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Abstract. Tandem systems transform the cepstral features into posterior probabilities of sub-
word units using artificial neural networks (ANNs), which are processed to form input features
for conventional speech recognition systems. They have been shown to perform better than con-
ventional speech recognition systems using cepstral features. Recent studies have shown that
modelling cepstral features with auxiliary sources of knowledge leads to improvement in the per-
formance of speech recognition systems. In this paper, we study two approaches to incorporate
auxiliary knowledge sources such as pitch frequency, short-term energy, etc. (referred to as aux-
iliary features), in a tandem-based automatic speech recognition system. In the first approach,
we model the auxiliary features in the process of training an ANN, which is later used to extract
tandem-features. In the second approach, we extract the tandem-features from an ANN trained
with cepstral features only and then model them jointly with auxiliary features. Recognition stud-
ies conducted on a connected word recognition task under clean and noisy conditions show that
the performance of the tandem system can be improved by incorporating auxiliary features.
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1 Introduction

The goal of the automatic speech recognition (ASR) systems is to produce a word transcription that
best matches an acoustic sequence X = x1, · · · , xn, · · · , xN , where N is the number of time frames. In
state-of-the-art hidden Markov model (HMM) based ASR systems this problem is then formulated as
modelling p(Q, X), the evolution of the hidden state space Q = {q1, · · · , qn, · · · qN} and the observed
space X [RJ93]:

p(Q, X) ≈

N∏

n=1

p(xn|qn) · P (qn|qn−1), (1)

where qn ∈ {1, · · · , k, · · · , K} and K is number of states.

In recent studies, it has been proposed that modelling the evolution of auxiliary information
A = {a1, · · · , an, · · ·aN} along with Q and X (i.e. p(Q, X, A) instead of p(Q, X)) could improve the
performance of ASR [Zwe98, FNSS01, SMDB04, MDSB03]:

p(Q, X, A) ≈

N∏

n=1

p(xn, an|qn) · P (qn|qn−1) (2)

The implementation of such a system is straightforward, however this approach also implicitly models
the dependency between the state qn and the auxiliary feature an, which may be noisy. In such a case,
it would be better to relax the joint distribution in (2) by assuming independence between an and qn,
yielding:

p(Q, X, A) ≈

N∏

n=1

p(xn|qn, an)·p(an)·P (qn|qn−1) (3)

Auxiliary features that were primarily investigated in the past such as pitch frequency, short-term
energy, rate-of-speech (ROS) etc. were obtained directly from the speech signal [SMDB04]. This ap-
proach has been studied in the frameworks of both GMM-based HMM systems and hybrid HMM/ANN
systems [SMDB04].

Traditional ASR systems use features such as Mel frequency cepstral coefficients (MFCCs), or per-
ceptual linear prediction (PLP) features [Her90] etc., derived from the smoothed spectral envelope of
the speech signal as the observation xn. More recently, tandem systems have been proposed where the
cepstral features are transformed into posterior probabilities using an ANN [HES00]. These posterior
probabilites are then processed and fed as the input feature (tandem-feature) for a standard GMM-
based ASR system. This has been shown to perform better than the state-of-the-art GMM-based ASR
using cepstral features [HES00, ESS01].

In this paper, two different approaches to incorporate auxiliary features in a tandem system are in-
vestigated. In the first approach (Tandem(CEP+AUX)), hybrid HMM/ANN systems jointly modelling
both the cepstral features and the auxiliary features based on (2) and (3) are trained [MDSB03]. The
tandem-features are then extracted from the trained ANN of these systems. In the second approach
(Tandem(CEP)+AUX), the tandem-features are extracted from the ANN of the hybrid HMM/ANN
baseline system based on (1) and are modelled jointly with the auxiliary features in the framework of
dynamic Bayesian networks (DBNs) as done in [SMDB04]. Figure 1 gives an illustration of the two
approaches. We have studied this on the OGI Numbers database [CFNL94]. In both these approaches,
significant improvement is achieved over ASR using cepstral features (in our case PLP cepstral coeffi-
cients). Moreover, the experimental studies also show that the performance of tandem systems could
be further improved by incorporating auxiliary features.

The paper is organized in the following way. Sections 2 and 3 give a brief introduction about
modelling auxiliary features and tandem systems, respectively. Section 4 describes the experimental
setup and Section 5 presents the experimental studies. Finally, Section 6 summarizes our work with
some conclusions.
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Figure 1: Illustraion of the two approaches to incorporate auxiliary features in tandem systems

2 Modelling Auxiliary Features

It can be observed from (2) and (3) that auxiliary features could be incorporated in standard ASR
in different ways, such as appending it to the feature vector as in (2) or conditioning the emission
distribution as in (3). Although, implementation of a system based on (2) is easy, it is not obvious in
the case of (3). In GMM-HMM systems this is realized through conditional Gaussians [FNSS01, Ste03].
In a hybrid HMM/ANN system, this can be realized by quantizing the auxiliary features and training
an ANN corresponding to each of its discrete values [MDSB03], like gender modelling.

It is often observed that the estimation of the auxiliary features may not always be reliable, for
example, the estimation of pitch frequency or short-term energy is error prone in noisy conditions. In
such cases, it may be good to observe an during training and hide it, i.e. integrate over all possible
values during recognition [SMDB04]. Refer to [SMDB04, Ste03] for further details about our approach
of modelling auxiliary features in ASR.

3 Tandem Systems

In literature, GMM-HMM-based ASR systems and hybrid HMM/ANN-based ASR systems have been
widely studied [RJ93, BM94]. GMM-HMM models are trained to maximize the likelihood of the data
X , whereas an HMM/ANN model is trained to discriminate between the states so as to yield the
posterior probability of state qn.

A tandem system combines the discriminative feature of an ANN with Gaussian mixture modelling
by using the processed posterior probabilities as the input feature for the GMM-HMM-based systems.
This approach has been shown to yield significant improvement over conventional GMM-based ASR
system using cepstral features in both clean and noisy conditions [HES00]. This approach has certain
advantages such as, (a) it may allow us to make better use of the different probabilistic basis of the two
systems and approaches developed for them. (b) it provides a framework where data from different
databases could be used together, for instance, the ANN could be trained on any database [HES00].

The tandem system is trained in the following manner [HES00].

1. A hybrid HMM/ANN system is trained with task-independent or task-dependent data [HES00].
In our studies, it is the task-dependent data.

2. The task for which we have to train an ASR system, the training data of it is passed through
the ANN to get the the posterior probabilities. In our case, it is the same data which is used to
train hybrid HMM/ANN system.

3. Since the posterior probabilities obtained from the output of the ANN are very skewed, their
logs are taken. This is similar to taking the value of the output units prior to the nonlinearity.



4 IDIAP–RR 04-21

4. Principal component analysis (PCA) is performed on the features obtained in the previous step.
The features are then decorrelated by projecting them along the eigenvectors. We refer to the
resulting features as tandem-features. GMM-HMM-based ASR is then trained with the tandem-
features.

During recognition, the test data is passed through the ANN and the log posterior proabilities are
decorrelated by Karhunen-Loeve-transform (KLT) using the PCA statistics collected during training
to obtain the tandem-features. The tandem-features are then fed to the trained HMMs and decoding
is performed.

4 Experimental Setup

For our studies, we use the OGI-Numbers database which contains spontaneously spoken free-format
numbers over telephone channel [CFNL94]. The definition of the training set, validation set and test
set is similar to the one defined in [MM98]. The training set contains 3233 utterances (approximately
1.5 hours) and the validation set contains 357 utterances (used during ANN training). The test set
consists of 1206 utterances.

We perform recognition experiments upon clean data. We also test our systems on versions with
added noise using the Noisex-92 database [VSTJ92]. We have studied it for factory (FACT) and
lynx (LYNX) noise conditions at signal-to-noise ratios (SNR) 6dB and 12dB. The lexicon contains 30
different words.

4.1 Cepstral feature and auxiliary features used

We use 39 dimension PLP cepstral features comprised of 13 dimension PLP cepstral, along with their
first and second order derivatives. The frame shift and frame size are 12.5 ms and 25 ms, respectively.
Similar to earlier studies [SMDB04], we use the following auxiliary features: (a) Pitch (P), estimated
using simple inverse filter tracking approach [Mar72] with a 5-point median smoothing. The pitch
estimator is reliable, and an evaluation of it can be found in [MDSB03]; (b) Short-term energy (E),
estimated as the logarithm of the squared samples in a windowed frame; and (c) ROS (R), estimated
called the mrate algorithm which was developed at ICSI and measures the ROS directly from the
speech signal [MFL98].

4.2 Modelling auxiliary features in tandem systems

We train different hybrid HMM/ANN systems. The input to the ANN are features at time frame n

with 4 frame left and right context (9x39 vector) and the output is the posterior probabilities of 24
context-independent phonemes.

1. “System B”: Hybrid HMM/ANN baseline system based on (1).

2. “System H-A”: A hybrid HMM/ANN based on (2) for each auxiliary feature pitch, short-term
energy, and ROS. The input to the ANN is a PLP feature vector appended with auxiliary feature
at time frame n with 4 frame left and right context (9x40 vector).

3. “System H-C”: As discussed earlier, in Sections 1 and 2, for hybrid HMM/ANN systems based
on (3), the auxiliary feature has to be quantized [SMDB04, MDSB03]. Similar to [SMDB04,
MDSB03], we quantize each type of auxiliary feature into three regions. We train an ANN for
each of the regions by finding the nearest discrete region corresponding to the value of the
auxiliary feature at that time frame.

With this setup, we can model auxiliary features in tandem system in the following ways
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1. “Tandem(CEP+AUX)”: Modelling the cepstral features and the auxiliary features in the frame-
work of hybrid HMM/ANN (systems H-A and H-C) as in [SMDB04, MDSB03]. Then, using
these trained ANNs to extract tandem-features.

2. “Tandem(CEP)+AUX”: Extracting the tandem-features from the hybrid HMM/ANN baseline
system (system B), and then model them jointly with auxiliary features as done in [SMDB04,
Ste03].

5 Experimental Studies

5.1 Tandem(CEP+AUX)

For the first approach, we use the HTK-toolkit [YOO+97] to train the GMM-HMM system with 80
context-dependent phonemes, 3 emitting states per phoneme and 12 mixtures per state. We train

1. PLP: A system with PLP features.

2. Tandem(CEP): A system with tandem-features extracted from baseline HMM/ANN hybrid
system (system B).

3. Tandem(CEP+AUX-A): Three systems corresponding to the auxiliary features pitch, short-term
energy and ROS with tandem-features extracted from their respective ANN of system H-A.

4. Tandem(CEP+AUX-C): Three systems with tandem-features extracted from ANNs of system
H-C corresponding to the auxiliary feature pitch, short-term energy and ROS.

In systems Tandem(CEP+AUX-A) and Tandem(CEP+AUX-C), the auxiliary feature is always ob-
served. In the case of system Tandem(CEP+AUX-C), it means at any time frame n the ANN corre-
sponding to the discrete value of the auxiliary feature an is used to extract tandem-features.

The results of the recognition studies are given in Table 1. It can be seen that the tandem systems
perform better than the baseline system using PLP features in clean and noisy conditions. Comparing
the tandem systems, in clean condition system Tandem(CEP+AUX-A) for auxiliary feature ROS
performs better than the system Tandem(CEP). The performance of system Tandem(CEP+AUX-A)
for auxiliary features short-term energy and ROS degrades significantly in noisy conditions. The main
reason for this is that the estimation of auxiliary features is not reliable. One solution would be to
hide the continuous valued an; but it is not obvious how this could be done in the case of hybrid
HMM/ANN systems .

5.2 Tandem(CEP)+AUX

For the second approach, we use DBNs [Zwe98, Ste03, Mur02]. DBNs like HMMs model p(Q, X)
or p(Q, X, A) which puts them into the same family of models; but DBNs provide a more flexible
framework for investigating the addition of variables to the modelling, the addition and deletion of
statistical dependencies between component variables, and the hiding of some of the variables. We use
the DBNs software developed in [Ste03] to train ASR systems with 80 context-dependent phonemes,
3 emitting states per phoneme and 12 mixtures per state. We train following systems with DBNs

1. PLP: A baseline system using PLP features.

2. Tandem(CEP): A tandem baseline system with tandem-features extracted from system B.

3. Tandem(CEP)+AUX-A: Three systems corresponding to the different auxiliary features pitch,
short-term energy and ROS based on (2). Here, the tandem-features are augmented with the
auxiliary feature (assuming xn⊥⊥an | qn).
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Table 1: Results of Tandem(CEP+AUX) approach where the tandem-features are extracted from
hybrid HMM/ANN system modelling PLP features and auxiliary features. Results are reported for
clean data (SNR=∞), SNRs of 6dB and 12dB. The performance is measured in-terms of word error
rate (expressed in %). The best system for each condition is marked in boldface. Notations: P-Pitch,
E-Short-term energy, R-ROS

LYNX FACT
∞ 12 6 12 6

PLP 7.3 11.6 20.0 16.2 37.6
Tandem(CEP) 5.1 9.4 16.2 13.2 25.6

Tandem(CEP+AUX-A) (P) 5.1 9.1 16.3 13.8 26.2
Tandem(CEP+AUX-C) (P) 5.5 9.9 16.4 14.6 31.2

Tandem(CEP+AUX-A) (E) 5.7 19.3 46.6 34.0 70.1
Tandem(CEP+AUX-C) (E) 5.7 10.9 19.3 15.8 28.8

Tandem(CEP+AUX-A) (R) 4.8 15.0 34.6 26.3 59.0
Tandem(CEP+AUX-C) (R) 6.0 10.7 18.1 15.9 30.8

4. Tandem(CEP)+AUX-C: Three systems corresponding to the different auxiliary feature pitch,
short-term energy ROS based on (3). Here, the auxiliary feature conditions the emission distri-
bution.

The auxiliary feature is observed throughout the training. During recognition, we also performed
experiments hiding the auxiliary feature [SMDB04, Ste03].

The results of the recognition studies are given in Table 2. The tandem systems again perform
better than the PLP baseline system in both clean and noisy conditions. When comparing between
tandem systems in clean condition the system Tandem(CEP)+AUX-A performs better than the sys-
tem Tandem(CEP). In order to verify that this improvement is not due to an increase in the number
of parameters, we trained a Tandem(CEP) system with 18 mixtures. The performance of this system
is 5.1% in clean, 8.8% (LYNX SNR 12dB), 15.4% (LYNX SNR 6dB), 12.3% (FACT SNR 12dB) and
24.6% (FACT SNR 6dB). Tandem(CEP)+AUX-A performs better than this system in all conditions
when the auxiliary features short-term energy and ROS are hidden.

6 Summary and Conclusion

In this paper, we studied two approaches to incorporate auxiliary features in tandem-based ASR
system. In the first approach, we model cepstral features and auxiliary features by ANNs which are
later used to extract tandem-features. In the second approach, we extract tandem-features through
an ANN trained on cepstral features only and then, model them with auxiliary features. Experiments
conducted in both clean and noisy conditions shows that the tandem system performs better than
conventional GMM-HMM systems using cepstral features. Our studies also show that the performance
of the tandem system could be enhanced further, especially by modelling tandem-features jointly with
auxiliary features.

In earlier studies, tandem systems have been shown to perform better than the conventional systems
in noisy conditions; but when trained on speech of multiple conditions [HES00]. In our studies, we
observe that the tandem system trained only with clean speech can perform better than conventional
systems in noisy conditions.

We performed recognition studies on systems B, H-A and H-C with 24 context-independent
phonemes in clean speech condition. The system H-C performs better than system B (9.6%) for
pitch (8.4%) and short-term energy (8.2%); but system Tandem(CEP+AUX-C) performs worse than
the system Tandem(CEP) for pitch and short-term energy (see Table 1). Similar trend has been ob-
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Table 2: Results of Tandem(CEP)+AUX approach where the tandem-features are extracted from a
hybrid HMM/ANN baseline system and, are modelled along with auxiliary features using DBNs. For
systems using auxiliary features, the first row corresponds to the case when the auxiliary features
are observed and the second row to the case when the auxiliary features are hidden. Results are
reported for clean data (SNR=∞), SNRs of 6dB and 12dB. The performance is measured in-terms of
word error rate (expressed in %). † Systems performing signficantly better than Tandem(CEP) system
(with 95% confidence). The best system(s) for each condition is marked boldface. Notations: P-Pitch,
E-Short-term energy, R-ROS

LYNX FACT
∞ 12 6 12 6

PLP 7.3 16.3 33.3 24.6 46.9
Tandem(CEP) 5.2 9.3 15.4 13.0 24.6

Tandem(CEP)+AUX-A (P) 4.9 8.3† 14.6 12.5 25.0
4.9 8.6 15.3 12.3 24.7

Tandem(CEP)+AUX-C (P) 5.4 9.6 15.9 13.4 25.5
5.8 9.6 16.1 13.0 24.7

Tandem(CEP)+AUX-A (E) 4.9 8.4 14.8 12.6 24.2
4.8 8.2

† 15.0 11.9
†

23.7

Tandem(CEP)+AUX-C (E) 6.1 10.6 17.7 13.8 25.5
5.5 9.6 17.0 13.6 24.8

Tandem(CEP)+AUX-A (R) 4.7 8.2
† 14.8 12.8 26.6

4.8 8.2
†

14.3 12.3 24.2
Tandem(CEP)+AUX-C (R) 5.7 10.0 16.7 13.7 25.6

5.6 9.8 16.3 13.4 25.4

served earlier in literature[ESS01], where the improvements in the context-independent system does
not shows up in the context-dependent GMM-HMM system using tandem features. In our case, the
reason for this could be the switching between the ANNs corresponding to the discrete-valued aux-
iliary feature, as this may be affecting the PCA analysis part of the tandem-feature extraction. This
has to be further investigated.
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