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Abstract. Multimodal biometric authentication (BA) has shown perennial successes both in
research and applications. This paper casts a light on why BA systems can be improved by fusing
opinions of different experts, principally due to diversity of biometric modalities, features, clas-
sifiers and samples. These techniques are collectively called variance reduction (VR) techniques.
A thorough survey was carried out and showed that these techniques have been employed in one
way or another in the literature, but there was no systematic comparison of these techniques, as
done here. Despite the architectural diversity, we show that the improved classification result is
due to reduced (class-dependent) variance. The analysis does not assume that scores to be fused
are uncorrelated. It does however assume that the class-dependent scores have Gaussian distribu-
tions. As many as 180 independent experiments from different sources show that such assumption
is acceptable in practice. The theoretical explanation has its root in regression problems. Our
contribution is to relate the reduced variance to a reduced classification error commonly used in
BA, called Equal Error Rate. In addition to the theoretical evidence, we carried out as many as
104 fusion experiments using commonly used classifiers on the XM2VTS multimodal database to
measure the gain due to fusion. This investigation leads to the conclusion that different ways of
exploiting diversity incur different hardware and computation cost. In particular, higher diversity
incurs higher computation and sometimes hardware cost and vice-versa. Therefore, this study
can serve as an engineering guide to choosing a VR technique that will provide a good trade-off
between the level of accuracy required and its associated cost.
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1 Introduction

Biometric authentication (BA) is a process of verifying an identity claim using a person’s behavioral
and physiological characteristics. BA is becoming an important alternative to traditional authenti-
cation methods such as keys (“something one has”, i.e., by possession) or PIN numbers (“something
one knows”, i.e., by knowledge) because it is essentially “who one is”, i.e., by biometric information.
Therefore, it is not susceptible to misplacement or forgetfulness. Examples of biometric modalities
are fingerprint, face, voice, hand-geometry and retina scans [27].

However, today, biometric-based security systems (devices, algorithms, architectures) still have
room for improvement, particularly in their accuracy, tolerance to various noisy environments and
scalability as the number of individuals increases. Biometric data is often noisy because of deformable
nature of biometric traits, corruption by environmental noise, variability over time and occlusion by
the user’s accessories. The higher the noise, the less reliable the biometric system becomes.

Advancements in BA show several trends. The most prominent trend is the use of multiple
biometric modalities (multi-modal biometrics), such as combining face and speech information [53],
face and fingerprint [22], speech and ear [26], visible-light with infrared face information [11], palmprint
and face [33], ear and face [9] audio and non-audio (using non-acoustic sensors) cues [7], among
others. Three biometric modalities have also been proposed, such as frontal face, lips and speech
cues [14], or hand, face and fingerprint [51]. However, in practical applications, where convenience,
performance and robustness are concerned, simple and fast access techniques such as text-dependent
speaker authentication (the user is required to speak specific text known to the system) coupled with
fingerprint and keypad are actually preferred [41]. The second major trend is the exploration of various
biometric traits, such as iris [13], palmprint [59, 60], gait [2, 20], on-line signature (using electronic
pen [1] or mouse [17]) and key-stroke dynamics [17].

Meanwhile, traditional BA methods such as fingerprint, face or speaker authentication continue to
evolve, particularly into dealing with robustness against different mismatched conditions, e.g., robust
speaker authentication against noisy environments [47], robust face authentication against pose [54]
or illumination variations [43].

Unfortunately, in the authors’ opinion, there is still a lack of study on why multi-modal biometrics
should work, even though many works have already been done in multimodal biometrics and most
have shown improvement. Pankanti et al. [23] shaded some lights on this subject. They demonstrated
that combining the expert opinions using AND and OR will result into improved performance. Unfor-
tunately they assumed that the baseline expert opinions are not correlated. Sanchez et al. [31] showed
both theoretically and empirically that fusing multiple instances of biometric traits can indeed reduce
the system error by as much as 40%. The theoretical analysis, unfortunately, again did not deal with
the case when the expert opinions are correlated. Since multiple instances of the same biometric traits
are likely to be correlated, it is not clear how correlation in expert opinions can hamper the expected
improvement, although they observed that “saturation” may happen, i.e., using more instances of the
same biometric trait cannot help improve the performance further. Using the XM2VTS database,
Kitter et al. [32] examined intramodel and multimodal expert fusion. According to this empirical
study, for multimodal fusion, there is no strong evidence that trainable fusion strategies (based on
Decision Template [34] and Behaviour Knowledge Space [24]) offer better performance than simple
rules (based on sum and vote). They remarked that although adding more experts can reduce (class-
dependent) variance of the output of system expert’s opinion (often called a score or a probability),
such gain is downplayed by the increased ambiguity due to the weak experts. For intramodal fusion,
where the expert scores are highly correlated, increasing the number of experts improve monotonically
with fusion results. Unfortunately, the issue of correlation is not examined in details. Vermuulen et
al. [58] studied empirically the case of combining two systems’ hypotheses. Specifically, they exam-
ined the combination of two systems with equal performance, with unequal performance and when
one system outperforms the other under certain conditions. They observed that fusing two systems
is advantageous when the errors committed by both systems are not correlated, i.e., the combined
system may benefit from the case where, for the same access, one system commits an error and the
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other makes the right decision and vice-versa. Unfortunately, the correlation of these errors are not
explored further.

Section 2 explores different techniques that can be applied in fusion. These techniques are col-
lectively called variance-reduction techniques. Section 3 proposes a theoretical framework that deals
specifically with combining expert opinions that are possibly correlated and study how this will affect
the final combined hypothesis. Section 4 proposes the F-ratio measure and shows how it can be related
to the Equal Error Rate (EER) measure, often used to assess BA systems. It extends the findings of
reduced variance in Section 3 to reduced EER. Section 5 provides empirical evidences to support the
theoretical evidences proposed earlier. This is followed by conclusions in Section 6.

2 Exploring Diversity in BA

2.1 An Architectural Review of BA

The fundamental problem of BA can be viewed as a classification task to decide if person x is a
client or an impostor. In a statistical framework, the probability that x is a client after a classifier fθ

observes his/her scanned biometric trait can be written as:

y ≡ fθ(fe(s(x))), (1)

where, s is a sensor, fe is a feature extractor, θ is a set of classifier parameters associated to the
classifier fθ. If the classifier is associated to a unique client identity i, we can replace θ by θ(i). Note
that there exists several types of classifiers in BA, all of which can be represented by Eqn. (1). They
can be categorized by their output y, i.e., probability (within the range [0, 1]), distance metric (more
than or equal to zero), or log-likelihood ratio (a real number).

A BA system can be viewed as a series of subsystems working together, i.e., a result of concate-
nation of several subsystems, namely sensors, extractors and classifiers. This is shown in Figure 1a.
The circle, square and diamond represent sensor, feature extractor and classifier, respectively. x is the
person requesting an access and y is the opinion of the system that the person is a client, as defined
in Eqn. (1).

A user’s biometric trait is captured using sensors. Examples of sensors are Charged Couple Device
(CCD) cameras, Infrared-Red (IR) cameras, fingerprint scanners and microphones. Each sensor has
its own standard data representation. A set of operations, often based on signal- and image-processing
algorithms, constitute the building blocks of extractors. Extractors have two functions: to detect and
to extract user-discriminant information. Each extractor produces its own type of vectors or feature
set, also called templates in a more generic setting. Experts (or classifiers) are used to categorise
these produced vectors. Classifiers are a set of pattern-matching algorithms, which may be learning-
based (e.g. Multi-Layer Perceptron, Support Vector Machine, etc) or template-based (dynamic time
warping, Euclidean distance, normalised correlation, etc). Classifiers’ role is to map a vector to an
associated identity. They do so with a certain degree of confidence commonly called a score or a
confidence measure. It could be a scalar value or a vector when more information is supplied. In some
cases, a score can be interpreted as the estimated a posteriori probability of the claimed class label
given the feature. When there are several classifiers, a combination mechanism (COM) (also known
as supervisor or fusion module) merges different scores to obtain the final decision. To make the final
decision, a score is compared with a pre-defined threshold. If the final decision is a match, then the
system accepts the identity claim. If the decision is a non-match, then the system rejects the identity
claim. Finally and optionally, if the decision is inconclusive, a fall-back procedure should be activated.

The serial concatenation process of sensors, extractors, classifiers and supervisors shows that error
may accumulate along the chain (see Figure 1a) because each module depends on its previous module.
In a separate study done by Jain and Pankanti [28], they used the terms information limited behaviour,
representation limited behaviour and invariance limited behaviour to describe the errors of the first
three components (sensors, extractors and classifiers). To our opinion, the term “limitation” is easier
to be understood as errors due to sensors, extractors and classifiers, respectively.
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2.2 Architectural Diversity

This section explores parallel structures that can be applied to the BA problem. The classical model
has already been defined in Eqn. (1). In multimodal BA, it can be written in two parts, as follow:

−→
XF = [fθ(fe(s(xi)))]i∈I

(2)
−→
XF = [fθ(fe(si(x)))]i∈M

(3)
−→
XF = [fθ(fe,i(s(x)))]

i∈F
(4)

−→
XF = [fθ,i(fe(s(x)))]

i∈T
(5)

(6)

and
yCOM = fθCOM

(
−→
XF ), (7)

where I, M, F and T are sets of instances, modalities, feature extractors and classifier. The first part
(Eqns. (2–5)) can be considered as the base-expert while the second part (Eqn. (7)) as the COM. Note

that
−→
XF is a vector consisting of yi and i = 1, . . . , N when there are N responses. These approaches

are shown graphically in Figure 1. Figure 1a is the usual mono-modal biometric approach. One can
improve the system by using multiple classifiers (Figure 1b) which can also be called the ensemble
method; multiple extractors with concatenated features (Figure 1c); multiple extractors with separate
features (Figure 1d); multiple real samples (Figure 1e); multiple synthetic samples (Figure 1f); and
multiple biometric modalities (Figure 1g). Each of these approaches is explained in more details in
the next subsection. As will become clear in Section 3, exploiting such parallel structure can actually
reduce variance of Eqn. (1) and thus can increase the accuracy of the overall system. For this reason,
we called these techniques collectively as Variance Reduction (VR) techniques. They are detailed in
the next subsection.

2.3 A Survey in the Literature

VR via classifiers is a kind of ensemble method. Ensemble methods are learning algorithms that
construct a set of classifiers and then classify new data points by taking a (weighted) vote of each
classifier prediction. The main idea is that ensembles are often much more accurate than the indi-
vidual classifiers that make them up, provided that the individual classifiers are accurate and diverse
(which includes complementary). These two aspects are examined in Section 3 for a special case of
classification error called Equal Error Rate (EER).

Dietterich [15] groups ensemble methods into: (i) Bayesian voting, (ii) manipulation of the training
examples (e.g. bagging [4, 37], cross-validated committee and boosting [18]), (iii) manipulation of the
input features (e.g. sub-tasking), (iv) manipulation of the output targets (e.g. Error-Correcting
Output-Coding (ECOC) [16]) and (v) injection of randomness, also known as learning with noise.
Biometric features are very susceptible to noise and different deformation. Therefore, these techniques
are important considerations in our framework. Kittler et al. [30] have convincingly shown that
a modified version of ECOC called multi-seed ECOC improves face recognition on the XM2VTS
database. These are all known methods to improve BA systems.

The main idea of VR via extractors is that given a raw biometric data, several features are
extracted. For example, one can extract the following information from speech features: Linear Pre-
dictive Coding Coefficients or Mel Frequency Cepstrum Coefficients [50]. In face verification, common
features are principal components, linear discriminant components [10] or more recently independent
components [21]. Each feature is often classified by an associated classifier. Since these features are
different, one can expect the corresponding trained classifiers to commit different errors. On the often
false assumption that features are not correlated, the classifiers are therefore not correlated. In the
hope that each classifier operating on different feature space makes different errors, the combined
classifier should be able to reduce the errors.
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(a) classical model (b) VR via classifiers (En-
semble)

x
..
.

y(1)

(c) VR via extractors with
concatenated features

(d) VR via extractors with
separate features

(e) VR via real samples (f) VR via synthetic sam-
ples

(g) VR via modalities

:Sensor :Extractor

:Classifier :Supervisor

x  :feature y  : score

(h) legend

Figure 1: Different possible VR techniques in BA

There are basically two variations of VR via extractors: with concatenated features (see Figure 1c)
and separate features (1d). In the first case, the extracted features are normalised to the same
range, concatenated and fed to a common classifier for training and matching. Often the curse of
dimensionality [3] is an obstacle to this approach. In the second case, each feature set is treated
separately by its own classifier. A decision fusion scheme is required to merge the scores coming
from these classifiers. These techniques work because different features usually capture different or
complementary information. Since they are extracted from the same sample, the scores from classifiers
associated to these features are often correlated.

In the work of Brunelli and Falavigna [6], two speech experts (using respectively static and temporal
derivative features) and three face experts (using respectively eye, nose and mouth areas of the face)
are used for person verification. The weighted product approach was used to fuse the opinions, with
the weights found automatically via a heuristic approach. The static and dynamic feature experts
obtained an identification rate of 77% and 71%, respectively. Combining the two speech experts
increased the identification rate to 88%. The eye, nose and mouth experts obtained an identification
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rate of 80%, 77% and 83% respectively. Combining the three facial experts increased the identification
rate to 91%. The work shows that VR via extractors with separate features improve the accuracy
of a BA system.

For the problem of face verification, Marcel and Bengio [39] have shown that instead of using just
face images, one can use normalised face colour histogram as an additional feature to the existing
normalised face image to train client specific classifiers. This yields an improved classification result.

Luettin [35] investigated the combination of speech and (visual) lip information using feature vec-
tor concatenation. In order to match the frame rates of both feature sets, speech information was
extracted at 30 fps (frames per second) instead of the usual 100 fps. In text-dependent configura-
tion, the fusion process resulted in a minor performance improvement. However, in text-independent
configuration, the performance slightly decreased. This could probably be due to the curse of dimen-
sionality explained earlier. These works [39, 35] showed that VR via extractors with concatenated
features may also improve the accuracy of a BA system.

In this study, we decided to use VR via extractors with separate features for the following reasons:
it is better understood; its use can be justified in Section 3; and it is often computationally less
expensive compared to its counterpart with concatenated features.

VR via real samples has been demonstrated by Kittler et al. [31]. In their work, they combined
multiple snapshots of a single biometric property using a Bayesian framework. It is observed that as
more and more samples are used, the classification error decreases until a point where it is “saturated”,
i.e., further increase of samples will not decrease the classification error further.

We have shown that VR via synthetic samples [48] is also a viable solution when real samples
are not available due to some reasons. For instance, the data transfer bandwidth is limited or taking
several biometric samples are inconvenient. This approach works only if such transformation can
be found. For face images, geometric transformations can be readily applied without the loss of
information. Other image-to-image transformations, i.e., quotient image and methods based on the
symmetric property of faces can also be used to normalise the face image against lighting variations.
The only constraint is that such transformation itself must not require a lot of client-dependent
training data.

Several studies have shown that VR via different modalities is superior, on average, to any
single-modal biometrics. The following are some strategies proposed in the literature:

• Jain et al. [22] have proposed a multimodal biometric system design that integrates face and
fingerprints to make a personal identification.

• Ross et al. [52] have used hand-scan, fingerprint and face-scan to improve the overall result.

• Poh [44] used eye features and voice features extracted via wavelets to verify a person’s identity.
Both the face and voice experts are combined using the AND operation. Experiments showed
that combining both experts improved the accuracy of the system.

• Dieckmann et al. [14] used three experts (frontal face expert, dynamic lip image expert and
text-dependent speech expert). A hybrid fusion scheme involving majority voting and opinion
fusion was utilised. Two of the experts had to agree on the decision and the combined opinion
had to exceed a pre-defined threshold. The hybrid fusion scheme provided better performance
than using the underlying experts alone.

• Jourlin et al. [29] used a form of weighted summation fusion to combine the opinions of two
experts: a text-dependent speech expert and a text-dependent lip expert. It was shown that
fusion led to better performance than using the underlying experts alone.

• Sanderson [55] used face and noisy speech information and combined both modalities using
adaptive weights and various fusion methods. The resultant system provides a good trade-off in
both clean and noise conditions.
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The above list is certainly not exhaustive. Most multi-modal approaches yield improvement in
results. This is a common and promising approach to improve a BA system. The theoretical aspect of
these approaches will be investigated in Sections 3 and 4 while the empirical evidences will be reported
in Section 5.

3 Class-Dependent Variance Reduction

The analysis here, based on Equal Error Rate (EER), requires that the class label of the claimant
be known in advance. EER is a commonly used performance evaluation criterion in BA and will be
defined in Section 4. There are two sets of scores y as defined in Eqn. (1): those of clients and those
of impostors, for a given i response (instance, modality, feature or classifier). Both sets are written as
yk=C

i and yk=I
i here. We adopt the convention that the mean of yk=C

i is greater than that of yk=I
i .

To fix the idea, Figure 2 plots the client and impostor distributions when they are assumed to be
Gaussian. In this case, the client distribution is a Gaussian with mean 1 and variance 0.9, denoted as
N (1, 0.9) and the impostor distribution is N (−1, 0.6). These are typical plots of client and impostor
distributions and are often very close to real score distributions (which are not necessarily Gaussian).
Note that the analysis in this section does not require the Gaussian assumption but Section 4 will
require this assumption.

Suppose yk
i,j is the j-th observed sample of the i-th response of class k, recalling that i = 1, . . . , N

and k = {C, I}. We assume that this observed variable has a deterministic component and a noise
component and that their relation is additive. The deterministic component is due to the fact that
the class is discrete in nature, i.e., during authentication, we know that a user in either a client or
an impostor. The noise component is due to some random processes during biometric acquisition
(e.g. degraded situation due to light change, miss-alignment, etc) which in turns affect the quality
of extracted features. Indeed, it has a distribution governed by the extracted feature set fe (s(x)))
often in a non-linear way. By ignoring the source of distortion in extracted biometric features, we
actually assume the noise component to be random (while in fact they may be not if we were able to
systematically incorporate all possible variations into the base-expert model).

Let µk
i be the deterministic component. Note that its value is only dependent on the class k =

{C, I} and independent of j. We can now model yk
i,j as a sum of this deterministic value plus the

noise term wk
i,j , as follows:

yk
i,j = µk

i + wk
i,j , (8)

for k ∈ {C, I} where wk
i,j follows an unknown distribution W k

i with zero mean and (σk
i )2 variance, i.e.,

wk
i,j ∼ W k

i

(
0, (σk

i )2
)
. By adopting such a simple model, from the fusion point of view, we effectively

encode the i-th response of a biometric system as the sum of a deterministic value and another random
variable, in a class-dependent way. Following Eqn. (8), we can deduce that yk

i,j ∼ Y k
i ≡ W k

i

(
µk

i , (σk
i )2
)
.

Hence, the expectation of Y k
i (over different j samples) is:

E[Y k
i ] = E[µk

i ] + E[W k
i ] = µk

i . (9)

Let us consider two cases here. In the first case, for each access, N responses are available and are
used independently of each other. The average of variance of Y k

i over all i = 1, . . . , N , denoted as
(σk

AV )2 is:

(
σk

AV

)2
=

1

N

N∑

i=1

Cov(Y k
i , Y k

i )

=
1

N

N∑

i=1

E[W k
i W k

i ]

≡ 1

N

N∑

i=1

(
σk

i

)2
, (10)
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where we adopted the following notation: Cov(Y k
i , Y k

j ) is the covariance between Y k
i and Y k

j , for any

i, j ∈ {1, . . . , N}. By definition, Cov(Y k
i , Y k

j ) ≡ E[W k
i W k

j ]. When i = j, we obtain the variance of

Y k
i , which is denoted as (σk

i )2.
In the second case, all N responses are used together and are combined using the mean operator;

the resultant score can be written as:

Y k
COM =

1

N

N∑

i=1

Y k
i , (11)

for any k ∈ {C, I}. The expected value of Y k
COM , for k = {C, I}, is:

µk
COM ≡ E[Y k

COM ]

=
1

N

N∑

i=1

E[Y k
i ]

=
1

N

N∑

i=1

µk
i . (12)

The variance of Y k
COM (over many accesses), denoted as (σk

COM )2, is called the variance of average,
and can be calculated as follows:

(σk
COM )2 = Cov(Y k

COM , Y k
COM )

= E
[(

Y k
COM − E[Y k

COM ]
)2
]

= E





(

1

N

N∑

i=1

Y k
i − 1

N

N∑

i=1

µk
i

)2




= E





(

1

N

N∑

i=1

Y k
i − µk

i

)2




= E





(

1

N

N∑

i=1

W k
i

)2


 . (13)

where Eqns. (9) and (11) are used.
To expand Eqn. (13), one should take care of possible correlation between different W k

m and W k
n ,

as follows:

(σk
COM )2 = E

[

1

N2

(
N∑

m=1

N∑

n=1

W k
mW k

n

)]

=

1

N2

N∑

i=1

E[W k
i W k

i ]

︸ ︷︷ ︸

+

2

N2

N∑

m=1,m<n

E[W k
mW k

n ]

︸ ︷︷ ︸

≡ (V k
AV )2 + (V k

COV )2, (14)

where (σk
COM )2 is split into the summation of (V k

AV )2 and (V k
COV )2. The first term corresponds to

the sum of the diagonal of E[W k
mW k

n ] while the second term is the sum of all other elements, such
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that m 6= n. (V k
AV )2 measures the average spread (variance) of the base-experts Y k

i . Using Eqn. (10),
it can be further simplified to:

(V k
AV )2 =

1

N2

N∑

i=1

(σk
i )2

=
1

N
(σk

AV )2. (15)

The second term, (V k
COV )2, measures the covariance1 of error among different W k

m and W k
n , for

k = {C, I}. It is related to correlation by:

(V k
COV )2 =

2

N2

N∑

m=1,m<n

ρk
m,nσk

mσk
n. (16)

where ρk
m,n is the correlation coefficient between Y k

m and Y k
n for k ∈ {C, I}. The correlation coefficient

ρk
m,n is defined as:

ρk
m,n =

E[W k
mW k

n ]

σk
mσk

n

. (17)

Note that ρk
n,n = 1 and −1 ≤ ρk

m,n ≤ 1 for all m, n ∈ {1, . . . , N} and k ∈ {C, I}.
Now, we need to consider two cases: when W k

m and W k
n are uncorrelated (i.e., ρk

m,n = 0) and when

they are (i.e., ρk
m,n 6= 0).

3.1 Uncorrelated Assumption: ρk
m,n = 0

In this case, E[W k
mW k

n ] = 0, hence ρk
m,n = 0. As a consequence,

(V k
COV )2 = 0. (18)

As a result, substituting Eqns. (15) and (18) into Eqn. (14) will give:

(σk
COM )2 =

1

N
(σk

AV )2, (19)

which is true when W m and W n are not correlated. This is the lowest theoretical bound that (σk
COM )2

can achieve. Basically, this shows that by averaging N scores, the variance of average ((σk
COM )2) can

be reduced by a factor of N with respect to the average of variance ((σk
AV )2), when two instances of

Y k
m and Y k

n are not correlated, for each class k = {C, I}.

3.2 Correlated Assumption: ρk
m,n 6= 0

The upper bound can be derived by assuming that Wm and Wn are correlated, i.e. ρk
m,n 6= 0. We will

show that the worst-case bound is in fact equal to (σk
AV )2, i.e., there is no gain. To be more explicit,

we wish to test the hypothesis:
(σk

COM )2 ≤ (σk
AV )2. (20)

Using Eqns. (14), (15) and (16), (σk
COM )2 can be written as follows:

(σk
COM )2 =

1

N2

N∑

i=1

(
σk

i

)2

︸ ︷︷ ︸

+

2

N2

N∑

m=1,m<n

ρk
m,nσk

mσk
n

︸ ︷︷ ︸

, (21)

1Note that (V k

COV
)2 could be negative, hence its square-root, V k

COV
, does not represent any meaningful value. The

square representation is used here to be consistent with (V k

AV
)2 which is strictly positive.
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Using Eqns. (21) and (10), the inequality of Eqn. (20) can be expressed as:

1

N2

N∑

i=1

(σk
i )2 +

2

N2

N∑

m=1,m<n

ρk
m,nσk

mσk
n ≤ 1

N

N∑

i=1

(σk
i )2 (22)

By multiplying both sides by N2 and rearranging them, we obtain:

0 ≤ (N − 1)

N∑

j=1

σ2
j − 2

N∑

m=1,m<n

ρm,nσmσn. (23)

Given that:

(N − 1)

N∑

i=1

σ2
i =

N∑

i=1,i<j

(σ2
i + σ2

j ) (24)

(the proof can be found in the Appendix A) the inequality can further be simplified to:

0 ≤
N∑

m=1,m<n

(
(σk

m)2 + (σk
n)2
)
− 2

N∑

m=1,m<n

ρk
m,nσk

mσk
n

0 ≤
N∑

m=1,m<n

(
(σk

m)2 − 2ρk
m,nσk

mσk
n + (σk

n)2
)

0 ≤
N∑

m=1,m<n

(
(σk

m − ρk
m,nσk

n)2 + (1 − ρk
m,n)(σk

n)2
)
.

In other words, hypothesis in Eqn. (22) is always true, regardless of the value ρk
m,n. As a consequence,

we have just validated the inequality of Eqn. (20). Taking this conclusion and that of Eqn. (19), one
can conclude that:

1

N
(σk

AV )2 ≤ (σk
COM )2 ≤ (σk

AV )2. (25)

Referring back to Eqn. (21) if ρk
m,n < 0 (i.e., negatively correlation), then (V k

COV )2 would be negative

and consequently (σk
COM )2 ≤ 1

N
(σk

AV )2! Obviously, negative correlation would help improve the
results. However, and unfortunately, in reality, negative correlation will not happen if the underlying
experts are trained separately, i.e., for a given instance i, yk

i for i = 1, . . . , N , will tend to agree with
each other (hence positively correlated) most often than to disagree with each other (hence negatively
correlated). One possible exception will be that the experts are specifically trained to be decorrelated
or even negatively correlated in a collaborative way, e.g. [5]. By fusing scores obtained from experts
that are trained independently (which is often so in multimodal fusion), one can almost be certain
that 0 ≤ ρk

m,n ≤ 1.

3.3 Introduction of α as a gain factor

To measure explicitly the factor of reduction, we introduce α, which can be defined as follows:

α =
(σk

AV )2

(σk
COM )2

. (26)

By dividing Eqn. (25) by (σk
COM )2 and rearranging it, we can deduce that:

1 ≤ α ≤ N. (27)
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One direct implication of variance reduction is that the more hypotheses used (increasing N), the
better the combined system, even if the hypotheses of underlying experts are correlated. This will
come at a cost of more computation proportional to N . Experiments in [57] (in speech recognition)
and [31] (in face verification) provide strong empirical evidences to support this claim. The above
analysis, however, was only possible when the class-labels are already known in advance. This analysis
is relevant for regression problems, by simply removing the class-label k from the equations (since in
regression problems there is no class label). However, it is not clear how (class-dependent) variance
reduction can lead to better classification, often measured in terms of false rejection rate (FRR) and
false acceptance rate (FAR) in BA tasks. These two error terms will be defined and treated in the
next section.

4 EER Reduction

This section first presents, intuitively, how reduced variance will result in reduced classification error
before working it out in a more detailed manner. We then show how F-ratio can be derived and how
it is related to EER. Finally, how reduced class-dependent variance can lead to reduced EER will be
explained.

Figure 2 illustrates the effect of averaging scores in a two-class problem, such as in BA where an
identity claim could belong either to a client or an impostor. Let us assume that the genuine user
scores in a situation where 3 samples are available but are used separately, follow a normal distribution
of mean 1.0 and variance (σ2

AV (x) of genuine users) 0.9, i.e., N (1, 0.9), and that the impostor scores
(in the mentioned situation) follow a normal distribution of N (−1, 0.6) (both graphs are plotted with
“+”). If for each access, the 3 scores are used, according to Eqn. (27), the variance of the resulting
distribution will be reduced by a factor of 3 or less. Both resulting distributions are plotted with
“o”. Note the area where both the distributions overlap before and after. The latter area is shaded in
Figure 2. This area corresponds to the zone where minimum amount of mistakes will be committed
given that the threshold is optimal2. Decreasing this area implies an improvement in the performance
of the system.

Let the scores’ probability density function (pdf) be P (Y k=C
i ) for the client scores and P (Y k=I

i )
for the impostor scores and i indicates that it belongs to the i-th base-expert3. Let us first assume
that these pdfs are Gaussians and have mean µk

i and standard deviation σk
i , for k = {C, I}. FRR is a

threshold-dependent measure and is defined as a ratio between the total number of wrongly rejected
client accesses and the total number of client accesses. FAR is also a threshold-dependent measure
and is defined as a ratio between the total number of wrongly accepted impostor accesses and the
total number of impostor accesses. FRR and FAR can then be written as:

FRR(∆) =

∫ ∞

−∞

P (Y k=C
i = y)dy

=

∫ ∞

−∞

1

σC
i

√
2π

exp

[−(y − µC
i )2

2(σC
i )2

]

dy

=
1

2
+

1

2
erf

(
∆ − µC

i

σC
i

√
2

)

, and (28)

2Optimal in the Bayes sense, when (1) the cost and (2) probability of both types of errors are equal.
3This analysis applies to any independent experiments and not necessary base-experts. For instance, by replacing i

with COM , the findings can be applied to fusion experiments as well.
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Figure 2: Averaging score distributions in a two-class problem

FAR(∆) =

∫ ∞

∆

P (Y k=I
i = y)dy

= 1 −
∫ ∆

−∞

P (Y k=I
i = y)dy

= 1 −
[
1

2
+

1

2
erf

(
∆ − µI

i

σI
i

√
2

)]

=
1

2
− 1

2
erf

(
∆ − µI

i

σI
i

√
2

)

, (29)

where

erf(z) =
2√
π

∫ z

0

exp
[
−t2

]
dt, (30)

which is the so-called error function. Note that the use of an error function for such analysis has been
reported in [12], but with differences in the definition of the error function. In another similar work
(but limited to the context of combining multiple samples) [31], the Equal Error Rate (EER) curve
was not calculated explicitly and validated via experiments as done here. Furthermore, the issue on
how the dependency among samples affects the resultant variance was not studied theoretically as
done in Section 3.

The minimal error happens when:

FAR(∆) = FRR(∆) = EER(∆),

i.e., the Equal Error Rate. Making these two terms equal (Eqns. (28) and (29)) and using the property
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Figure 3: Equal error rate versus the sum of standard deviations of client and
impostor scores

that erf(−z) = −erf(z), we can deduce that:

∆ =
µI

i σ
C
i + µC

i σI
i

σI
i + σC

i

. (31)

By introducing Eqn. (31) into Eqn. (29) (or equivalently into Eqn. (28)), we obtain:

EER =
1

2
− 1

2
erf

(
F-ratio√

2

)

, (32)

where

F-ratio =
µC

i − µI
i

σC
i + σI

i

(33)

F-ratio has a particular meaning. It is in fact similar to Fisher-ratio. For a two-class problem, using
the same terms, the Fisher-ratio [3, pg. 107] is defined as:

µk=C
i − µk=I

i

(σk=C
i )2 + (σk=I

i )2
(34)

F-ratio or equally Fisher-ratio measures the degree of separability (ability to discriminate) between the
client and impostor scores. The higher this ratio is, the further and better the scores are discriminated
and hence the lower EER will be.

To give an idea how EER would look like, let us first suppose that µC = 1 and µI = −1. EER
as a function of σC

i + σI
i is then plotted, as shown in Figure 3. EER appears to be a monotonically

increasing function as the sum of standard deviations of client and impostor distributions increases.



14 IDIAP–RR 04-43

0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25

30

35

40

45
T

he
or

et
ic

al
 E

E
R

 o
r 

H
T

E
R

(µ
C
 − µ

I
) / (σ

I
 + σ

C
) 

Theoretical EER
Empirical EER

Figure 4: A Comparison between EER and HTER versus F-ratio, carried out on 180 independent ex-
periments on XM2VTS (45 experiments), BANCA (63 experiments) and NIST2001 (72 experiments).
Details can be found in [46].

Intuitively, this means that smaller class-dependent standard deviations are desirable to attain lower
EER.

We call the EER based on Gaussian assumption, presented in the last section, the theoretical EER,
to distinguish it from the empirical EER, which is calculated by direct minimization of threshold
according to the following criterion:

∆∗ = arg min∆|FAR(∆) − FRR(∆)| (35)

and approximated by the commonly used Half Total Error Rate:

HTER =
FAR(∆∗) + FRR(∆∗)

2
. (36)

The so-called “empirical EER” in this case is HTER with threshold ∆∗. Empirical EER and HTER
are used interchangeably in this paper.

To check how accurate the EER function (as in Eqn. (32)) is as compared to its empirical counter-
part (as in Eqn. (36)), we conducted many experiments on XM2VTS, NIST2001 and BANCA score
datasets taken from [45, 47, 38], respectively. The results are shown in Figure 4. Details on how
these experiments were carried out were reported in [46]. By visual inspection, it can be seen that
the theoretical EER as a function of F-ratio is quite accurate at the high ends of HTER and the
accuracy decreases as HTER decreases. The degree of deviation is proportional to how well the real
underlying distributions (of the client and the impostor scores) follow the Gaussian distribution at a
given EER point. The reason for such a deviation is that due to finite number of data (client and
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impostor) accesses, empirical FAR and FRR are not smooth functions. As a result, small change of
the threshold ∆ will cause a big change in HTER. Nevertheless, the theoretical EER does reflect the
actual HTER fairly accurately.

Using the notations in Section 3, let σI
COM and σC

COM (as in Eqn. (21)) be the standard deviations
of the fused scores (using the mean operator) of both the impostor and client distributions, respectively.
These definitions also apply to the average of the standard deviations σI

AV and σC
AV (as in Eqn. (10)).

From Eqn. (25), we can deduce that:

σI
COM ≤ σI

AV and σC
COM ≤ σC

AV .

Since EER is a monotonically increasing function as shown in Figure 3, these inequalities imply that:

EER(σI
COM , σC

COM ) ≤ EER(σI
AV , σC

AV ),

when both the µC and µI are normalised such that they are constant across different streams, bands
and modalities4.

In fact, without assuming the Gaussian distribution, as long as the EER function has a monoton-
ically increasing behaviour with respect to σI + σC , the above conclusions remain valid.

To require that EER be a monotonically increasing function, the necessary condition is that the
right tail of the impostor pdf is a decreasing function and the left tail of the client pdf is an increasing
function. A Gaussian function exhibits such behaviour on its left and right tails. Unfortunately, in
the case of non-Gaussian pdfs, the analytical analysis such as the one done here is more difficult.

To evaluate the improvement due to variance reduction, we can define a gain factor β, similar to
α defined in Eqn. (26), as follows:

βmean =
meani(EERi)

EERCOM

(37)

where EERCOM is the EER of the combined system (with reduced variance) and EERi is the EER
of the i-th system. Indeed, all experiments reported in Section 5 verified that βmean ≥ 1, which is
theoretically achievable. βmean can only measure the relative improvement with respect to the average
EER of the underlying expert. In practice, one wishes to know whether the resultant combined expert
is better than the best underlying expert. This can be measured using:

βmin =
mini(EERi)

EERCOM

, (38)

which is defined very similarly to βmean, except that the minimum EER of the underlying experts is
used. βmin ≥ 1 implies that the resultant expert is better than the best underlying expert.

All the VR techniques discussed can be evaluated using βmean and βmin, except VR via synthetic
samples. This is because, the new system using synthetic samples uses the real samples in the original
system. As a result, βmin is not meaningful anymore. A meaningful comparison will be to use the
following “gain” ratio:

βreal =
EERreal

EERCOM

, (39)

In fact, for both βmean and βmin, (β−1 − 1) × 100% measures the relative change of the EER of the
combined expert with respect to the average EER or the minimum EER of the underlying experts.

5 Empirical Results

5.1 XM2VTS Database

The XM2VTS database [40] contains synchronized video and speech data from 295 subjects, recorded
during four sessions taken at one month intervals. On each session, two recordings were made, each

4This normalization will affect the corresponding variance [46, Sec. VI] but should not change the F-ratio.
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consisting of a speech shot and a head shot. The speech shot consisted of frontal face and speech
recordings of each subject during the recital of a sentence.

The database is divided into three sets: a training set, an evaluation set and a test set. The
training set was used to build client models, while the evaluation set (Eval) was used to compute the
decision thresholds (as well as other hyper-parameters) used by classifiers. Finally, the test set (Test)
was used to estimate the performance.

The 295 subjects were divided into a set of 200 clients, 25 evaluation impostors and 70 test
impostors. There exists two configurations or two different partitioning approaches of the training
and evaluation sets. They are called Lausanne Protocol I and II, denoted as LP1 and LP2 in this
paper. Thus, besides the data for training the model, the following four data sets are available for
evaluating the performance: LP1 Eval, LP1 Test, LP2 Eval and LP2 Test. Note that LP1 Eval and
LP2 Eval are used to calculate the optimal thresholds that will be used in LP1 Test and LP2 Test,
respectively. Results are reported only for the test sets, in order to be as unbiased as possible (using
an a priori selected threshold). Table 1 is the summary of how the data sets are partitioned. In both
configurations, the test set remains the same. However, there are three training shots per client for
LP1 and four training shots per client for LP2. More details can be found in [36].

5.2 Summary of Fusion Experiments

As many as 13 baseline experiments and 104 fusion experiments were carried out to evaluate various
VR techniques on the common XM2VTS database. The baseline experiments have been reported
elsewhere in the literature (see Appendix B) whereas the fusion experiments appeared in [45]. However,
a very brief summary of these experiments were included in Appendix B5. The baseline system
performances can be found in Table 2. The 104 fusion experiments are divided as follow: 63 (21
datasets × 3 fusion methods) multimodal fusion experiments (see Table 3), 27 (9 datasets× 3 methods)
multi-feature fusion experiments, 6 (2 datasets × 3 methods) multi-classifier experiments (see Table 4)
and 8 (2 datasets × 4 methods) synthetic multi-sample experiments (see Table 5). Each of these
experiments corresponds to the following techniques: VR via modalities, extractors, classifiers and
synthetic samples, as surveyed in Section 2.2. The experiments are summarised by evaluating their
βmean and βmin, as shown in Figures 5 and 6, respectively. Note that the β’s for VR via synthetic
samples are actually βreal, as clarified in Section 4 already.

In both figures, the VR techniques are ordered such that the one with the highest computation
and/or physical cost is ranked first while the one with the lowest cost is ranked last. VR via modalities
has the highest cost since adding a biometric modality requires additional hardware (sensor) and
software (feature extractor, classifier module, etc). To implement VR via extractors, only additional

5The goal of this paper is to provide evidences that EER can be reduced due to VR techniques. This section
essentially provide empirical evidences and it complements the theoretical evidences already examined in Section 3
and 4. Due to overwhelmingly many details involved, we cannot discuss how those baseline/fusion experiments are
carried out in this paper. Interested readers are strongly encouraged to refer to [45].

Table 1: The Lausanne Protocols of XM2VTS database

Data sets Lausanne Protocols
LP1 LP2

Training client accesses 3 4
Evaluation client accesses 600 (3 × 200) 400 (2 × 200)
Evaluation impostor accesses 40,000 (25 × 8 × 200)
Test client accesses 400 (2 × 200)
Test impostor accesses 112,000 (70 × 8 × 200)
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Figure 5: Boxplot of βmean. Each bar shows the data within 95% of confidence. The vertical line
around the middle of each bar is the median of βmean. Dotted lines at each end of a bar are extreme
values laying outside the 95% confidence interval. For VR via synthetic samples, βreal is used in place
of βmean. The x-axis of all the boxplots are aligned so that βmean across different VR techniques are
comparable.

feature extractors and classifiers are required. The implementation cost of VR via classifiers is less
than that of VR via extractors because the former does not need feature extractors6.

Recall that βmean compares the average performance of baseline systems against the combined
system whereas βmin compares the best baseline system against the combined system. For both cases,
β ≥ 1 implies that the combined system is better. Figure 5 shows that βmean of all the VR techniques
are greater than or equal to 1. This confirms the theoretical findings in Sections 3 and 4.

On the other hand, not all VR techniques can achieve βmin ≥ 1. In both cases, VR via modalities
outperform other VR techniques. It is not obvious that VR via extractors are better than VR via
classifiers. It should be noted that there are only two experiments in VR via classifiers for each
method compared to 9 experiments in VR via extractors. Hence, it is difficult to compare both sets
of experiments. It is certain that, however, VR via synthetic/virtual samples brings the least gain.

One conclusion that can be drawn from here is that higher diversity will incur higher com-

6Feature extractors can be seen as a pre-processing to classifiers. In practice, this pre-processing improves class
discriminability. In some situations, the boundary between input features and “extracted” features is not clear. As a
result, the difference between diversity due to features and due to classifiers is subtle. The discussion here is principally
motivated by architectural diversity.
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Figure 6: Boxplot of βmin. Each bar shows the data within 95% of confidence. The vertical line
around the middle of each bar is the median of βmin. Dotted lines at each end of a bar are extreme
values laying outside the 95% confidence interval. For VR via synthetic samples, βreal is used in place
of βmin. The x-axis of all the boxplots are aligned so that βmin across different VR techniques are
comparable.

putation/hardware cost, and vice versa. Apart from the implementation cost, there is also a
matching user convenience cost. In general, by adding more biometric sensors, the system becomes
less convenient to the user, if the user was obliged to provide all the biometric data. From the engi-
neering point of view, one should achieve a balance between the level of accuracy that is required and
the different “costs” associated to increasing the diversity via VR techniques.

In terms of the type of fusion methods to use, we could categorise the mean operator as non-
trainable fusion whereas support vector machines (SVMs) and Multi-Layer Perceptrons (MLPs) as
trainable fusion. For VR via modalities, extractors and classifiers, it seems that trainable fusion
performs at least as good as non-trainable fusion, if not better. On the other hand, the choice of
classifier is less obvious for VR via synthetic samples.

6 Conclusions

Multimodal biometric authentication has shown perennial successes both in research and applications.
This paper casts a light on why BA systems can be improved by fusion (fusing opinions of different
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experts), principally due to diversity of biometric modalities, features, classifiers and samples. We
call these techniques collectively as Variance Reduction (VR) techniques because fusion effectively
reduces class-dependent variance. The mentioned diversity are hence called VR via modalities, ex-
tractors/features, classifiers and samples. A survey in the literature showed that these interrelated
techniques have already been presented elsewhere. Unfortunately, until now, there is no systematic
comparative study of these techniques yet. This somewhat motivated this paper.

We showed that by reducing class-dependent variance (of client and impostor scores), the Equal
Error Rate is effectively reduced. By assuming that the client and impostor scores are generated by
two Gaussians, we derived a measure of quality called “F-ratio”, which happens to be very similar to
the Fisher-ratio criterion. EER is shown to be a function of F-ratio. In fact, EER calculated from
F-ratio can roughly approximate EER measured directly from the score data. Different from most
analysis, our analysis does not make the assumption that the baseline expert opinions are uncorrelated.
Indeed, the correlation is taken into account by the covariance matrix of different baseline experts.

Having acquired a better understanding of EER, we proceed to show that reduced class-dependent
variance leads to reduced EER. In addition to the theoretical evidence, empirical evidences on 104
fusion experiments confirmed that the EER of the combined system is guaranteed to be lower than
the average EER of all the baseline systems. Unfortunately, there is no evidence that the EER of the
combined system is better than the minimum EER of all the baseline systems. The experiments do
confirm that VR via modalities is the most effective way to reduce EER among the VR techniques
while VR via samples is the least effective. Interestingly, the most effective technique incurs also the
highest cost – in terms of additional computation, hardware and user inconvenience, and vice-versa
for the least effective technique, i.e., VR via samples. Although the VR techniques were tested on
XM2VTS database, we conjecture that the same trend will be observed if different databases have
had been used.

Based on the 104 fusion experiments, trainable fusion classifiers (using Multi-Layer Perceptrons
and Support Vector Machines) is at least as good as non-trainable fusion classifiers (provided that
the capacity (degree of flexibility) of the trainable classifiers are tuned correctly) for all the VR
techniques investigated, except for VR via synthetic samples. For this case, there is no evidence that
a trainable classifier is better than a non-trainable one. The success of fusion hence is attributed to
two aspects: the underlying diversity among different baseline systems; and the discriminative power
of the combination mechanism (fusion). Although both aspects are important, we conjecture that
the first aspect has a higher influence than the second aspect for all VR techniques except VR via
synthetic samples; in other words, it is sufficient to merge scores obtained from VR via synthetic
samples using the mean operator.

This paper could serve as a useful guide from engineering point of view, since choosing a particular
VR technique will bring about a given level of accuracy but at the same time also incur a particular
cost. As such, in biometric applications involving the highest level of security, VR via modalities
should be used and with it, user’s convenience may be tolerated.

A Proof of (N − 1)
∑N

i=1 σ2
i =

∑N
i=1,i<j(σ

2
i + σ2

j )

Let σi be a random variable and i = 1, . . . , N . The term
∑N

i=1,i<j(σ
2
i + σ2

j ) can be interpreted as
∑N

i=1

∑N

j=i+1
(σ2

i + σ2
j ). The problem now is to count how many σ2

k there are in the term, for any
k = 1, . . . , N .

There are two cases here. The first case is when i = k, the term
∑N

i=1

∑N

j=i+1
(σ2

i + σ2
j ) becomes:

∑N

j=k+1
(σ2

k + σ2
j ). There are (N − k) terms of σ2

k .

In the second case, when j = k, the term
∑N

i=1

∑N

j=i+1
(σ2

i + σ2
j ) then becomes:

∑k−1

i=1
(σ2

i + σ2
k).

There are (k − 1) terms of σ2
k.

The total number of σ2
k is just the sum of these two cases, which is (N − k) + (k − 1) = (N − 1),

for any k drawn from 1, . . . , N . The sum of (N − 1) σ2
k over all possible k = 1, . . . , N then gives
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(N − 1)
∑N

k=1
σ2

k. Therefore, (N − 1)
∑N

i=1
σ2

i =
∑N

i=1,i<j(σ
2
i + σ2

j ). �

B Baseline Experts used on the XM2VTS Database

B.1 Face and Speech Features

The face baseline experts are based on the following features:

1. FH: normalised face image concatenated with its RGB Histogram (thus the abbreviation
FH) [39].

2. DCTs: DCTmod2 features [56] extracted from face images with a size of 40 × 32 (rows ×
columns) pixels. The DCT coefficients are calculated from an 8 × 8 window with horizontal
and vertical overlaps of 50%, i.e., 4 pixels in each direction. Neighbouring windows are used to
calculate the “delta” features. The result is a set of 35 feature vectors, each having a dimen-
sionality of 18. (s indicates the use of this small image compared to the bigger size image with
the abbreviation b.)

3. DCTb: Similar to DCTs except that the input face image has 80 × 64 pixels. The result is a
set of 221 feature vectors, each having a dimensionality of 18.

The speech baseline experts are based on the following features:

1. LFCC: The Linear Filter-bank Cepstral Coefficient (LFCC) [50] speech features were computed
with 24 linearly-spaced filters on each frame of Fourier coefficients sampled with a window length
of 20 milliseconds and each window moved at a rate of 10 milliseconds. 16 DCT coefficients are
computed to decorrelate the 24 coefficients (log of power spectrum) obtained from the linear
filter-bank. The first temporal derivatives are added to the feature set.

2. PAC: The PAC-MFCC features [25] are derived with a window length of 20 milliseconds and
each window moves at a rate of 10 milliseconds. 20 DCT coefficients are computed to decorrelate
the 30 coefficients obtained from the Mel-scale filter-bank. The first temporal derivatives are
added to the feature set.

3. SSC: These features, originally proposed for speech recognition [42], were used for speaker
authentication in [49]. It was found that mean-subtraction could improve these features signif-
icantly. The mean-subtracted SSCs are obtained from 16 coefficients. The γ parameter, which
is a parameter that raises the power spectrum and controls how much influence the centroid, is
set to 0.7. Also The first temporal derivatives are added to the feature set.

B.2 Classifiers

Two different types of classifiers were used for these experiments: Multi-Layer Perceptrons (MLPs)
and a Bayes Classifier using Gaussian Mixture Models (GMMs) [3]. While in theory both classifiers
could be trained using any of the previously defined feature sets, in practice MLPs are better at
matching feature vectors of fixed-size while GMMs are better at matching sequences (feature vectors
of unequal size). Whatever the classifier is, the hyper-parameters (e.g. the number of hidden units
for MLPs or the number of Gaussian components for GMMs) are tuned on the evaluation set LP1
Eval. The same set of hyper-parameters are used in both LP1 and LP2 configurations of the XM2VTS
database.

For each client-specific MLP, the feature vectors associated to the client are treated as positive
patterns while all other feature vectors not associated to the client are treated as negative patterns. All
MLPs reported here were trained using the stochastic version of the error-back-propagation training
algorithm [3].
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For the GMMs, two competing models are often needed: a world and a client-dependent model.
Initially, a world model is first trained from an external database (or a sufficiently large data set) using
the standard Expectation-Maximisation algorithm [3]. The world model is then adapted for each client
to the corresponding client data using the Maximum-A-Posteriori adaptation [19] algorithm.

B.3 Baseline Systems

The baseline experiments based on DCTmod2 feature extraction were reported in [8] while those based
on normalised face images and RGB histograms (FH features) were reported in [39]. Details of the
experiments, coded in the pair (feature, classifier), for the face experts, are as follows:

1. (FH, MLP) Features are normalised Face concatenated with Histogram features. The client-
dependent classifier used is an MLP with 20 hidden units. The MLP is trained with geometrically
transformed images [39].

2. (DCTs, GMM) The face features are the DCTmod2 features calculated from an input face
image of 40 × 32 pixels, hence, resulting in a sequence of 35 feature vectors each having 18
dimensions. There are 64 Gaussian components in the GMM. The world model is trained using
all the clients in the training set [8].

3. (DCTb, GMM) Similar to (DCTs,GMM), except that the features used are DCTmod2 features
calculated from an input face image of 80×64 pixels. This produces in a sequence of 221 feature
vectors each having 18 dimensions. The corresponding GMM has 512 Gaussian components [8].

4. (DCTs, MLP) Features are the same as those in (DCTs,GMM) except that an MLP is used
in place of a GMM. The MLP has 32 hidden units [8]. Note that in this case a training example
consists of a big single feature vector with a dimensionality of 35 × 18. This is done by simply
concatenating 35 feature vectors each having 18 dimensions7.

5. (DCTb, MLP) The features are the same as those in (DCTb,GMM) except that an MLP with
128 hidden units is used. Note that in this case the MLP in trained on a single feature vector
with a dimensionality of 221× 18 [8].

and for the speech experts:

1. (LFCC, GMM) This is the Linear Filter-bank Cepstral Coefficients (LFCC) obtained from
the speech data of the XM2VTS database. The GMM has 200 Gaussian components, with the
minimum relative variance of each Gaussian fixed to 0.5, and the MAP adaptation weight equals
0.1. This is the best known model currently available [47] under clean conditions.

2. (PAC, GMM) The same GMM configuration as in LFCC is used. Note that in general,
200-300 Gaussian components would give about 1% of difference of HTER [47]. This system
is particularly robust to very noisy conditions (more than 18 dBs, as tested on the NIST2001
one-speaker detection task).

3. (SSC, GMM) The same GMM configuration as in LFCC is used [49]. This system is known
to provide an optimal performance under moderately noisy conditions (18-12 dBs, as tested on
NIST2001 one-speaker detection task).

The baseline performances are shown in Table 2. The fusion experiments based on VR via modal-
ities are shown in Table 3; VR via extractors in Table 4 (rows 1–9); VR via classifiers in Table 4 (rows
10–11); and VR via synthetic samples in Table 5.

7This may explain why MLP, an inherently discriminative classifier, has worse performance compared to GMM, a
generative classifier. With high dimensionality yet having only a few training examples, the MLP cannot be trained
optimally. This may affect its generalisation on unseen examples. By treating the features as a sequence, GMM was
able to generalise better and hence is more adapted to this feature set.
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Table 2: Baseline performance in HTER(%) of different modalities evaluated on XM2VTS based on
a priori selected thresholds

Data sets (Features, FAR FRR HTER
classifiers)

Face LP1 Test (FH,MLP) 1.751 2.000 1.875
Face LP1 Test (DCTs,GMM) 4.454 4.000 4.227
Face LP1 Test (DCTb,GMM) 1.840 1.500 1.670
Face LP1 Test (DCTs,MLP) 3.219 3.500 3.359
Face LP1 Test (DCTb,MLP) 4.443 8.000 6.221

Speech LP1 Test (LFCC,GMM) 1.029 1.250 1.139
Speech LP1 Test (PAC,GMM) 4.608 8.000 6.304
Speech LP1 Test (SSC,GMM) 2.374 2.500 2.437

Face LP2 Test (FH,MLP) 1.469 2.250 1.860
Face LP2 Test (DCTb,GMM) 1.039 0.250 0.644

Speech LP2 Test (LFCC,GMM) 1.349 1.250 1.300
Speech LP2 Test (PAC,GMM) 5.283 8.000 6.642
Speech LP2 Test (SSC,GMM) 2.276 1.750 2.013
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Table 3: Performance in (%) of HTER of VR via modalities on XM2VTS based on a priori selected
thresholds. “Joint HTER” are the HTERs of the combined experts via the mean operator, MLP and
SVM. The column “mean HTER” refers to the mean HTER of each of the two underlying experts.
Similarly, the column “min HTER” refers to the minimum HTER of the two underlying experts.
Numbers in bold are the best HTER among the three fusion methods.

(a) Face experts and (LFCC,GMM) expert

Data sets Face, Joint HTER mean min
Experts mean MLP SVM HTER HTER

LP1 Test (FH,MLP) 0.399 0.366 0.381 1.507 1.139
LP1 Test (DCTs,GMM) 0.537 0.576 0.613 2.683 1.139
LP1 Test (DCTb,GMM) 0.520 0.483 0.475 1.405 1.139
LP1 Test (DCTs,MLP) 0.591 0.611 0.587 2.249 1.139
LP1 Test (DCTb,MLP) 0.497 0.489 0.485 3.680 1.139
LP2 Test (FH,MLP) 0.151 0.150 0.389 1.580 1.300
LP2 Test (DCTb,GMM) 0.147 0.130 0.252 0.972 0.644

(b) Face experts and (PAC,GMM) expert

Data sets Face, Joint HTER mean min
Experts mean MLP SVM HTER HTER

LP1 Test (FH,MLP) 1.114 0.856 0.970 4.090 1.875
LP1 Test (DCTs,GMM) 1.407 1.425 1.402 5.266 4.227
LP1 Test (DCTb,GMM) 0.899 0.900 0.923 3.987 1.670
LP1 Test (DCTs,MLP) 1.248 1.056 1.009 4.832 3.359
LP1 Test (DCTb,MLP) 3.978 2.455 2.664 6.263 6.221
LP2 Test (FH,MLP) 1.282 0.765 0.855 4.251 1.860
LP2 Test (DCTb,GMM) 0.243 0.222 0.431 3.643 0.644

(c) Face experts and (SSC,GMM) expert

Data sets Face, Joint HTER mean min
Experts mean MLP SVM HTER HTER

LP1 Test (FH,MLP) 0.972 0.786 0.742 2.156 1.875
LP1 Test (DCTs,GMM) 1.028 1.175 1.213 3.332 2.437
LP1 Test (DCTb,GMM) 0.756 0.704 0.742 2.053 1.670
LP1 Test (DCTs,MLP) 1.167 0.829 0.850 2.898 2.437
LP1 Test (DCTb,MLP) 2.986 1.176 1.121 4.329 2.437
LP2 Test (FH,MLP) 0.901 0.302 0.404 1.937 1.860
LP2 Test (DCTb,GMM) 0.049 0.162 0.383 1.329 0.644
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Table 4: Performance in (%) of HTER of VR via extractors and classifiers on XM2VTS based on a
priori selected thresholds. Columns are explained in Table3.

Data sets (Features, Joint HTER mean min
classifiers) mean MLP SVM HTER HTER

LP1 Test (FH,MLP)
(DCTs,GMM)

1.641 1.379 1.393 3.051 1.875

LP1 Test (FH,MLP)
(DCTb,GMM)

1.123 1.151 1.528 1.772 1.670

LP1 Test (FH,MLP)
(DCTs,MLP)

1.475 1.667 1.476 2.617 1.875

LP1 Test (FH,MLP)
(DCTb,MLP)

1.948 1.933 1.938 4.048 1.875

LP1 Test (LFCC,GMM)
(SSC,GMM)

1.296 1.444 1.142 1.788 1.139

LP1 Test (PAC,GMM)
(SSC,GMM)

3.594 2.954 2.663 4.370 2.437

LP2 Test (FH,MLP)
(DCTb,GMM)

0.896 0.670 0.488 1.252 0.644

LP2 Test (LFCC,GMM)
(SSC,GMM)

1.107 1.034 1.063 1.656 1.300

LP2 Test (PAC,GMM)
(SSC,GMM)

2.614 2.316 2.125 4.328 2.013

LP1 Test (DCTs,GMM)
(DCTs,MLP)

2.873 2.486 2.697 3.793 3.359

LP1 Test (DCTb,GMM)
(DCTb,MLP)

2.898 1.532 1.471 3.946 1.670

Table 5: Performance in (%) of HTER of different combination methods of synthetic scores. The
original method use only real samples while the other methods used. real and synthetic samples, i.e.,
geometrically transformed face images.

Method HTER
LP1 LP2

Original 1.875 1.737
Mean 1.612 1.518

Median 1.667 1.547
GMM† 1.709 1.493

Entropy ‡ 1.606 1.559

• † “GMM” is fusion using log-likelihood ratio between a Gaussian Mixture Model (GMM) mod-
eling the client scores and another modeling the impostor scores.

• ‡ “Entropy” is fusion of virtual scores, by evaluating the difference of two relative entropies:
the relative entropy between distribution of the virtual scores and that of client scores; and the
relative entropy between distribution of the virtual scores and that of impostor scores. Details
can be found in [45].


