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Abstract. We consider approximate inference in a class of switching linear Gaussian State
Space models which includes the switching Kalman Filter and the more general case of switch
transitions dependent on the continuous hidden state. The method is a novel form of Gaussian
sum smoother consisting of a single forward and backward pass, and compares favourably against
a range of competing techniques, including sequential Monte Carlo and Expectation Propagation.
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1 Gaussian Directed Acyclic Graphs (GaussDAGs)

A Gaussian DAG is a distribution over a set of vectors,

p(x1, . . . , xN ) =
∏

i

p(xi|xpa(i))

in which each local conditional distribution p(xi|xpa(i)) is a Gaussian. Here pa (i) denotes the variables
in the parental set of i. Each conditional Gaussian may be defined by the stochastic linear relation

xi =
∑

l∈pa(i)

Wi←lxl + ηi, ηi ∼ N
(

µ0
i ,Σ

0
i

)

(1)

Perhaps the most celebrated instance of a GaussDAG is the Kalman Filter [1, 2]. More recently
GaussDAGs have appeared as interesting models in spatio-temporal filtering [3] and the Fast Fourier
Transform [4]. Our interest in this paper is a stable version of approximate inference using Belief
Propagation in massive multiply-connected networks where exact inference is impractical.

In a typical application, the variables x are split into a set of hidden and visible variables x =
(h, v) and inference corresponds to the computation of the conditional p(h|v). Formally, inference
is straightforward, even in cases where the graph is multiply connected, since in GaussDAGs the
posterior means and covariances are given by

µh|v = µh + ΣhvΣ−1
vv (v − µv) , Σh|v = Σhh − ΣhvΣ−1

vv Σvh (2)

Here Σhv represents the h, v block of the joint covariance of p(h, v). Similarly, µh and µv are the
corresponding mean components of p(h, v). These means and covariances are easily found by forward
propagation of the recursions equation (1). Hence exact inference is bounded by O(|h|3) since this
is the complexity of matrix inversion. However, in many applications, such as the Kalman Filter,
this is unacceptably large since it would mean that computational effort grows cubically with time.
One can often exploit the structure to reduce this computation using the Junction Tree algorithm or,
equivalently in singly-connected graphs, Belief Propagation (BP).

Our interest in this paper is approximate inference when exact inference using the Junction Tree
algorithm is deemed impractical – for example in Kalman Filters with a very large hidden dimension.
BP is an attractive approximate algorithm in this case since, if it converges (in either its directed or
undirected manifestation) then the inferred means µh|v will be exact, although the covariance Σh|v

will typically be overconfident [5]. Exactness of the means is an important advantage of BP over other
techniques such as approximate block factorisations (see e.g. [6]). Linear algebra solutions based on
conjugate gradient methods are also interesting for computing the (in principle exact) posterior means,
although they are less easy to apply to computing the posterior covariances.

One approach to using BP is to convert the GaussDAG to an undirected pairwise Markov network,
p(x) ∝

∏

ij ψij(xi, xj)
∏

i ψi(xi) for suitable ψij(xi, xj) ≡ exp
(

−xT
i Aijxj

)

and ψi(xi) ≡ exp
(

− 1
2

(

xT
i Aiixi − 2xT

i ai

))

.

For example the directed two-node network p(x1, x2) ∝ exp(− 1
2 (x2 − Wx1)

2/σ2
2) exp(− 1

2x2
1/σ2

1) has
a1 = a2 = 0 and matrices A11 = I/σ2

1+W/σ2
2 , A12 = −WT /σ2

2 and A22 = I/σ2
2 ; in general one obtains

additional links ψij between common parents of any node. Undirected BP (UBP) can then be run on
the resulting network [5] by using the message recursions γi→j(xj) ∝

∫

xi

ψij(xi, xj)ψi(xi)
∏

k∈N(i)\j γk→i(xi),

where N(i) are the neighbours of node i on the Markov network; the posterior means are given by
p(xi) ∝ ψi(xi)

∏

k∈N(i) γk→i(xi). Our main concern with this approach is that if covariances are small

(or even zero), then the conversion will introduce numerical errors. Such issues are important in
large networks, such as Kalman Filters, where numerical instability can easily arise from accumulated
errors [1].
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Directed Belief Propagation

The classical Directed Belief Propagation (DBP) algorithm sends messages from a node to its children
and parents (see fig. 1) according to the recursions [7]

ρi→j(xi) =

∫

p(xi|xpa(i))
∏

l∈pa(i)

ρl→i(xl)
∏

k∈ch(i)\j

λk→i(xi)

λi→l(xl) =

∫

p(xi|xpa(i))
∏

l′∈pa(i)\l

ρl′→i(xl′)
∏

k∈ch(i)

λk→i(xi)

where the integrals are over all variables except the one on which the message depends. We choose to
parameterise the ρ messages using the moment representation

ρi→j(xi) ∝ exp−
1

2
(xi − fi→j)

T
F−1

i→j (xi − fi→j)

and the λ messages using the canonical representation

λi→l(xl) ∝ exp−
1

2

(

xT
l Gi→lxl − 2xT

l gi→l

)

(3)

Whilst there is a choice about whether to parameterise ρ in either moment or canonical form, no such
choice exists for the λ messages since G is generally not invertible. DBP then corresponds to updating
the parameters F, f,G, g.

If one carries out the integrals naively, then inverse noise covariances appear explicitly. For ex-
ample, consider a simple network k ← i ← l for which we wish to calculate the message λi→l(xl). If
p(xi|xl) is Gaussian, N (Wxl,Σ), this is given by

λi→l(xl) ∝

∫

dxi p(xi|xl) exp−
1

2

(

xT
i Gk→ixi − 2xT

i gk→i

)

Carrying out this integral naively gives gi→l = WT Σ−1
(

Gk→i + Σ−1
)−1

gk→i and

Gi→l = WT
(

Σ−1 − Σ−1
(

Gk→i + Σ−1
)−1

Σ−1
)

W

This is numerically problematic in the case of very small (or even zero) noise covariances. Whilst it
is possible to rearrange any resulting equations by using Woodbury identities to remove the inverses,
there is a simple trick which automatically produces recursions in the correct form, avoiding tedious
manipulations in more awkward situations. This trick is potentially of some general benefit, and our
main aim is to communicate this to the reader who may find applications also in other areas1. The
details of how to implement the DBP algorithm are straightforward once the use of the trick has been
grasped.

2 The Auxiliary Variable Trick

As we saw above, a naive integration method effectively converts ρ messages to the canonical rep-
resentation, and performs the integral in this representation. This is not dissimilar to what would
happen when converting the directed network to an undirected one. We would prefer to carry out the
integrals in a moment representation for ρ. In order to do this we therefore express the λ messages

1We have recently become aware of a related method in the context of state-space smoothers (M. Briers, personal
communication).
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l

i′ i

e j k

Figure 1: The structure of DBP. The message ρi→j(xi) sends to a child j depends on the parents
of i and the parents of any evidential children of i. λi→l(xl) depends on the same information and
messages as ρi→j(xi), except ρl→i(xi).

in a form where the canonical variables G, g appear in a moment form, by introducing an auxiliary

variable xk→i for each message λk→i. This is defined by

xk→i = Gk→ixi + ηk→i (4)

where ηk→i ∼ N (0, Gk→i). Then equation (3) can be written as

λi→l(xi) ∝ p(xi→l|xl)|xi→l=gi→l

There are different ways to achieve this representation of the λ message as a clamped distribution2.
In [8] we employed a slightly different form to stabilize Expectation Propagation for switching linear
dynamical systems and in [9] we showed how to use this trick for singly-connected Kalman Filters.
Here we wish to generalise this to the case of general multiply-connected GaussDAGs.

Normally in DBP, each node sends a λ message to each parent. However, in the case of an evidential
node e with only a single parent i and in the absence of noise, λe→i(xi) ∝ p(xe|xi) has an infinite
Ge→h. To deal with this, we do not parameterise λ messages from evidential children, but rather
simply include the relevant factors p(xe|xi) directly in the recursions, as we will now describe.

The ρ messages

Using the auxiliary variable method, and separating out evidential variables e ∈ E, we have

ρi→j(xi) ∝

∫

p(xi|xpa(i))
∏

l∈pa(i)

ρl→i(xl)
∏

k∈ch(i)\j,k 6∈E

p(xk→i|xi)
∏

e∈ch(i)\j,e∈E

p(xe|xi)

where xi→l is clamped to the value gi→l and xe is clamped to value ve. The usefulness of the auxiliary
variable is that we can identify the r.h.s. of the above equation as

ρi→j(xi) ∝ p(xi, {xk→i}, {xe})|{xk→i=gk→i},{xe=ve}

and since the joint distribution on the r.h.s. is Gaussian, the conditional distribution ρi→j(xi) =
p(xi|{xk→i = gk→i}, {xe = ve}) is easily found using equations (2).

The equations we need to determine the statistics of the joint distribution p(xi, {xk→i}, {xe}) are
equation (4) and

xi =
∑

l∈pa(i)

Wi←lxl + ηi, xe = We←ixi +
∑

i′∈pa(e)\i

We←i′xi′ + ηe (5)

2E.g. let xi→l = Bxi + ηi→l be clamped to a, with ηi→l ∼ N (0, A). We then require BT A−1B = Gi→l and
BT A−1a = gi→l. We choose simply A ≡ B ≡ BT = Gi→l.
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This gives the means and covariances

µi =
∑

l∈pa(i)

Wi←lfl→i + µ0
i , µk→i = Gk→iµi, µe = µ0

e + We←iµi +
∑

i′∈pa(e)\i

We←i′fi′→e

Σii =
∑

l∈pa(i)

Wi←lΣl→iW
T
i←l + Σ0

i , Σki = Gk→iΣii

Σkk = Gk→iΣiiGk→i + Gk→i, Σkk′ = Gk→iΣiiGk′→i,

Σee′ = We←iΣiiW
T
e′←i, Σek = We←iΣiiGk→i, Σei = We←iΣii

Σee = µ0
e + We←iΣiiW

T
e←i +

∑

i′∈pa(e)\i

We←lFi′→eW
T
e←i′ (6)

Note that Σee′ contains no correlations between the evidential nodes arising from parents i′ 6= i they
might share, reflecting the usual DBP prescription that nodes calculate their λ messages separately.

Now that we have the joint distribution p(xi, {xk→i}, {xe}), we need to clamp the xk→i and xe

into their appropriate states. The structure of this is that we have defined the joint p(y, z) where
y ≡ xi and z ≡ {xk→i}, {xe}, and wish to find p(y|z) with z clamped to specific values. In both the
mean and covariance, a slight difficulty is that Σzz may not be invertible; but ΣyzΣ

−1
zz remains well

defined. In general, the form of Σyz and Σzz is (here shown for two non-evidential children k and k′

other than j and one evidential child e):

Σyz =
(

ΣiiGk→i ΣiiGk′→i ΣiiW
T
e←i

)

We can write the covariance as

Σzz =





Gk→iΣii + I Gk→iΣii Gk→iΣiiW
T
e←i

Gk′→iΣii Gk′→iΣii + I Gk′→iΣiiW
T
e←i

We←iΣii We←iΣii Σee









Gk→i 0 0
0 Gk′→i 0
0 0 I





so that

ΣyzΣ
−1
zz =

(

Σii Σii ΣiiW
T
e←i

)





Gk→iΣii + I Gk→iΣii Gk→iΣiiW
T
e←i

Gk′→iΣii Gk′→iΣii + I Gk′→iΣiiW
T
e←i

We←iΣii We←iΣii Σee





−1

This gives fi→j = µy + ΣyzΣ
−1
zz (z − µz) and covariance Fi→j = Σyy − ΣyzΣ

−1
zz Σzy where explicitly

µy = µi, Σyy = Σii, zT = (gT
k→i, g

T
k′→i, v

T
e ) and µT

z = (µT
k , µT

k′ , µT
e ).

The λ messages

Using the same auxiliary variable trick as before, the λ messages may be written as

λi→l(xl) =

∫

p(xi|xpa(i))
∏

l′∈pa(i)\l

ρl′→i(xl′)
∏

k∈ch(i)\j,k 6∈E

p(xk→i|xi)
∏

e∈ch(i)\j,e∈E

p(xe|xi)

subject to clamping the auxiliary and evidential variables to their appropriate states. The λ message
is then given by the conditional

p({xk→i}, {xe}|xl) (7)

This is a little different from the ρ case since we are now interested in the functional dependence on
the conditioning variable xl. We therefore directly isolate the xl dependent terms in the conditional
distribution; from the quadratic form in xl in the exponent we can then read off the λ messages. The
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joint distribution of {xk→i}, {xe} (conditional on xl) is obtained from the relations (4) and (5), except
that in xi we now need to separate off the part dependent on xl:

xi =
∑

l′ 6=l

Wi←l′xl′ + Wi←lxl + ηi

Explicit expressions for the means and covariances follow directly for this. They involve the mean of
xi, which is µ̃ + Wi←lxl with

µ̃ ≡
∑

l′ 6=l

Wi←l′fl′→i + µ0
i

as well as the covariance of xi,

Σ̃ii =
∑

l′ 6=l

Wl′→iFl′→iW
T
i←l′ + Σ0

i

For the example case of two non-evidential children k, k′ and an evidential child e, the conditional
probability (7) is then proportional to

exp−

1

2

0

@

gk→i − Gk→i (µ̃ + Wi←lxl)
gk′

→i − Gk′
→i (µ̃ + Wi←lxl)

ve − µ0

e − We←i (µ̃ + Wi←lxl)

1

A

T

(MD)−1

0

@

gk→i − Gk→i (µ̃ + Wi←lxl)
gk′

→i − Gk′
→i (µ̃ + Wi←lxl)

ve − µ0

e − We←i (µ̃ + Wi←lxl)

1

A

As above for Σzz, we have decomposed the covariance matrix into

M =





Gk→iΣ̃ii + I Gk→iΣ̃ii Gk→iΣ̃iiW
T
e←i

Gk′→iΣ̃ii Gk′→iΣ̃ii + I Gk′→iΣ̃iiW
T
e←i

We←iΣ̃ii We←iΣ̃ii Σ̃ee



 , D =





Gk→i 0 0
0 Gk′→i 0
0 0 I





where Σ̃ee is obtained by replacing Σii → Σ̃ii in (6). To isolate the xl dependence we define

ck = gk→i − Gk→iµ̃, ce = e − µe − We←iµ̃, Uk = Wi←l, Ue = We←iWi←l

Then the above λ message is proportional to exp− 1
2 (c − DUxl)

T
(MD)−1 (c − DUxl) where cT =

(cT
k , cT

k′ , cT
e ) and UT = (UT

k , UT
k′ , UT

e ). This gives the message update

gi→l = UT M−1c, Gi→l = UT M−1DU

The posterior marginals, finally, are obtained in the standard way by just a slight modification of
the ρ message:

p(xi|v) =

∫

p(xi|xpa(i))
∏

l∈pa(i)

ρl→i(xl)
∏

k∈ch(i)

λk→i(xi)

3 Experiments on a Butterfly FFT network

An example of a GaussDAG which contains zero covariances was discussed in [4], and provides an
interesting and practical example for comparison of directed versus undirected BP methods. The Fast
Fourier Transform FFT(x) normally deals with only the case of complete observations x. An elegant
and potentially extremely useful method for dealing with missing data was proposed in [4], in which
the one dimensional FFT was considered as a generative GaussDAG with the structure of a so-called
butterfly network. This is based on the well-known recursion for computing the FFT of an n = 2d
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Figure 2: The FFT network for computing the Fourier Transform of an 8 component data vector.
The data vector v is clamped in reverse bit order in the bottom layer of the network. The Fourier
components (in standard order) are, after inference in this network, given by the bits in the top layer.
All nodes below the top layer have zero covariance so that with no missing data the top layer produces
the exact FFT. In the case of missing data, the prior in the top layer is used to make the inference
well-posed.

dimensional vector x in O(n log n) time. For W = exp(−2πi/n), the kth Fourier coefficient Fk is given
by

Fk =

n−1
∑

j=0

W kjxj =

n/2−1
∑

j=0

W 2kjx2j +

n/2−1
∑

j=0

W (2j+1)kx2j+1 = F e
k + W kF o

k

where F e
k and F o

k denote the kth component of the length-n/2 Fourier transform of the even and
components of xj , respectively. This indicates how the FFT can be recursively computed. The
inverse FFT can be computed similarly by replacing W by its complex conjugate. This means that we
can generate, from the Fourier coefficients at the top layer, the data points themselves (in reverse bit
order) in the bottom layer. The details of exactly how to do this are well explained in [4]. Using a prior
on the Fourier coefficients in the top layer, computing the Fourier coefficients in the case of missing
data is an inference problem in a GaussDAG in which some of the bottom layer nodes are clamped
to their evidential states, and we wish to infer the top layer Fourier coefficients (as well as possibly
the missing data in the bottom layer). In our implementation, we represent complex arithmetic using
an equivalent two component vector arithmetic. We use a zero mean prior on the Fourier coefficients,
and independent isotropic covariances. All noise covariances below the top layer are set to zero. In [4]
inference in this network was performed using undirected BP (UBP) by first transforming the network
into a pairwise Markov network. To deal with the problem of zero covariances, a small “jitter” value
was substituted instead. The jitter value can have a large effect on the numerical accuracy of UBP,
and we used 10−11 which was based on experiments with small networks, see fig. 3.

Naive UBP doesn’t work well since convergence is hampered by many loops of length four. In our
DBP we also found that the tight loops in the network caused difficulties with convergence, and as in
[4] used a clustering scheme to ameliorate this. We merge the two children of any parent node into a
cluster variable; each node except for those in the top layer is then contained in one such cluster. In the
top layer, we cluster nodes with common children, giving again non-overlapping clusters containing
two nodes each. In the UBP implementation of [4], nodes that form a loop of length four were merged
into four-node clusters (which can overlap each other). The two algorithms, UBP and DBP, then have
roughly the same computational complexity per iteration. Our DBP implementation is for general
GaussDAGs and so is not fine tuned to take advantage of the layered structure of the FFT network
as in [4]. We therefore compare the algorithms in terms of iterations (one update for each message)
rather than absolute run time. For a network of n = 16 nodes in each layer, we ran 100 experiments
with half of the n data points missing at random and the prior FFT variances selected from a uniform
distribution on (0, 1). First we ran both UBP and DBP to convergence, defined as the point where the
posterior means change by less than 10−15 from one iteration to the next. The number of iterations
used by both methods to reach this convergence tolerance was roughly the same, differing only by a
small number of iterations. However, in about a third of runs UBP struggled to converge to this high
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Figure 3: Left: For an FFT network computing the FFT of a 16 dimensional data vector, with half
of the components missing at random, the results of the UBP method of [4] are plotted as a function
of the jitter. Right: Comparison of the accuracy of the UBP and DBP methods after 20 iterations of
each algorithm. Plotted are the mean of the log of the absolute error, together with ± one standard
deviation over the 20 random experiments (see text) for each network size. The upper results are for
UBP and the lower ones for DBP.

tolerance and we then stopped it after a maximum of 50 iterations, which gave similar accuracy to
otherwise converged runs. The resulting mean absolute error of the inferred FFT components from the
true target values was (1.5± 1)× 10−8 for UBP and (3.2± 1.4)× 10−14 for DBP. Similar experiments
give for n = 32: (2.8 ± 1.1) × 10−8 for UBP and (8.6 ± 4) × 10−14 for DBP. Here UBP usually did
not converge within the maximally allowed 100 iterations, whereas DBP always converged within less
than 50 iterations. For n = 64, both UBP and DBP struggled to converge within 100 iteration, giving
errors of (9.2± 4)× 10−8 for UBP and (2.6± 1.1)× 10−13 for DBP. The increase in the errors stresses
the importance of numerical accuracy as we increase the network size.

In fig. 3 we also consider the accuracy of the two methods as we increase n at a fixed number of
iterations, chosen here as 20. The same random prior was used as before, with half the data vector
missing at random, and plotted are the mean error and standard deviation over 20 such experiments.
As we can see, the performance of both DBP and UBP deteriorates with increasing n, although DBP
remains consistently superior by at least two orders of magnitude; this becomes critically important
as the network size increases to practically interesting limits. The performance loss for larger net-
works is partly due to the longer convergence time required for both methods, with 20 iterations not
sufficient for convergence. If both methods are run to convergence, then DBP shows a more gradual
n-dependence of the mean error which almost tracks the one of UBP but remains at absolute error
levels that are lower by 5 to 6 orders of magnitude.

4 Discussion

Directed Gaussian networks are one of the most common forms of continuous graphical models, for
which accurate and stable inference techniques are of considerable interest. In cases where exact
inference is impractical, BP is a useful approximation since, when it converges, the posterior means
are correct. Whilst the two forms of BP – directed and undirected – may be made mathematically
equivalent, their numerical stability is different, and may be dramatically so in many practical sce-
narios where noise covariances are small or even zero. Our approach was to use the generic auxiliary
variable trick to easily derive a directed BP implementation without the explicit appearance of in-
verse noise covariances. The superior performance of directed over undirected Belief Propagation
on the FFT network suggests that our directed implementation may be suitable for approximate
inference in very large networks such as Kalman Filters with extremely large hidden dimensions
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and other important practical cases, for which approximate inference may be treated as marginals
of a massive multiply-connected graph. MATLAB code for inference in GaussDAGs is available at
http://www.idiap.ch/∼barber/GaussDAGs.zip.
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