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Abstract

The paper argues on examples of selected past works that stochastic and knowledge-based
approaches do not contradict each other. Frequency resolution of human hearing is
decreasing with increasing frequency. Spectral basis designed for optimal discrimination
among different phonemes of speech have similar property. Further, human hearing is most
sensitive to modulations with frequency around 4 Hz. Filters on feature trajectories, designed
for optimal discrimination among phonemes of speech are bandpass with central frequency
around 4 Hz.

1. I ntroduction

Speech signal originates in speaker vocal organs, it is to be processed by human auditory
system, and it has its purpose, which is a communication among human beings. This
knowledge can be used to advantage in designing speech processing techniques. Such
techniques are often called the knowledge-based processing techniques.

Variability of speech signal due to non-linguistic information sources such as
environmental noise, or anatomical and idiosyncratic differences among various speakers is
not well understood and its influence on the signal appears amost random. The so called
stochastic cpeech processing techniques that attempt to deal with this random component in
the signal are currently dominating the field.

When it comes to information rate reduction for speech recognition, both the deterministic
and the stochastic techniques use knowledge. The difference is that in the knowledge—based
techniques the knowledge may come from relevant speech production and speech perception
experiments while in stochastic techniques, the knowledge comes from large amounts of
training data.

Most would agree that the strategies using the knowledge derived from data appear to work
better. On the other hand, the stochastic techniques do require large amounts of the datato get
the knowledge. One cannot help wondering if the stochastic techniques do not waste the data
on re-learning the same speech-specific knowledge every time again and again. Is there any
way to use the knowledge derived by the stochastic techniques from one data set on a new
problem? What isit that the stochastic techniques derive from the data?

Given that speech evolved to be heard, it should not be surprising to find out that an
examination of stochastic techniques optimized on large amounts of speech data turn out to be
consistent with relevant properties of human speech production and perception.

2. Linear discriminant analysis

The linear discriminant analysis (LDA) is a stochastic technique that attempts to optimise
the linear discriminability between classes in the presence of undesirable within-class
variability (see e.g. [Hunt 1979, Brown 1987] for some examples of previous use of LDA in
ASR). It requires that class affiliation of each vector in the data used for the analysis is known
(the database is |abelled).

LDA is most often applied to sequences of severa short-term feature vectors [Braun 1987].
In such applications, the resulting linear discriminants form two-dimensional filters that are



to be applied to time-feature plane. In this paper, however, we review works that allow for
interpretation of LDA results in terms of either a) variable-resolution spectral bases that may
indicate certain spectral resolution of speech analysis, or b) the FIR RASTA filters that may
indicate certain range of modulation frequencies, that are desirable for classification of
speech.
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Fig. 1 Two possible ways of forming labelled vectors for LDAT analysis of short-
term spectra.

In the first case, reported in [Malayath and Hermansky 2002, 2003] and shown in the A
part of the Figure 1 , LDA was applied to vector space of logarithmic Fourier spectra of
speech,. Inthiscase, theresulting LDA discriminant matrix consists of basis for projection of
the short-term spectra . Such basis represent an alternative to the conventional cosine basis of
the cepstral projection. The vector labelling is in this case trivia since each vector is clearly
affiliated only with a single class. The second way of applying LDA was reported in [van
Vuuern and Hermansky 1997] and shown in the B part of the Figure 1. In this case, the LDA
was applied to the vector space formed from segments of tempora trgectories of spectral
energies. The LDA discriminant matrix in this case consists of FIR filters to be applied on
time trgjectories of logarithmic spectral energies. In reported experiments about 1 s long
temporal vectors were used. Each vector spanned much more than a single phoneme, and
was labelled by the phoneme at the centre of the vector.



3. Critical-bands of hearing

Fletcher observed that signal with frequency components outside a certain “critical band”
does not affect detection of an another signa with its frequency components inside this
“critical band” (see [Fletcher 1953] for the review of their earlier experiments that revealed
existence of the critica bands). This is a clear evidence of the ability of human hearing to
separate different spectral components of the acoustic signal into individual bands for the
further processing. An important property of such “critical-band-like” spectral analysisis that
its frequency resolution is lower at higher frequencies [Fletcher 1953]. Similar spectral scale
has been observed in experiment with perception of pitch of tones [Shower and Biddulph
1931]. Even though neither the masking experiments nor the experiments with perception of
pitch suggest that spectral profiles of sounds are the entities extracted and used by hearing for
the sound classification, benefits of the critical-band-like spectral resolution in ASR seemsto
be well established through years of comparative ASR experiments. The critical-band-like
spectral anaysis is often emulated in speech processing by weighted summation of the short-
term Fourier spectrum [Davis and Mermelstein 1980, Hermansky 1990].

Malayath and Hermansky [Malayath and Hermansky 2002, 2003] applied LDA to short-
term spectral vectors from Fourier analysis (20 ms hamming window, 10 ms analysis step) of
all monophthong vowels from OGI Stories database (OGI Stories contain about 3 hours of
fluent American English telephone-quality speech from more than 200 adult speakers of both
genders, hand-labelled by phonemes). The LDA was used to find such projections of the
logarithmic short-term spectrum (spectral basis) that would allow for optimal discrimination
among the vowels.
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Figure 2 Spectral basis derived by LDA technique
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Figure 3 Sensitivity to frequency change of a synthetic formant for three different
spectral analysis techniques. As expected, the cepstral projection yields approximately
uniform sensitivity while the sensitivity of the LDA-derived projection is similar to
the sensitivity of the emulated critical-band filter-bank

The first four spectral basis from their LDA analysis are illustrated in Fig. 2. Notice that
period of these spectral basis is shorter at lower frequencies. Subsequently, speech analysis
that employs such spectral basis has higher spectral resolution at lower frequencies.
[Malayath and Hermansky 2002, Malayath and Hermansky 2003] show by sensitivity
analysis of emulated critical-band filter-bank and the LDA-derived spectral projection that the
spectral resolution implied by spectral basisin Fig. 2 is very similar to spectral resolution of
auditory-like Bark frequency scale (Fig. 3).

This finding supports earlier results of [Umesh et a. 1997] who derived auditory-like
frequency warping by minimizing differences between speech from different talkers.

The optimality of logarithmic-like spectral scale in discrimination of vowels is not
surprising. Changes in the position of the tract constriction cause roughly equal relative
changes in formant frequencies. That is. when, as a result of change in the front cavity shape
the first formant changes from its initial position around 500 Hz by say 10 Hz, the second
formant moves from its initial 1500 Hz by about 30 Hz and the third by about 50 Hz) i.e. the
resulting vowel spectrum changes about uniformly on the logarithmic frequency scale.

4, Per ception of modulations

Since early experiments in perception of modulated signals [Riesz 1928] it is known that the
ear is most sensitive to modulations around 4 Hz. This finding has been subsequently verified
anumber of times (see [Kay 1982] for areview). Further, extensive experiments of Drullman
and his colleagues [Drullman et al 1994] and Ara and his colleagues [Arai et al 1999] have
shown that for maintaining the high intelligibility of speech, only the spectral envelope
changes between about 1 and 15 Hz are necessary.

In the model, the sensitivity of human hearing to spectral envelope changes can be emulated
by filtering temporal trgjectories of computed parameters. This has been done in RASTA
processing of speech [Hermansky and Morgan 1994] to attenuate the features with rate-of -



change that is not expected for speech. The initial ad hoc form of the RASTA filters was
optimised on a relatively small series of ASR experiments with noisy telephone digits. The
form of the optimised RASTA filter independently confirmed Drullman et a and Arai et al. —
the filter passes components between 1 and 15 Hz and attenuated slower and faster changing
parameters.

Van Vuuren and Hermansky formed 101-dimensional vector space from logarithmic
outputs of the emulated critical-band filter-bank [Hermansky 1990] with vectors labelled by
their respective phoneme classes. Each vector then spanned about 1 s at 100 Hz sampling
frequency. LDA analysisyielded a 101 X 101 scatter matrix, decomposed into its principal
components. Then the principa vectors represented FIR filters, which most efficiently (with
respect to the within-class and the across-class variability) mapped the 101-dimensional input
space to a single point of the output space. Since the target classes were context independent
phonemes (just like in the previous experiment in the LDA design of the spectral basis), such
designed FIR filters attempted to compensate for the coarticulation with neighbouring
phonemes. Further, they also attempted to compensate for other sources of non-linguistic
variability such as noise.

Frequency responses of the first three FIR filters derived from about 60 hours of
forcefully-aligned Switchboard database are shown in Fig. 3 from [Hermansky 1997]. Filters
for different frequency channels are similar. The frequency characteristic (shown at in the
right part of the figure) are generally consistent with RASTA [Hermansky and Morgan 1994],
and delta, and double-delta feature of speech [Furui 1981]. However, impulse responses of
the data-derived filters shown in the upper part of the figure suggest preference for the zero-
phase filters. Effective parts of the impulse responses appear to span at least 250 ms.
Interesting fact is that the LDA filters derived at different frequencies (not shown here) are
roughly the same, i.e. the filters at say 500 Hz do not noticeably differ from the filters derived
at 3 kHz. This result would support the notion of the second (post-cochlear) time constant,
hypothesized since early works of Gabor [Gabor 1946].

The genera characterigtics of the data-derived RASTA filters appear to be relatively
independent of the particular database used for their design. The most important processing
involves a mild temporal lateral inhibition in which the average of several spectral values
around the current time instant is subtracted from the weighted average of spectral values
from surrounding past and future contexts. Next is the difference between weighted averages
from left and right contexts of the current frame (the first derivative of the first discriminant
vector), followed by an aggressive mexican hat temporal lateral suppression (the second
derivative of the first discriminant vector) implying quite narrow band-pass filter with
12dB/oct slope. Such impulse responses can be interpreted as a difference of two Gaussians
(the first discriminant) and its derivatives (higher discriminants). Mexican hat-like dynamics-
enhancing functions are hypothesized to be important for scene interpretation by human
visual system [Marr 1982].
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Figure 3 Impulse and frequency responses of the first three discriminant vectors
from the LDA-derived discriminant matrix. The filters for the 5 Bark frequency
channel are shown here. Filters for the other carrier frequencies studied (between 1 and
14 Bark) are very similar.

5. Data-guided processing and human auditory per ception.

Spectral basis derived by LDA and shown in Fig. 2, were applied for deriving of small
number of linearly-separable features from the short-term FFT logarithmic power spectrum.
The only build-in prior knowledge from hearing is the use of the power spectrum. (This may
be justified by frequency selectivity of human cochlea and by one-way rectification of
auditory hair-cell firings). The LDA technique is otherwise rather ignorant in matters of
human psychophysics and/or physiology and merely attempts to do the engineering job of
efficient separation of speech sound classes. Yet, it delivers spectral resolution that is
consistent with human hearing!

The same may be said of LDA-derived RASTA filters. The impulse responses could have
been highly concentrated in time but they are not, implying that it is beneficial for
identification of phonemes in running speech to collect data from relatively large time spans,
significantly exceeding the typica 10-20 ms length of the analysis window [Yang et a.
2000]. Rather, consistently with the "critical time interval" observed in forward temporal
masking and many other perceptual phenomena, the time span for the information extraction
is several hundreds of ms. Frequency responses of the dominant discriminants are band-pass,
passing the range of modulation frequencies between roughly 1 Hz and 15 Hz where human



hearing is the most sensitive. Thus, again, the temporal processing that is needed for a good
classification of phoneme-like speech sounds is quite consistent with temporal properties of
human hearing.
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Fig. 4 Optimal distribution of signal energy in noisy channel (adopted from [Galagher
1968])

Why would optimization of signal processing module on speech data result in human-like
processing? Are the properties of human hearing imprinted on speech signal? Come to think
of it, what else should we expect? Information theory teaches that optimal signal for
communication through noisy channel should confirm to properties of the channel [Gallager
1968]. Then, imprinted on the signal, one should see some properties of the communication
channel for which the signal was designed. Hearing likely existed before speech evolved - all
parts of the human speech production also serve more life-sustaining function than speech
production. It thus appears likely that they were adopted for speaking later in the course of
human evolution. Why would not forces of nature follow the same optimal strategy and form
speech obeying the same optimal principles, i.e. form it in such away that it iswell heard? As
a result, when engineer attempts to design an optimal processing strategy, she could end up
with the strategy that emul ates human hearing!

6. Summary

We discussed speech processing techniques that attempt to optimise processing in such a
way that the goal of the processing, i.e. the extraction of information from the speech signal,
is better achieved. Such techniques form a bridge between signal processing and stochastic
pattern classification and subsequently are trained on large amounts of speech data. The
consistency of resulting signal processing modules with some basic properties of human
hearing support optimality of hearing in decoding the linguistic message in speech.
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