ImplementationWe note that the proposed algorithm is intrinsically online: the loop de�ned by Steps 2, 3 and 4 relieson a sliding window of Tshort frames. Only Step 1 needs training on the entire data. However, Step 1can also be implemented online because of the two following reasons:� Only two single Gaussians are trained, therefore the minimum amount of data needed is small,as compared e.g. with training of a Gaussian Mixture Model. This is veri�ed in practice byexperiments in Section 4.3, that are successful on less than 20 seconds of data.



IDIAP{RR 04-14 11� Once the decisions are made (Steps 2 and 3 �nished), a simple online strategy can be designed toupdate �sameT and �diffT . For each pair (i; j), only one of the two standard deviations is updated,depending on the nature of the decision H
(i; j). The update is done with a forgetting factor� 2 ]0; 1[ (e.g. � = 0.9):�0jti�tj j  � � �jti�tj j + (1� �) � j�i � �j jIn this Section, we proposed a fully deterministic, threshold-free, online algorithm that analysesin the short-term only. The algorithm is based on a simple hypothesis on local dynamics, and has lowcomputational complexity for reasonable context durations. Section 4 proposes a way to detect andsolve low con�dence situations, such as trajectory crossings.4 Con�dent ClusteringIn this Section we derive from the model a con�dence measure for each possible individual decisionHd(i; j) (d is 0 or 1), and explain how it allows to detect and solve low con�dence situations such astrajectory crossings.4.1 Con�dence MeasureP (Hd(i; j)jX) is the posterior probability of a local hypothesis Hd(i; j) given the observed data X . Itcan be interpreted as the con�dence in making a local decision Hd(i; j).P (Hd(i; j)jX) = X
 P (Hd(i; j)jX;
)| {z }0 or 1 P (
jX) (13)P (Hd(i; j)jX) = X
H
(i; j) = Hd(i; j) P (
jX) (14)With an equal priors assumption on all possible partitions f
g we have:P (Hd(i; j)jX) / X
H
(i; j) = Hd(i; j) p(X j
) (15)How to evaluate this value? Practically, it is possible to estimate it by approximating the set of allpossible partitions f
g with a subset obtained as a by-product of the search algorithm. For example,the sliding window algorithm described in Section 3 constructs such a subset within each analysiswindow.4.2 Application to Synthetic DataWe consider \synthetic data", where each location estimate corresponds to an object in the physicalworld (no meaningless location estimate). In such a case each location estimate belongs to the tra-jectory of an object. We would like to determine when trajectories cross. In more details, the taskis to extract segments of trajectories that are as long as possible, while systematically splitting ateach point of trajectory crossing. Indeed, considering objects that can move with very sharp turns,it is dangerous to make any hypothesis on dynamics around the points of trajectory crossings (seeexamples in Fig. 7).
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Figure 4: An example of low con�dence situation: a trajectory crossing. Each circle is a locationestimate. Each ML cluster is depicted by a continuous line. The low con�dence H0(i; j) decision isdepicted by a dashed line.The idea is to compare to each other all decisions made within each analysis window of the slidingwindow ML algorithm, using the con�dence measure de�ned in 4.1. Whenever a location estimate Xiis involved in a \not con�dent" decision, we split around Xi.To do so, in Step 2 and Step 3, we add the following post-processing:� For all pairs (Xi; Xj) in the analysis window, estimate P �H
̂ML(i; j) jX � using Eq. (15). Weuse the set of candidate partitions (Step 2) or candidate merged partitions (Step 3) as f
g.� Step 2: whenever a decision H0(i; j) given by the ML algorithm has \low con�dence", split intwo parts the cluster containing Xi, at time ti. Idem for Xj . Additional one-element clustersfXig and fXjg are created.� Step 3: whenever a decision H0(i; j) given by the ML algorithm has \low con�dence", cancelthe merge between the cluster containing Xi and the cluster containing Xj .Fig. 4 gives an example: Xi and Xj are very close, yet the ML algorithm leads to the decisionH
̂ML = H0(i; j). Con�dence in the latter is therefore expected to be low. In order to detect \lowcon�dence" in a decision H0(i; j), we compare it to all decisions H1(r; s) given by the ML algorithm,where Xi, Xj , Xr and Xs are all in the same analysis window. Formally, a \low con�dence" decisionis de�ned as: H
̂ML(i; j) = H0(i; j) andP (H0 (i; j) jX) < M1 �
̂ML� (16)where: M1 �
̂ML� , maxr < sH
̂ML(r; s) = H1(r; s) P (H1 (r; s) jX) (17)In this Section we have proposed to estimate the con�dence in a local decision Hd(i; j) as aposterior probability. In the case of synthetic data, we proposed to use this con�dence measure inorder to detect and solve low-con�dence situations such as trajectory crossings. Tests in Section 4.3will validate this approach, called \con�dent clustering" hereinafter.
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Figure 6: ML clustering for 1-object and 2-object cases. Changes of colors, markers and linestylesindicate beginning and end of clusters. Note that markers do not indicate data points, there are manymore data points than markers.4.3 Multi-Object Tracking ExamplesWe generated synthetic data that simulates \sporadic" and \concurrent" events by restricting to onelocation estimate per time frame, yet with trajectories that look continuous enough so that it is stilla tracking problem. The task is twofold:1. From instantaneous location estimates, build the various trajectories accurately.2. Extract pieces of trajectories, where each piece must belong to a single object. Given thatobjects can have very sharp turns, this implies that no cluster extends beyond any trajectorycrossing.We generated short sequences of azimuth location estimates (one estimate per frame, 62.5 framesper second) in various cases : one object, two objects or three objects emitting concurrently. Inmultiple objects sequences, the number of active objects vary with time: di�erent objects appear anddisappear at di�erent times. In order to have only one location estimate per time frame, we randomlyselected the object to be located at each time frame, generated by a left-to-right Markov chain of 2or 3 states, all with self-transition probability set to 0.1. The 3-state chain is depicted in Fig. 5. Inall experiments reported in this Section, we used full search with Tpast = Tfuture = 6 frames. Theunsupervised bi-Gaussian training was done on each sequence separately, in an o�ine manner.Fig. 6 shows results on two cases: a single object moving with sharp turns, and two concurrentobjects. Each cluster is represented with a set of linked points. We used di�erent colors, markersand linestyles to help distinguish between clusters. Note that markers do not indicate data points,there are many more data points than markers. We can see that the result is correct on both testsequences. On seq. #2 we can see that the ML clustering method copes well with the appearance anddisappearance of an object.



14 IDIAP{RR 04-14

5 10 15

0

20

40

60

80

100

120

time in seconds

az
im

ut
h 

in
 d

eg
re

es

seq. #7 − ML clustering

5 10 15

0

20

40

60

80

100

120

time in seconds

az
im

ut
h 

in
 d

eg
re

es

seq. #7 − confident clustering

5 10 15

0

20

40

60

80

100

120

time in seconds

az
im

ut
h 

in
 d

eg
re

es

seq. #8 − ML clustering

5 10 15

0

20

40

60

80

100

120

time in seconds

az
im

ut
h 

in
 d

eg
re

es

seq. #8 − confident clustering

Figure 7: Comparison ML clustering / con�dent clustering on 3-object cases. We can see that thecon�dent clustering accurately splits the ML clusters at the trajectory crossings. Changes of colors,markers and linestyles indicate beginning and end of clusters. Note that markers do not indicate datapoints, there are many more data points than markers.
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Figure 8: Comparison ML clustering / con�dent clustering on 2-object cases. We can see that thecon�dent clustering accurately splits the ML clusters at the trajectory crossings. Changes of colors,markers and linestyles indicate beginning and end of clusters. Note that markers do not indicate datapoints, there are many more data points than markers.
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Figure 9: Segmentation algorithm: output of each stepFigs. 7 and 8 compare the result of the ML clustering with the result of the con�dent clusteringdescribed in Section 4.2, in various cases of variable number of objects having several trajectorycrossings. The number of active objects varies over time. We can see that, although the ML clusteringcorrectly builds the various trajectories (task 1), it produces arbitrary decisions around the points ofcrossing. On the contrary, the con�dent clustering correctly splits the trajectories at all crossing points(task 2). We noted particularly that the con�dence-based approach manages to detect a zero-speedcrossing (seq. #5).5 Real Data: a Meeting Segmentation ApplicationIn this Section we report experiments conducted on real meeting data recorded with one circular micro-phone array. The task is to provide speech/silence segmentation for each of the few regions occupiedby the speakers. We �rst describe the test data, and the proposed approach, which incorporatesthe ML short-term clustering algorithm presented in Section 3. We then de�ne performance mea-sures. Finally, results are given that validate the proposed approach and compare it with alternativeapproaches.5.1 Test DataThe test corpus includes 17 short meetings from a publicly available database (http://mmm.idiap.ch).The total amounts to 1h45 of multichannel speech data. In all meetings, an independent observerprovided a very precise speech/silence segmentation. Because of this high precision, the ground-truth
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Figure 10: Histogram of speech segment durations in the ground-truthincludes many very short segments. Indeed, 50% of the speech segments are shorter than 0.938 seconds,see Fig. 10.5.2 Proposed ApproachThe proposed implementation uses distant microphones only, and produces a discrete set of regions,along with a speech/silence segmentation for each region.The di�erences between a previous work [11] and the approach presented here are that:� We are focusing on the speech segmentation task only, not on the speaker identi�cation/clusteringtask.� We use distant microphones only (no lapel).� We segment each meeting independently, while the previous approach was segmenting all meet-ings together.� The proposed approach does not rely on on a minimum duration to train the models. Theprevious approach needed a minimum duration of 2 seconds in order to have suÆcient data forsegmenting the data with GMM models.� De�ning a discrete set of active regions within the room was necessary in the previous work. Onthe contrary, it is not necessary for the short-term clustering algorithm presented here; regionsare used for evaluation purposes only.We segment each meeting independently, with a 2-step algorithm:1. Frame-Level Analysis: within each time frame, estimate the location of the dominant soundsource �i. We used a direct grid-based search for the global maximum of the SRP-PHATmeasure [10]. Time frames were de�ned every 16 ms, each time frame containing 32 ms of data.2. Short-Term Analysis: run the ML short-term clustering algorithm described in Table 5 tocluster location estimates X into 
 = (!1; : : : ; !N
) (We used Tpast = Tfuture = 7 frames).Keep only clusters !i spanning more than 100 ms of duration. This value was set as a strictminimum for a speech utterance to be signi�cant.For evaluation purposes, K-means is applied on the centroids of the remaining short-term clusters(\Step 3"). The product is a list of regions de�ned by their centers (�(1); : : : ; �(L)), and their respectivespeech/silence segmentations. L is selected automatically, as in [11]. The speech/silence segmentationfor each region l is directly de�ned by the short-term clusters f!kg for which �(l) is the closest region



18 IDIAP{RR 04-14center. Frames in those short-term clusters are classi�ed as speech for region l, other frames assilence. This can be opposed to methods relying on other cues than location, e.g. a prior VoiceActivity Detection. The interest of using location cues alone has already been noticed in [12].Fig. 9 shows the location estimates produced by Step 1, retained by Step 2, and the regions de�nedby the evaluation Step 3. We note that Step 2 has a strong denoising e�ect. However, we can see thatit still keeps short segments. This will be con�rmed by results in Section 5.5. This is very importantin order to detect a speaker that would say only a few words over the whole meeting: these wordsmay be for example part of key decisions taken in the course of the meeting.5.3 Performance MeasuresWe evaluated speech/silence segmentation for regions containing speakers only, ignoring the additionalregions corresponding to machines such as the projector (which generate clusters of acoustic locations).We �rst counted false alarms and false rejections in terms of frames, on each speech/silence seg-mentation. For each meeting we summed the counts and deduced False Alarm Rate (FAR), FalseRejection Rate (FRR) and Half Total Error Rate HTER = (FAR + FRR) / 2.Second, we evaluated precision (PRC) and recall (RCL). Since most of the speech segments arevery short, we did not use the usual window-based de�nitions. Instead, we de�ned precision and recallat the frame level. F-measure is de�ned as:F = 2�PRC�RCLPRC+RCL (18)5.4 Lapel BaselineOur scheme uses distant microphones only. We decided to compare with a lapel-only baseline. Thelatter is a simple energy-based technique that selects the lapel with the most energy at each frame,and applies energy thresholding to classify the frame as speech or silence. The lapel baseline outputis smoothed with a low-pass �lter. We tried to use Zero-Crossing Rate (ZCR), but it was degradingthe results. We found that ZCR is very sensitive to noises such as writing on a sheet of paper.Finally, we must mention that a dilation of a few frames was applied to the resulting segments in bothapproaches, in order to capture beginning and ends of speech segments. To tune this value we usedthe same extra set of 3 meetings (not included in the test set) in both microphone array and lapelapproaches, maximizing the F-measure.5.5 ResultsTable 7 gives the results for the proposed approach and the lapel baseline on the 17 meetings. We cansee that the proposed approach gives good results, and compares well with the lapel baseline. Theproposed approach yields major improvement on overlapped speech. These results are particularlysigni�cant, given the high precision of the ground-truth and the fact that we use distant microphonesonly. The slight decrease in F-measure is due to the higher number of low-energy segments detectedby the proposed approach, such as breathing.From the applicative point of view mentioned in Section 5.2, we can see that the proposed approachful�lls the goal of capturing as many utterances as possible, especially on overlaps (RCL �gures inTable 7).We also compared our approach to a HMM-based previous work [11], on a slightly di�erent task:only 6 meetings are segmented, and the task excludes silences smaller than 2 seconds. To implementthis task with the proposed approach, we simply removed silences shorter than 2 seconds from bothground-truth segmentation and result segmentation. Results are reported in Table 8. There is aclear improvement. However, the previous work was attacking a wider task: speech segmentation andspeaker clustering. This comparison shows that we can obtain a very good segmentation with eventlocation cues alone.



IDIAP{RR 04-14 19Proposed Lapel baselinePRC 79.7 ( 55.4 ) 84.3 ( 46.6 )RCL 94.6 ( 84.8 ) 93.3 ( 66.4 )F 86.5 ( 67.0 ) 88.6 ( 54.7 )Table 7: Segmentation results on 17 meetings. The proposed approach uses distant microphones only.Values are percentages, results on overlaps only are indicated in brackets.Proposed HMM-basedHTER 5.3 17.3Table 8: Comparison with previous work: segmentation results on 6 meetings, with silence minimumduration of 2 seconds. Values are percentages.6 DiscussionIn Section 3 we introduced a novel short-term clustering algorithm, motivated from observations onreal data. It is based on a very simple hypothesis on local dynamics. It is threshold-free, intrinsicallyonline and fully deterministic. It can run in real-time for reasonable context durations. Moreover,we described an eÆcient way of detecting and solving low-con�dence situations such as trajectorycrossings. Tracking experiments on synthetic data show the e�ectiveness of the proposed approach.Future work will investigate application of the con�dence measure to real data.In Section 5 we showed that the performance of the proposed approach on the meeting segmentationtask is very good, especially on overlaps. This is particularly signi�cant because we used distantmicrophones only, and output of a single source localization algorithm. Our algorithm comparesvery well with a lapel-only baseline, while giving a major improvement on overlapped speech. Ourinterpretation is that the proposed algorithm is particularly eÆcient to track concurrent events, asshown in Section 4.3. We can expect even better results when using a multiple sources localizationalgorithm to produce the instantaneous location estimates.We can compare with previous work in the domain of location-based speaker segmentation. O�inemethods [13] and online methods [14] already achieved very good results, especially on overlaps.However, both works were based on the prior knowledge of the locations of all speakers. On thecontrary, the approach presented in this paper is unsupervised: local dynamics are extracted from thedata itself, and short-term clustering is threshold-free. The segmentation application based on it isalso unsupervised: it does not rely on any prior knowledge of speakers' locations.7 ConclusionAccurate segmentation and tracking of speech in a meeting room is crucial for a number of tasks,including speech acquisition and recognition, speaker tracking, and recognition of higher-level events.In this paper, we �rst described a generic, threshold-free scheme for short-term clustering ofsporadic and concurrent events. The motivation behind this approach is that with highly sporadicmodalities such as speech, it may not be relevant to try to output a single trajectory for each objectover the entire data, since it leads to complex data association issues. We propose here to trackin the short-term only, thus avoiding such issues. We described an algorithm based on a sliding-window analysis, spanning a context of several time frames at once. It is online, fully deterministicand can function in real-time for reasonable context durations. It is unsupervised: local dynamicsare extracted from the data itself, and the short-term clustering is threshold-free. We also presentedinitial investigations on the problem of trajectory crossings, successfully tested on synthetic data.
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