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Abstract. Speech-based command interfaces are becoming more and more common in cars.
Applications include automatic dialog systems for hands-free phone calls as well as more advanced
features such as navigation systems. However, interferences, such as speech from the codriver, can
greatly hamper the performance of the speech recognition component, which is crucial for those
applications. This issue can be addressed with adaptive interference cancellation techniques such
as the Generalized Sidelobe Canceller (GSC). In order to cancel the interference (codriver) while
not cancelling the target (driver), adaptation must happen only when the interference is active and
dominant. To that purpose, this paper proposes two efficient adaptation control methods called
“implicit” and “explicit”. The “implicit” method adapts the filter coefficients continuously, the
speed of adaptation being determined by the energy of the filtered output signal. The “explicit”
method decides whether to adapt or not in a binary fashion, depending on prior estimation of
target and interference energies. A major contribution of this paper is a direct, robust method
for such estimation, directly derived from sector-based detection and localization techniques.
Experiments on real in-car data validate both adaptation methods, including a case with 100 km/h
background road noise.
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Figure 1: Schematic diagram of the entire acquisition process, from emitted signals to the enhanced
signal. This paper focuses on the adaptive filtering block, so that the SIR improvement SIRimp (t) is
maximized when the interference is active (interference cancellation). The s and t subscript designate
contributions of target and interference, respectively. The whole process is supposed to be linear.

1 Introduction

Speech-based command interfaces are becoming more and more common in cars. Applications in-
clude automatic dialog systems for hands-free phone calls as well as more advanced features such as
navigation systems. However, interferences, such as speech from the codriver, can greatly hamper
the performance of the speech recognition component, which is crucial for those applications. This
is of particular importance since spontaneous multi-party speech contains lots of overlaps between
participants, as found in meetings [1].

An immediate enhancement can be directly provided by hardware, through the use of a directional
microphone oriented towards the driver. The directional microphone lowers the energy level of the
codriver interference, since the codriver is not placed in front of it. For example, in the Mercedes
S320 setup used in this article, if the directional microphone receives sounds with equal energy from
both directions, the signal coming out of the directional microphone is the sum of two signals, the
driver’s signal being 6 dB higher than the codriver’s, in terms of energies. However, given the highly
time-varying nature of speech, at a given time, low energy from the driver may coincide with energy
from the codriver so that this improvement may not be enough. Therefore, there is a need for an
additional software improvement. This issue can be addressed with adaptive beamforming techniques.
In the rest of this section, first the problem is formalized and then adaptive beamforming techniques
are reviewed. Finally, the proposed approaches are described.

Let us now formalize the problem. For a given short time-frame of typically 20 to 30 ms, speech
signals can be modelled as ergodic, stationary processes. For a given signal x(t), σ2 [x(t)] is its variance
(energy), which can be computed on a single realization of x, over the short time-frame around t, over
which the ergodicity and stationarity assumptions hold. The Signal-to-Interference Ratio (SIR) is then
defined as the ratio between two such variances, as detailed in Fig. 1. Each step of the acquisition
process is modelled in a linear fashion. The focus of this paper is to maximize the SIR improvement
from the captured signal x (t) to the enhanced signal z (t). To that purpose, a linear filter h (t) is used,
that can vary over time, thus the task is called adaptive filtering.

This task can be addressed with a class of solutions called beamforming: several microphones are
placed close together, thus producing several simultaneous signals with slightly different character-
istics, due to their different locations. “Beamforming” means recombining these various inputs to
improve the quality of a target signal coming from a given direction, while cancelling interference sig-
nals coming from other directions. In our case this means maximizing the SIR improvement SIRimp(t).

Many beamforming algorithms have been proposed with various degrees of relevance in the car
environment. The most simple kind, delay-and-sum beamforming, provides limited reduction of the
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Figure 2: Implicit and explicit adaptation control. x (t) = [x1 (t) · · ·xM (t)]
T

are the signals captured

by the M microphones, and h (t) = [h1 (t) · · ·hM (t)]
T

are their associated filters.

background noise and the coherent interferers. Superdirective beamformers, see [2] and the refer-
ences herein, are derived from the Mininum Variance Distortionless Response principle (MVDR). The
original adaptive versions assume a-priori known and fixed acoustic propagation channel and exactly
calibrated microphones. This allows for target-free interferer estimates in the generalized sidelobe
canceller (GSC) structure. If this assumption is not met, as in most practical setups, not only the
interferer but also the target is attenuated. This effect is called “target leakage”, and can be addressed
with two strongly related schemes. First, one detects periods of target activity, and stops adaptation
during those periods [3]. Second, one tracks the acoustic channel, which, in turn, can only be done
when the target is dominant [4, 5, 6]. Self-calibration algorithms [7] are closely related. Both ways
show the necessity of a reliable estimation of the input SIR: ˆSIRin (t). In many implementations,
ˆSIRin (t) is estimated based on adapted quantities such as z (t) [7, 6], as shown by Fig. 2a. This

approach is called “implicit” in the rest of this paper. Speaker detection errors are fed back into
the adapted parts: a single detection error may have dramatical effects. Such techniques have good
results when target and interference speech exhibit little overlap in time. For simultaneous speakers,
it is more robust to decouple the detection from the the adaptation [8], as described by Fig. 2b. This
approach is called “explicit” in the rest of this paper.

The contribution of this paper is twofold: first, an implicit method is proposed, where the speed
of adaptation is determined in a manner that makes it very robust to target leakage problems. This
robustness is both shown in theory and verified in experiments. There is no additional computational
cost. The second contribution is an explicit method that decides whether to adapt or not in a binary
fashion, depending on prior estimation of target and interference energies. A major contribution of this
paper is a direct, robust method for such estimation from the received signals x (t) themselves, that
extends a previously proposed sector-based, frequency-domain detection and localization technique [9].
We show that it is closely related to delay-sum beamforming, averaged over a sector of space. We also
give a low-cost practical implementation. A topological interpretation is also included, introducing
the concept of Phase Domain Metric (PDM).

Experiments on real in-car data validate both contributions, testing two setups: either 2 or 4
directional microphones. In both cases, we show that the sector-based method can reliably estimate the
input SIR ( ˆSIRin (t)). Application of the implicit and explicit control methods for speech enhancement
shows that in both cases, the output SIR (SIRout (t)) is improved in a robust manner. Tests in
100 km/h driving conditions are included. The explicit control yields the best results. Both adaptation
methods are fit for real-time processing.

The rest of this paper is organized as follows. Section 2 details the sector-based activity detection
approach recently proposed in [9], proposes improvements, a real-time implementation as well as
physical and topological interpretations. Section 3 describes the two in-car setups and defines the
sectors in each case. Section 4 derives a novel sector-based technique for input SIR estimation, based
on Section 2, and validates it with experiments. This technique is used in Section 5, which defines
the adaptation control techniques and provides experimental results. Section 6 concludes. This paper
constitutes a detailed version of an abstract presented in 2005 [10].
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2 Sector-Based, Frequency-Domain Activity Detection

This section revisits and extends the SAM-SPARSE audio source detection and localization approach,
previously proposed and tested on multi-party speech in the meeting room context [9]. The main
idea is to divide the space around a microphone array into volumes called “sectors”. The frequency
spectrum is also discretized into frequency bins. For each sector and each frequency bin, we determine
whether or not there is at least one active audio source in the sector. This is done in phase domain,
by comparing measured phases between the various microphone pairs (a vector of angle values) with a
“centroid” for each sector (another vector). A central feature of this work is the sparsity assumption,
an excellent explanation and review of past work around this idea is included in [11]. In brief: if two
speech sources are active at a given time, “sparsity assumption” means that within each frequency bin,
only one speech source is supposed to be active. This simplification is supported by direct evidence:
statistical analysis of real speech signals shows that most of the time, within a given frequency bin,
one speech source is dominant in terms of energy, and the other one is negligible. This is due to the
highly-varying, non-stationary nature of speech.

We take advantage of this paper to generalize the SAM-SPARSE approach (Sections 2.1 and 2.2),
simplify its implementation (Section 2.3), and give physical and topological interpretations (Section 2.4
and Annex, respectively). An extension is proposed to allow for a “soft” decision within each frequency
bin, as opposed to the “hard decision” taken in [9].

2.1 A Phase Domain Metric

First, a few notations are defined. M is the number of microphones. One time frame of Nsamples

multichannel samples is denoted by x1, . . . ,xm, . . . ,xM , with xm ∈ RNsamples . The corresponding
positive frequency Fourier coefficients are denoted by X1, . . . ,Xm, . . . ,XM with Xm ∈ CNbins .

f ∈ N is a discrete frequency (1 ≤ f ≤ Nbins), Re(·) denotes the real part of a complex quantity,
and Ĝ(p)(f) is the estimated frequency domain cross-correlation for microphone pair p (1 ≤ p ≤ P ):

Ĝ(p)(f)
def
=Xip

(f) · X∗
jp

(f), (1)

where (·)∗ denotes complex conjugate, ip and jp are indices of the 2 microphones: 1 ≤ ip < jp ≤ M .
Note that the total number of microphone pairs is P = M(M − 1)/2. For a given frequency bin f , we
denote the vector of measured phase values with:

Θ̂(f)
def
=
[

θ̂(1)(f), . . . , θ̂(p)(f), . . . , θ̂(P )(f)
]T

where θ̂(p)(f)
def
=∠Ĝ(p)(f), (2)

where ∠ (·) designate the argument of a complex value.
The approach defined below (Section 2.2) is built upon the concept of distance between two vectors

of phase values (angles in radians). The distance between two such vectors Θ1 and Θ2 in RP is defined
as follows:

d(Θ1,Θ2)
def
=

√
√
√
√

1

P

P∑

p=1

sin2

(

θ
(p)
1 − θ

(p)
2

2

)

(3)

d(., .) is defined very similarly to the Euclidean metric, except for the additional sine function, which
is here to account for the “modulo 2π” definition of angles. The 1/P normalization factor simply
ensures that 0 ≤ d(., .) ≤ 1.

We chose to use sine to compare two angle values rather than a piecewise linear function such as

arg mink

∣
∣
∣θ

(p)
1 − θ

(p)
2 + k2π

∣
∣
∣ for three reasons:

1. Physical interpretation: The first reason is that the use of sine is closely related to delay-sum
beamforming, as shown in Section 2.4.
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Figure 3: Illustration of the triangular inequality for the PDM in dimension 1: each point on the
unit circle corresponds to an angle value modulo 2π. From the Euclidean metric:

∣
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∣
∣ ≤

∣
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∣
∣+
∣
∣ejθ2 − ejθ1

∣
∣.

2. Smoothness: The second reason involves optimization procedures (e.g. gradient descent):
derivates of “d(., .)” are simpler to manipulate when using the sine function, as it does not
include the “argmin” explicitly. Moreover, d(., ., ) is infinitely derivable in all points, which is
not the case of “argmin”. This is related to parameter optimization work not presented here.

3. Topological interpretation: Finally, the third reason is that d(., .) is a true Phase Domain
Metric (PDM) (see Annex A.1 for a definition). This is straightforward for P = 1 by representing
any angle θ with a point ejθ on the unit circle. We then observe that for any two angle values
θ1 and θ2: ∣

∣ejθ1 − ejθ2
∣
∣ = 2

∣
∣sin

(
θ1−θ2

2

)∣
∣ = 2 d (θ1, θ2) (4)

so that the triangular inequality of the Euclidean metric directly translates into a triangular
inequality for d(., .), as illustrated by Fig. 3. Hence d(., .) is a metric for P = 1. We have proved
the triangular inequality for higher dimensions P > 1 (see Annex A.2 for a demonstration).

Note that the intuitive “argmin” alternative, i.e. to compare angle values themselves, is also a
PDM, but does not have the “smoothness” and “physical interpretation” properties.

2.2 From Metric to Activity: SAM-SPARSE-MEAN

The search space around the microphone array is partitioned into NS connected volumes called “sec-
tors”, as in [12, 9]. For example, the space around a horizontal planar microphone array can be
partitioned in “vertical slices”: for k=1 . . .NS:

Sk =
{

(ρ, θaz, φel) ∈ R
3
∣
∣
∣ ρ ≥ ρ0, 2π k−1

NS
≤ θaz < 2π k

NS
, 0 ≤ φel ≤ π

2

}

(5)

where here ρ, θaz, φel designate radius, azimuth and elevation w.r.t. the microphone array center;
microphones are all in the sphere ρ < ρ0.

The SAM-SPARSE-MEAN approach treats each frequency bin separately. For each (sector, fre-
quency bin), it defines and estimates a Sector Activity Measure (SAM), which is a posterior probability
that at least one audio source source is active within that sector and that frequency bin. “SPARSE”
stands for the sparsity assumption, as discussed in [11]: at most one sector is active per frequency
bin. As mentioned earlier, this assumption is in fact a simplification that is strongly supported by
statistical observations on concurrent speech of multiple speakers. It was shown in [9] to be both
necessary and efficient to solve spatial leakage problems.

Note that only phase information is used, but not the magnitude information. This choice is
inspired by (1) the GCC-PHAT weighting [13], which is well adapted to reverberant environments,
and (2) the fact that Interaural Level Difference (ILD) is in practice much less reliable than time-delays,
as far as localization is concerned. In fact, ILD is mostly useful in the case of binaural analysis, on
high frequencies only, where the shadow cast by the head induces noticeable received power differences
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between the ears, of the order of 10 dB to 20 dB [14]. This is not applicable here, since there is no
obstacle between the microphones.

As for computational complexity, it must be noted that since each frequency bin is processed
independently, the SAM-SPARSE-MEAN method can be parallelized in a straightforward manner.

• The first step is to compute the root mean square distance (“MEAN”) between the measured

phase vector Θ̂(f) and theoretical phase vectors associated with all points within any given sector Sk,
at any given frequency f , using the metric defined in Eq. 3:

Dk,f
def
=

[∫

v∈Sk

d2
(

Θ̂(f), Γ (v, f)
)

Pk (v) dv

] 1
2

(6)

where Γ (v, f) =
[
γ(1)(v, f) . . . γ(p)(v, f) . . . γ(P )(v, f)

]T
is the vector of theoretical phases associated

with location v and frequency f and Pk(v) is a weighting term: it is the prior distribution of active
source location within sector Sk - it represents prior knowledge (e.g. uniform or Gaussian distribution).
Note that v can be expressed in any coordinate system (Euclidean or spherical), as long as the
expression of dv is consistent with this choice. Each component of the Γ vector is given by:

γ(p)(v, f) = π
f

Nbins
τ (p)(v), (7)

where τ (p)(v) is the theoretical time-delay (in samples) associated with the spatial location v ∈ R3

and microphone pair p, The time-delay τ (p)(v) is given by:

τ (p)(v) =
fs

c

(

||v −m
(p)
2 || − ||v −m

(p)
1 ||

)

, (8)

where c is the speed of sound in the air (e.g. 342 m/s at 18 degrees Celsius), fs is the sampling

frequency in Hz, m
(p)
1 and m

(p)
2 ∈ R3 are spatial locations of microphone pair p.

• The second step is to determine, for each frequency bin f , the sector to which the measured

phase vector is the closest: kmin(f)
def
= arg mink Dk,f .

Finally, the posterior probability of having at least one active source in sector Skmin(f) and at
frequency f is modeled with:

P
(

sector Skmin(f) active at frequency f
∣
∣
∣Θ̂(f)

)

= e−λ(Dkmin(f),f )
2

(9)

where λ controls how “soft” or “hard” this decision should be. The sparsity assumption implies that
all other sectors are attributed a zero posterior probability of containing activity at frequency f :

∀k 6= kmin(f) P
(

sector Sk active at frequency f
∣
∣
∣Θ̂(f)

)

= 0 (10)

In previous work [9] only “hard” decisions were taken (λ = 0) and the entire spectrum was supposed
to be active. In particular, this had the effect that even if a sector did not contain any active source
at any frequency, it would still be attributed some random part of the spectrum. Eq. 10 represents a
generalization (λ > 0) of previous work, that in practice allows to detect inactivity at a given frequency
and therefore avoids the random effect. The λ parameter can be trained on any (small) amount of
development data. Values around 10 or 20 were found to be reasonable on our development data. In
fact the choice of a value for λ can be interpreted as follows, in the case of a single microphone pair
P = 1:

d2 (θ1, θ2) = sin2

(
θ1 − θ2

2

)

(11)
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therefore, a “small” estimated probability

e−λd2(θ1,θ2) = ε (12)

corresponds to an angle difference

∆θ = argmin
k

|θ1 − θ2 + k2π| = 2 sin−1

√

− log ε

λ
(13)

which gives, for ε = 0.1 and λ = 10 a phase angle ∆θ ≈ π
3 . For ε = 0.1 and λ = 20, we have ∆θ ≈ π

5 .
∆θ indicates the value of the phase angle beyond which the probability of activity is very small. This
is equivalent to detect inactivity within a given frequency bin.

2.3 Practical Implementation

In general it is not possible to derive an analytical solution for Eq. 6. It is therefore approximated
with a discrete summation:

Dk,f ≈ D̂k,f where D̂k,f
def
=

√
√
√
√ 1

N

N∑

n=1

d2
(

Θ̂(f), Γ (vk,n, f)
)

(14)

where vk,1, . . . ,vk,n, . . . ,vk,N are locations in space (R3) drawn from the prior distribution Pk(v),
and N is the number of locations used to approximate this continuous distribution. Note that the
sampling is not necessarily random, for example it could be a regular grid in the case of a uniform
distribution.

This approximation can be expressed in a manner that does not depend on the number of points N ,
as shown in the rest of this section.

(

D̂k,f

)2

=
1

N

N∑

n=1

1

P

P∑

p=1

sin2

(

θ̂(p)(f) − γ(p)(vk,n, f)

2

)

(15)

Using the relation sin2 u = 1
2 (1− cos 2u) we can write:

(

D̂k,f

)2

=
1

2P

P∑

p=1

{

1 − 1

N

N∑

n=1

cos
(

θ̂(p)(f) − γ(p)(vk,n, f)
)
}

(16)

(

D̂k,f

)2

=
1

2P

P∑

p=1

{

1 −Re

[

1

N

N∑

n=1

ej(θ̂(p)(f)−γ(p)(vk,n, f))

]}

(17)

(

D̂k,f

)2

=
1

2P

P∑

p=1

{

1 −Re

[

ejθ̂(p)(f) 1

N

N∑

n=1

e−jγ(p)(vk,n, f)

]}

(18)

(

D̂k,f

)2

=
1

2P

P∑

p=1

{

1 −Re
[

ejθ̂(p)(f) A
(p)
k (f) e−jB

(p)
k

(f)
]}

(19)

(

D̂k,f

)2

=
1

2P

P∑

p=1

{

1− A
(p)
k (f) cos

(

θ̂(p)(f) − B
(p)
k (f)

)}

(20)

where Re(.) is the real part of a complex quantity, A
(p)
k (f) and B

(p)
k (f) are two values in R that do

not depend on the measured phase θ̂(p)(f):

A
(p)
k (f)

def
=
∣
∣
∣Z

(p)
k (f)

∣
∣
∣ , B

(p)
k (f)

def
=∠Z

(p)
k (f) and Z

(p)
k (f)

def
=

1

N

N∑

n=1

ejγ(p)(vk,n, f) (21)
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This is particularly interesting from the point of view of computational complexity: the approxi-
mation has to be computed only once, in the form of A and B parameters. Any large number N can

be used, therefore, the approximation D̂k,f can be as close to Dk,f as desired. During runtime, the

cost of computing D̂k,f does not depend on N : it is directly proportional to Nbins · P · NS.
In other terms, the proposed approach (Dk,f ) does not suffer from its practical implementation

(D̂k,f ), concerning both numerical precision and computational complexity.

Note that each Z
(p)
k (f) value is nothing but a component of the average theoretical cross-correlation

matrix, where “average” means average over all points vk,n for n = 1 . . .N .
Finally, we note that the SAM-SPARSE-C method defined in a previous work [9] is strictly equiv-

alent to a modification of D̂k,f where all A
(p)
k (f) parameters would be replaced with 1.

2.4 Physical Interpretation

In this section we show that the use of the proposed PDM, as described by Eq. 6, is closely related to
the average delay-sum power over all points in a sector (weighted by the prior distribution). We show
that for a given triplet (sector, frequency bin, pair of microphones), if we neglect the energy difference
between microphones, there is equivalence with the delay-sum power, averaged over all points in the
sector.

First, let us consider a pair of microphones (m
(p)
1 , m

(p)
2 ) and a location v ∈ R3. In frequency

domain, we can write the signals received at each microphone, at frequency f , as:

Xip
(f)

def
= α

(p)
1 (f) ejβ

(p)
1 (f) and Xjp

(f)
def
= α

(p)
2 (f) ejβ

(p)
2 (f), (22)

where for each microphone m = 1 . . .M , αm(f) and βm(f) are real-valued, respectively magnitude

and phase of the received signal Xm(f). The observed phase is θ̂(p) (f) ≡ β
(p)
1 (f) − β

(p)
2 (f), where

the ≡ symbol denotes congruence of angles (equality modulo 2π).
The delay-sum energy for location v, frequency f , microphone pair p is defined by aligning the

two signals, w.r.t. the theoretical phase γ(p) (v, f):

E
(p)

ds
(v, f)

def
=
∣
∣
∣Xip

(f) + Xjp
(f) ejγ(p)(v,f)

∣
∣
∣

2

. (23)

Assuming the received magnitudes to be the same αip
≈ αjp

≈ α, Eq. 23 can be rewritten:

E
(p)

ds
(v, f) =

∣
∣
∣αejβ

(p)
1 (f)

(

1 + ej(−θ̂(p)(f)+γ(p)(v,f))
)∣
∣
∣

2

= α2

[(

1 + cos
(

−θ̂(p) (f) + γ(p) (v, f)
))2

+ sin2
(

−θ̂(p) (f) + γ(p) (v, f)
)]

= α2
[

2 + 2 cos
(

−θ̂(p) (f) + γ(p) (v, f)
)]

(24)

On the other hand, the square distance between observed phase and theoretical phase, as defined
by Eq. 3, is expressed as:

d2
(

θ̂(p) (f) , γ(p) (v, f)
)

= sin2

(

θ̂(p) (f) − γ(p) (v, f)

2

)

, (25)

which can be rewritten as:

d2
(

θ̂(p) (f) , γ(p) (v, f)
)

=
1

2

(

1 − cos
(

θ̂(p) (f) − γ(p) (v, f)
))

. (26)

From Eqs. 24 and 26:

1

4α2
E

(p)

ds
(v, f) = 1 − d2

(

θ̂(p) (f) , γ(p) (v, f)
)

(27)
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Figure 4: Physical setups I (2 mics) and II (4 mics).

Therefore we can see that for a given microphone pair (1) maximizing the delay-sum power is strictly
equivalent to minimizing the PDM, (2) comparing delay-sum powers is strictly equivalent to comparing
PDMs. This equivalence still holds when averaging over an entire sector, as in Eq. 6. Averaging
across microphone pairs, as in Eq. 3, exploits the redundancy of the signals in order to deal with noisy
measurements and get around spatial aliasing effects.

This equivalence explains the difference between the proposed approach - equivalent to an average
delay-sum over a sector - and a classical approach that would compute the delay-sum only at a point
in the middle of the sector. It is intuitively more sound to give equal importance to all points in a
sector given that the task is sector-based detection. Moreover, tests on more than one hour of real
meeting room data have confirmed the advantage of the proposed approach [9]. The computational
cost is the same, as shown in Section 2.3.

We note that the assumption αip
≈ αjp

is reasonable for most setups where microphones are close
to each other, and oriented to the same direction if directional microphones. Nevertheless, in practice
we found that the proposed method can also be applied to other cases, as in Setup I, described in
Section 3.1.

3 Physical Setups, Recordings and Sector Definition

The rest of this paper considers two setups for acquisition of the driver’s speech in a car. The general
problem is to separate speech of the driver from interferences such as codriver speech.

3.1 Physical Setups

The two setups are denoted I and II, and are depicted by Fig. 4:

• Setup I has 2 directional microphones on the ceiling, separated by 17 cm. They point to different
directions: driver and codriver, respectively.

• Setup II has 4 directional microphones in the rear-view mirror, placed on the same line with an
interval of 5 cm. All of them point towards the driver.

3.2 Recordings

Data was not simulated, we opted for real data instead. Three 10-second long recordings sampled at
16 kHz, made in a Mercedes S320 vehicle, are used in experiments reported in Sections 4.2, 5.5 and
5.6:

train : (training) Mannequins playing pre-recorded speech. It is used as a training data to select
parameter values.

test : (testing) Real human speakers. It is used for testing only: all parameters determined on train

were “frozen”.

noise : (testing) Both persons silent, the car running at 100 km/h.
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Figure 5: Sector definition. Each dot corresponds to a vk,n location, as defined in Section 2.3.

For both train and test , we first recorded the driver, then the codriver, and added the two
waveforms. Having separate recordings for driver and codriver permits to compute the true input
Signal-to-Interference Ratio (SIR) at microphone x1. This will be useful to evaluate the input SIR
estimation technique presented in Section 4, as well as the SIR improvement in Section 5.

The noise waveform was then added to repeat speech enhancement experiments in a noisy envi-
ronment, as reported in Section 5.6.

3.3 Sector Definition

Figs. 5a and 5b depict the way we defined sectors for each setup. We used prior knowledge on the
locations of the driver and the codriver with respect to the microphones. The prior distribution
Pk(v) (defined in Section 2.2) was chosen to be a Gaussian in Euclidean coordinates for the 2 sectors
where the people are, and uniform in polar coordinates for the other sectors (Pk(v) ∝ ||v||−1). Each
distribution was approximated with N=400 points.

The motivation for using Gaussian distributions is that we know where the people are on average,
and we allow slight motion around the average location.

The reasoning behind the other sectors having uniform distributions is that reverberations may
come from any of those directions.
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4 Input SIR Estimation

This section describes a method to estimate the input Signal-to-Interference Ratio (SIR), which in our
case is the ratio between the energy of the speech received in x1(t) from the driver, and the energy of
the speech received in x1(t) from the codriver. This estimate of the input SIR is used by the “explicit”
adaptation control method described in Section 5.2.

4.1 Method

From a given frame of samples at microphone 1:

x1(t) = [x1(t − Nsamples), x1(t − Nsamples + 1), . . . , x1(t)]
T

, (28)

FFT is applied to estimate the local spectral representation X1 ∈ C
Nbins . The energy spectrum for

this frame is then defined by E1(f) = |X1(f)|2, for 1 ≤ f ≤ Nbins.
In order to estimate the input SIR at x1(t), we propose to estimate the proportion of the overall

frame energy
∑

f E1(f) that belongs to the driver, and to the codriver, respectively. Then the input
SIR is estimated as the ratio between the two.

Within the sparsity assumption context of Section 2, the following two estimates are proposed:

ˆSIR1 =

∑

f E1(f) · P
(

sector Sdriver active at frequency f
∣
∣
∣ Θ̂(f)

)

∑

f E1(f) · P
(

sector Scodriver active at frequency f
∣
∣
∣ Θ̂(f)

) , (29)

and

ˆSIR2 =

∑

f P
(

sector Sdriver active at frequency f
∣
∣
∣ Θ̂(f)

)

∑

f P
(

sector Scodriver active at frequency f
∣
∣
∣ Θ̂(f)

) , (30)

where P (.|Θ(f)) is the posterior probability given by Eqs. 9 and 10. This ratio can be seen as
the ratio between two mathematical expectations. ˆSIR1 weights each frequency with its energy, while
ˆSIR2 weights all frequencies equally. In the case of a speech spectrum, which is wideband but has

most of its energy in low frequencies, this means that ˆSIR1 gives more weights to the low frequencies,
while ˆSIR2 gives equal weights to low and high frequencies. It can be expected that ˆSIR2 provides
better results as long as microphones are close enough to make proper use of high frequencies.

4.2 Experiments

On the entire recording train , we ran the source detection algorithm described in Section 2 and
compared the estimates ˆSIR1 or ˆSIR2 with the true input SIR.

First, we noted that an additional affine scaling in log domain (1st order polynomial) was needed. A
possible interpretation is that it compensates for the simplicity of the function chosen for probability
estimation (Eq. 9). This affine scaling is the only post-processing that we used, temporal filtering
(smoothing) was not used.

For each setup and each method, we tuned the parameters (λ and the two parameters of the affine
scaling) on train in order to minimize an objective criterion: the RMS error of input SIR estimation,
in log domain (dB). Results are reported in Table 1. In all cases a RMS error of about 10 dB is
obtained, and soft decision (λ > 0) is beneficial. In setup I, ˆSIR1 gives the best results. In setup II,
ˆSIR2 gives the best results. This confirms the above-mentioned expectation that ˆSIR2 yields better

results when microphones are close enough. We note that for both setups, the correlation between
true SIR and estimated SIR is about 0.9.

For each setup, a time plot of the results of the best method is available: Figs. 6a and 6b. We can
see that the estimate follows the true value very accurately most of the time. Errors happen sometimes
when the true input SIR is high. One possible explanation is the directionality of the microphones,
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Setup Dynamic Method Hard decision Soft decision
range (λ = 0) (λ > 0)

I 87.8 dB ˆSIR1 10.5% (0.90) λ = 12.8: 10.2% (0.91)

(2 mics) ˆSIR2 16.0% (0.75) λ = 22.7: 12.5% (0.86)

II 88.0 dB ˆSIR1 12.0% (0.86) (λ = 0)

(4 mics) ˆSIR2 13.1% (0.83) λ = 10.7: 11.2% (0.89)

Table 1: RMS error of input SIR estimation on train , calculated in log domain (dB). The best result
for each setup is in bold figures. Percentages indicate the ratio between RMS error and the dynamic
range of the true input SIR (max - min). Values in brackets indicate the correlation between true and
estimated input SIR.

Setup Dynamic Method Result
range

I 71.6 dB ˆSIR1, soft All frames: 14.0% (0.77)
True input SIR > 6 dB: 16.1% (0.25)
True input SIR < -6 dB: 12.4% (0.71)

II 70.2 dB ˆSIR2, soft All frames: 9.3% (0.90)

Table 2: RMS error of input SIR estimation on test , calculated in log domain (dB). Methods and
parameters were selected on train . Percentages indicate the ratio between RMS error and the
dynamic range of the true input SIR (max - min). Values in brackets indicate the correlation between
true and estimated input SIR.

which is not exploited by the sector-based detection algorithm. Also the sector-based detection gives
equal role to all microphones, while we are mostly interested in x1(t). In spite of these limitations,
we can safely state that the obtained SIR curve is very satisfying for triggering the adaptation, as
verified in Section 5.

As it is not sufficient to evaluate results on the same data that was used to tune the parameters,
results on the test recording are also reported in Tab. 2 and Figs. 7a nd 7b. Overall, all conclusions
made on train still hold on test , which tends to prove that the proposed approach is not too
dependent on the training data. However, for Setup I, a degradation is observed, mostly on regions
with high input SIR. A possible interpretation is that the method does not take into account the low
coherence between the two directional microphones, due to their very different orientations. However,
in an interference cancellation application with Setup I, we are mostly interested in accurate detection
of periods of negative input SIR, rather than positive input SIR. On those periods the RMS error
is lower (12.4%). We will therefore see in Section 5 that this result can still be used in a speech
enhancement application. For Setup II, the results are quite similar to those of train .

To conclude, the proposed methodology for estimation of input SIR gives acceptable results. De-
spite a RMS error of about 10 dB, the estimated input SIR curve follows the true curve accurately
enough for detecting periods of activity and inactivity of the driver and codriver. With respect to that
application, only one parameter is used: λ, and the affine scaling has no impact on results presented
in Section 5. This method is particularly robust since it does not involve any temporal integration or
thresholding.
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Figure 8: Linear models for the acoustic channels and the adaptive filtering.

5 Speech Enhancement

5.1 Adaptive Interference Cancellation Algorithms

Setup I provides an input Signal-to-Interference Ratio (SIR) of about 6 dB at the driver’s microphone
signal x1(t). The other signal x2(t) is used as a reference, i.e. an estimate of the interference signal.
In order to remove the interference from x1(t), the linear filter depicted by Fig. 8b is used. The filter
ĥ of length L is adapted to minimize the output power E{z2(t)}, using the NLMS algorithm [15] with
step size µ:

ĥ(t + 1) = ĥ(t) − µ
E{z(t)x2(t)}
‖x2(t)‖2

(31)

where x2(t) = [x2(t), x2(t − 1), . . . , x2(t − L + 1)]
T
, ĥ =

[

ĥ0(t), ĥ1(t), . . . , ĥL−1(t)
]T

, and

‖x‖2 =
∑L

i=1 x2(i). Note: E{.} is the expectation operator, taken over realizations of stochastic
processes. Under stationarity and ergodicity assumptions, we implement it by averaging on a short
time-frame. For example:

E{x2 (t)} ≈ 1

L
‖x‖2 (32)

To prevent instability, adaptation must happen only when the interference is active: ‖x2(t)‖2 6= 0,
which is assumed true in the rest of this section. In practice, a fixed threshold on the variance of x2(t)
can be used.

To prevent target cancellation, the filter ĥ of length L must be adapted only when the interference
is active and dominant.

In setup II, M = 4 directional microphones are in the rear-view mirror, all pointing at the target.
It is therefore not possible to use any of them as an estimate of the codriver interference signal. A
suitable approach is the linearly constrained minimum variance beamforming [16] and its robust GSC
implementation [17]. It consists of two filters bm and am for each input signal xm(t), with m = 1 . . .M ,

as depicted by Fig. 8c. Each filter bm (resp. am) is adapted to minimize the output power of y
(bm)
m (t)

(resp. z(t)), as in Eq. 31. To prevent leakage problems, the bm (resp. am) filters must be adapted
only when the target (resp. interference) is active and dominant.

5.2 Implicit and Explicit Adaptation Control

For both setups, an adaptation control is required that slows down or stops the adaptation according
to target and interference activity. Two methods are proposed: “implicit” and “explicit”. The implicit
method introduces a continuous, adaptive step-size µ(t), whereas the explicit method relies on a binary
decision, whether to adapt or not.

With respect to existing implicit approaches, the novelty of the implicit method proposed here is
a well-grounded mechanism to increase its robustness by preventing instability.
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A major novelty resides in the explicit method, in so far as it estimates the input SIR directly
from the captured signals, using the method described in Section 4.

5.2.1 Implicit method

We present the method in details for Setup I, then briefly give the corresponding results for Setup II.
The goal is to increase the adaptation step-size whenever possible, while not turning Eq. 31 into an
unstable, divergent process.

For Setup I, as depicted by Fig. 8a, the acoustic mixing channels are modelled as:
{

x1(t) = s1(t) + h12(t) ∗ s2(t),
x2(t) = h21(t) ∗ s1(t) + s2(t),

(33)

where ∗ denotes the convolution operator.
As depicted by Fig. 8b, the enhanced signal is z(t) = x1(t) + ĥ(t) ∗ x2(t) therefore:

z(t) =
(

δ(t) + ĥ(t) ∗ h21(t)
)

︸ ︷︷ ︸

∗ s1(t) +
(

h12(t) + ĥ(t)
)

︸ ︷︷ ︸

∗ s2(t)

= Ω(t) ∗ s1(t) + Π(t) ∗ s2(t)

(34)

The goal is to minimize E{ε2(t)} where ε(t) = Π(t)∗s2(t). It can be shown [18] that when s1(t) = 0
an optimal step-size is given by µimpl(t) = E{ε2(t)}/E{z2(t)}.

We assume s2 to be a white excitation signal, then:

µimpl(t) = E{Π2(t)}E{x2
2(t)}

E{z2(t)} = E{Π2(t)}‖x2‖2

‖z‖2
. (35)

As E{Π(t)2} is unknown, we approximate it with a very small positive constant (0 < µ0 � 1)
close to the system mismatch expected when close to convergence:

µimpl(t) ≈ µ0
‖x2‖2

‖z‖2
, (36)

and Eq. 31 becomes:

ĥ(t + 1) = ĥ(t) − µ0
E{z(t)x2(t)}

‖z(t)‖2
. (37)

The domain of stability of the NLMS algorithm [15] is defined by µimpl(t) < 2 therefore Eq. 37

can only be applied when µ0
‖x2‖

2

‖z‖2 < 2. In other cases, a fixed step-size adaptation must be used, as

in Eq. 31. The proposed implicit adaptive step-size is therefore:

µ(t) =

{
µimpl(t) if µimpl(t) < 2 (stable case)
µ0 otherwise (unstable case).

(38)

where µ0 is a very small positive constant (0 < µ0 � 1). This effectively reduces the step-size when
the current target power estimate is large and conversely it adapts faster in absence of the target.

Physical interpretation: Let us assume that s1(t) and s2(t) are uncorrelated, blockwise stationary

white sources of powers σ2
1 and σ2

2 , respectively. From Eqs. 33 and 34, we can expand Eq. 36 into:

µimpl(t) = µ0
‖h21‖2σ2

1 + σ2
2

‖Ω(t)‖2σ2
1 + ‖Π(t)‖2σ2

2

. (39)

In a car, the driver is closer to x1 than to x2. Thus, given the definition of the mixing chan-
nels depicted by Fig. 8a, it is reasonable to assume that ‖h21‖ < 1, h21 is causal and h21(0) = 0.
Therefore ‖Ω(t)‖ ≥ 1.
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• Case 1: The power received at microphone 2, from the target, is greater than the power received
from the interference: ‖h21‖2σ2

1 > σ2
2 . In this case Eq. 39 yields:

µimpl(t) < µ0
2 ‖h21‖2σ2

1

‖Ω(t)‖2σ2
1 + ‖Π(t)‖2σ2

2

< 2 µ0
‖h21‖2

‖Ω(t)‖2
< 2, (40)

which falls in the “stable case” of Eq. 38.

• Case 2: The power received at microphone 2, from the target, is less than the power received
from the interference: ‖h21‖2σ2

1 ≤ σ2
2 . In this case Eq. 39 yields:

µimpl(t) ≤ µ0
2 σ2

2

‖Ω(t)‖2σ2
1 + ‖Π(t)‖2σ2

2

, (41)

therefore:

‖Ω(t)‖2 σ2
1

σ2
2

+ ‖Π(t)‖2 ≤ 2
µ0

µimpl(t)
. (42)

Thus, in the “unstable case” of Eq. 38, we have:

{

‖Π(t)‖2 ≤ µ0
σ2
1

σ2
2
≤ µ0

‖Ω(t)‖2 ≤ µ0
(43)

The first line of Eq. 43 means that the adaptation is close to convergence. The second line of Eq. 43
means that the input SIR is very close to zero, i.e. the interference is largely dominant. Overall, this
is the only “unstable case”, i.e. when we fall back on µimpl(t) = µ0 (Eq. 38).

5.2.2 Explicit method

For both setups, a sector-based audio source detection method can be used to directly estimate the
input SIR at x1(t), as detailed in Section 4. Two thresholds are set on the input SIR to detect when
the target (resp. the interference) is dominant. This decision determines whether or not the fixed
step-size adaptation of Eq. 31 should be applied.

5.3 Implementation

In Setup I, the ĥ filter has length L = 256. In Setup II, the bm filters have length L = 64, and the
am filters have length L = 128.

For all methods, the filters are initialized as follows. In setup I, filter ĥ is initialized to zeros. In
setup II, filters bm are initialized to cancel signals coming from driver’s direction of arrival [19], and
the filters am are initialized to zeros.

Adaptation is implemented as follows:

• No control: A baseline method that adapts all the time, with a constant step size, as in Eq. 31.
In setup II, filters am are adapted all the time, and filters bm are not adapted.

• Implicit method: In both setups, all filters are adapted all the time, with the adaptive step-size
of Eq. 38. In setup II, the tunable constant parameter µ0 was found to be larger for am (0.01)
than for bm (0.0001).

• Explicit method: All filters are adapted with Eq. 31. In setup I, filter ĥ is adapted only when
the estimated input SIR is below a threshold. In setup II, filter am (resp. bm) is adapted only
when the estimated input SIR is below (resp. above) a threshold.
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5.4 Performance Evaluation

For both setups, we measured the instantaneous SIR improvement over the true input SIR at micro-
phone x1, on the real recordings described in Section 3.2. “Instantaneous” means on half-overlapping,
short time-frames – i.e. where speech can be safely considered as stationary. We used 32 ms-long
time-frames.

Five seconds of the train recording were used to tune all parameters. Then the entire test

recording (real human speakers, 10 seconds) was used to test the methods. It contains a significant
degree of overlap between the two speakers (56% of speech frames).

The instantaneous SIR improvement is plotted over time in log-domain (dB), to directly compare
the behaviour of the various methods, depending on the speech signals of each person.

Based on the instantaneous SIR improvement, the segmental SIR is computed in three cases.
“Segmental SIR” means that only frames containing speech from either driver or codriver or both are
considered.

1. True input SIR < -6 dB: when the energy of the codriver is dominant in signal x1. This quantifies
how much of the interference signal is cancelled during silences of the driver: a significantly
positive value. All three methods can be expected to perform well in this case.

2. True input SIR in [-6 +6] dB: when both driver and codriver are comparatively active. This
quantifies how much of the interference signal is cancelled during overlap periods (both persons
speaking): a positive value. We can expect a slight degradation in the case of the baseline
method, because of leakage issues.

3. True input SIR > +6 dB: when the energy of the driver is dominant in signal x1. No improvement
is expected here: a value around zero. If this value is markedly negative, it means that a given
method is suffering from leakage problems. We can expect the baseline method to yield a very
negative value here, because of leakage issues.

Note: determining whether a given person is active or not in its individual signal (see Section 3.2)
is done by fitting a bi-Gaussian model on the energy in log domain, using the (unsupervised) EM
algorithm [20]. The resulting posterior probability of speech is an almost binary value, so that a
threshold can be easily set (e.g. 0.5 or 0.9). This way, we avoid introducing bias into the performance
evaluation, as could be the case for example by setting a manual threshold on energy, for each signal.

5.5 Experiments: clean data

The first 3 seconds are depicted in Fig. 9a. The periods where SIR improvement is consistently close
to 0 dB correspond to silences of both speakers. The result of the “no control” baseline method
highlights the target cancellation problem and confirms the necessity of adaptation control. Both
“implicit” and “explicit” methods are robust against this problem, and the explicit method provides
the best results.

This analysis is valid for both setups, and is confirmed by average SIR improvement values over
the entire recording shown in Tab. 3. All expectations given in 5.4 are verified. Although the implicit
method does not give the best results (first two rows of the table), we note that it successfully avoids
leakage problems (last row of the table). Again, best average results are yielded by the explicit method.

5.6 Experiments with 100 km/h noise

The same experiments as in Section 5.5 were conducted again, after adding the background road noise
waveform noise . The resulting wave files have an average segmental SNR of 11.6 dB in setup I, and
9.6 dB in setup II.

In the case of the explicit control, the same thresholds were used for detecting driver or codriver
activity. Only one parameter was changed: the adaptation step µ0 was lowered to take into account
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Setup I (2 mics) Setup II (4 mics)
Range of the No control Implicit Explicit No control Implicit Explicit
true input SIR (baseline)
< -6: (codriver) 6.5 5.9 10.7 10.0 6.0 10.1
[−6, +6]: (both) -0.6 1.2 5.8 1.2 3.6 4.2
> +6: (driver) -7.7 -0.2 2.6 -8.3 2.2 1.3

Table 3: Average segmental SIR improvement in dB on test (clean data).

Setup I (2 mics) Setup II (4 mics)
Range of the No control Implicit Explicit No control Implicit Explicit
true input SIR (baseline)
< -6: (codriver) 6.4 7.1 7.4 7.5 3.9 9.9
[−6, +6]: (both) 1.0 2.7 3.5 2.4 2.9 4.2
> +6: (driver) -4.7 0.4 1.9 -4.5 2.4 -0.4

Table 4: Average segmental SIR improvement in dB on test + noise .

the lower quality of the incoming signal due to noise. The goal of this experiment is to determine
whether the proposed approach can cope with background noise. We note that it is not a given,
since the proposed systems (implicit and explicit) do not explicitly model background noise: the noise
source may be incoherent, or localized outside of the defined sectors. The hope is that reducing the
adaptation step is enough, while keeping the exact same system w.r.t. all other parameters.

The result is given in Fig. 9b and Tab. 4. We can see that the behaviour in terms of SIR improve-
ment, both over time and in average, is very similar to the clean case. Thus, we can state that the
system also works in a realistic case of a moving car.

6 Conclusion

Two adaptation control methods were proposed to cancel the codriver interference from the driver’s
speech signal: implicit and explicit control. At no additional cost, the implicit adaptation method pro-
vides robustness against leakage, but slower convergence. On the other hand, the explicit adaptation
method relies on estimation of target and interference energies. A novel, robust method for such esti-
mation was derived from sector-based detection and localization techniques. In the end, the explicit
control method provides both robustness and good performance. Both implicit and explicit methods
are suitable for real-time implementation. One direction for future work is to investigate modelling
of the microphone directionality for further enhancement of the sector-based detection framework.
A second direction is to test on other noise cases, including other passengers.

7 Acknowledgments

The authors acknowledge the support of the European Union through the HOARSE project. This
work was also carried out in the framework of the Swiss National Center of Competence in Research
(NCCR) on Interactive Multi-modal Information Management (IM)2. The authors would like to thank
Dr Iain McCowan, Mathew Magimai.-Doss and Bertrand Mésot for helpful comments and suggestions.



20 IDIAP–RR 04-67

0 1 2 3

codriver

driver

time [seconds]

Source signals

1 2 3
−10

−5

0

5

10

15

20
2 microphones − Noise Canceller

time [seconds]

S
IR

 im
pr

ov
em

en
t [

dB
]

no control
implicit
explicit

1 2 3
−10

−5

0

5

10

15

20
4 microphones − GSC

time [seconds]

S
IR

 im
pr

ov
em

en
t [

dB
]

no control
implicit
explicit

(a) Clean conditions.
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(b) Noisy conditions.

Figure 9: Improvement over input SIR (100 ms moving average, first 3 seconds shown). Col-
umn (a) shows results on clean data (test ), whereas column (b) shows results on noisy data
(test + noise : 100km/h background road noise).
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Annex A

Section A.1 defines a Phase Domain Metric (PDM), similarly to the classical metric definition. Sec-
tion A.2 proves that any 1-dimensional PDM can be composed into a multidimensional function which
is also a PDM.

A.1 Definition of a PDM

Similarly to the classical metric definition, we define a PDM on RP as a function g(x,y) verifying all

of the following conditions for all (x,y, z) ∈
(
RP
)3

:

g(x,y) ≥ 0 (44)

g(x,y) = g(y,x) (45)

g(x,y) = 0 iff ∀p = 1 . . . P ∃kp ∈ Z xp = yp + k2π (46)

g(x, z) ≤ g(x,y) + g(y, z) (47)

It is basically the same as a classical metric, except for Eq. 46 which reflects the “modulo 2π”
definition of angles.

A.2 Property

Let G1 be a 1-dimensional PDM, that is a PDM on R. For any P ∈ N∗, let GP be the following
function on RP :

GP (x,y)
def
=

√
√
√
√

1

P

P∑

p=1

G1 (xp, yp)
2

(48)

The rest of this Section shows that all GP functions are also PDMs. Eqs. 44, 45, 46 are trivial to
demonstrate. Eq. 47 is demonstrated for GP in the following.

Since G1 is a PDM, it verifies Eq. 47 on R. Therefore, for any (x,y, z) ∈
(
RP
)3

:

GP (x, z) ≤

√
√
√
√

1

P

P∑

p=1

[G1 (xp, yp) + G1 (yp, zp)]
2

(49)

Now let us recall the Minkowski inequality [20]. For any β > 1 and ap > 0, bp > 0:

[
P∑

p=1

(ap + bp)
β

] 1
β

≤
[

P∑

p=1

ap
β

] 1
β

+

[
P∑

p=1

bp
β

] 1
β

(50)

By applying the Minkowski inequality to the right-hand of Eq. 49, with β = 2, ap = G1(xp, yp)

and bp = G1(yp, zp), and dividing by
√

P , we obtain:

GP (x, z) ≤
√

1
P

∑P
p=1 G1 (xp, yp)

2 +
√

1
P

∑P
p=1 G1 (yp, zp)

2 (51)

GP (x, z) ≤ GP (x,y) + GP (y, z) (52)
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