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Abstract. In this paper we present a text independent on-line writer identification system
based on Gaussian Mixture Models (GMMs). This system has been developed in the context
of research on Smart Meeting Rooms. The GMMs in our system are trained using two sets of
features extracted from a text line. The first feature set is similar to feature sets used in signature
verification systems before. It consists of information gathered for each recorded point of the
handwriting, while the second feature set contains features extracted from each stroke. While
both feature sets perform very favorably, the stroke-based feature set outperforms the point-based
feature set in our experiments. We achieve a writer identification rate of 100% for writer sets with
up to 100 writers. Increasing the number of writers to 200, the identification rate decreases to
94.75%.
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Figure 1: Picture of the IDIAP Smart Meeting Room with the whiteboard to the left of the presen-
tation screen
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Figure 2: Schematic overview of the IDIAP Smart Meeting Room (top view)

1 Introduction

The aim of a Smart Meeting Room is to automate standard tasks usually performed by humans in a
meeting [12, 13, 15, 22]. These tasks include, for instance, note taking and extracting the important
issues of a meeting. To accomplish these tasks, a Smart Meeting Room is equipped with synchronized
recording interfaces for audio, video and handwritten notes.

The challenges posed in Smart Meeting Room research are manifold. In order to allow indexing
and browsing of the recorded data [23], speech [14], handwriting [9] and video recognition systems [4]
need to be developed. Another task is the segmentation of the meeting into meeting events. This
task can be addressed by using single specialized recognizers for the individual input modalities [15]
or by using the primitive features extracted from the data streams [12]. Further tasks deal with
the extraction of non-lexical information such as prosody, voice quality variation and laughter. To
authenticate the meeting participants and to assign utterances and handwritten notes to their authors,
identification and verification systems have to be developed. They are based on speech [11] and video
interfaces [5, 18] or on a combination of both [2].

The writer identification system described in this paper has been developed for the IDIAP Smart
Meeting Room [13]. This meeting room is able to record meetings with up to four participants. It
is equipped with multiple cameras, microphones, electronic pens for note-taking, a projector, and an
electronic whiteboard. Figure 1 shows a picture of this room, and a schematic overview is presented
in Fig 2.
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Figure 3: Recording session with the data acquisition device positioned in the upper left corner of the
whiteboard

The whiteboard shown in Figs. 1 and 2 is equipped with the eBeam1 system, which acquires the
text written on the whiteboard in electronic format. A normal pen in a special casing is used to write
on the board. The casing sends infrared signals to a triangular receiver mounted in one of the corners
of the whiteboard. The acquisition system outputs a sequence of (x, y)-coordinates representing the
location of the pen-tip together with a time stamp for each location. An illustration of the data
acquisition process is shown in Fig. 3.

In this paper we describe a system for writer identification using the on-line data acquired by the
eBeam interface. Our system uses Gaussian Mixture Models (GMMs) as classifiers which are often
used in state-of-the-art speaker verification systems [11]. Our system is text-independent, i.e., any
text can be used to identify the writer. In [20] a text-independent system for writer identification
is presented. This system uses off-line data, i.e., only an image of the handwriting, with no time
information, is available and HMM-based recognizers are used as classifiers. There exist other on-line
writer identification and verification systems in the literature [7]. These systems are mainly based on
signature, which makes them text dependent compared to our approach which is text independent.
An approach to writer verification for texts different from signature has been proposed in [24], but
there the transcription has to be made available to the system. To compare the results of our proposed
system with other work, we use a modified version of the on-line signature verification system described
in [17] as a reference in our experiments. A modification of the system described in [17] has to be
made because not all features, i.e., pen pressure, can be extracted from the electronic whiteboard
data.

The rest of the paper is structured as follows. In Sect. 2 we present two sets of on-line features for
our writer identification system. The Gaussian Mixture Model classifiers are described in Sect. 3. The
results of our experiments are presented in Sect. 4. Finally, Sect. 5 concludes the paper and proposes
future work.

2 Features

The text written on the whiteboard is encoded as a sequence of time-stamped (x, y)-coordinates.
From this sequence, we extract a sequence of feature vectors and use them to train the classifier.
Before feature extraction, some simple preprocessing steps are applied to remove spurious points and
to fill gaps within strokes [9]. In order to preserve writer specific information, no other normalization

1eBeam System by Luidia, Inc. – www.e-Beam.com
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Figure 4: Point-based features

operations, such as slant or skew correction, are applied and no resampling of the points is performed.
Furthermore, we do not interpolate missing points if the distance between two successive points of a
stroke exceeds a predefined threshold [6] as this would remove information about the writing speed of
a person.

In this paper we investigate two different approaches for the extraction of the features. In the
first approach, we extract features directly from the (x, y)-coordinates of the handwriting (denoted
as point-based features). In the second approach, we use strokes for the calculation of the features
(denoted as stroke-based features). A stroke starts with a pen-down movement of the pen and ends
with the next pen-up movement. Thus a stroke is a sequence of points during a certain time interval
when the pen-tip touches the whiteboard.

The features extracted in the first approach are similar to the ones used in on-line handwriting
recognition systems [19] and signature verification systems [7]. For a given stroke s consisting of points
p1 to pn, we compute the following five features for each consecutive pair of points (pi, pi+1); for an
illustration see Fig. 4:

• the length li of the line
li = d(pi, pi+1)

• the writing direction at pi, i.e., the cosine and sine of θi

cos(θi) = ∆x(pi, pi+1)

sin(θi) = ∆y(pi, pi+1)

• the curvature, i.e., the cosine and sine of the angle φi. These angles can be derived by the
following trigonometric formulas:

cos(φi) = cos(θi) ∗ cos(θi+1) + sin(θi) ∗ sin(θi+1)

sin(φi) = cos(θi) ∗ sin(θi+1) − sin(θi) ∗ cos(θi+1)

where φi = θi+1 − θi (see Fig. 4).

These five features are computed for all the points of each stroke of a text line. We thus get
a sequence of five-dimensional feature vectors which can be used for classification. The lengths of
the lines li implicitly encode the writing speed as the sampling rate of the acquisition hardware is
approximately constant.

In the second approach, the extracted feature set is based on strokes. These stroke-based features
have been designed in the context of this work. For each stroke s = p1, . . . , pn we calculate the
following eleven features; for an illustration see Fig. 5:
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Figure 5: Stroke-based features

• the accumulated length lacc of all lines li

lacc =

n−1∑

i=1

li

• the cosine and the sine of the accumulated angle θacc of the writing directions of all lines

θacc =
n−1∑

i=1

θi

• the width w = xmax − xmin and height h = ymax − ymin of the stroke

• the duration t of the stroke

• the time difference ∆tprev to the previous stroke

• the time difference ∆tnext to the next stroke

• the total number of points n

• the number of changes nchanges in the curvature

• the number of angles nl of upward writing direction (where θi > 0)

• the number of angles ns of downward writing direction (where θi < 0)

The two sets of features presented above provide different information about a person’s hand-
writing. The point-based feature set contains local information about each point of the writing. By
contrast, strokes consist of sequences of points and provide rather global information about a hand-
writing. For example, it is possible to determine whether a person’s handwriting is cursive or not
from the number of points and changes in the curvature of a stroke. This information is not available
from the point-based features.

3 Gaussian Mixture Models

In text-independent speaker recognition, Gaussian Mixture Models (GMMs) have become a dominant
approach [11, 16]. In this paper we use GMMs to model the handwriting of each person of the
underlying population. More specifically, the distribution of feature vectors extracted from a person’s
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on-line handwriting is modeled by a Gaussian mixture density. For a D-dimensional feature vector
denoted as x, the mixture density for a given writer is defined as

p(x|λ) =

M∑

i=1

wipi(x).

The density is a weighted linear combination of M uni-modal Gaussian densities, pi(x), each
parameterized by a D × 1 mean vector, µi, and D × D covariance matrix, Ci.

pi(x) =
1

(2π)D/2|Ci|1/2
exp{−

1

2
(x − µi)

′(Ci)
−1(x − µi)}.

The mixture weights, wi, furthermore satisfy the constraint
∑m

i=1 wi = 1. Collectively, the pa-
rameters of a writer’s density model are denoted as λ = {wi, µi, Ci}, i = 1, . . . ,M . While the general
model supports full covariance matrices, only diagonal covariance matrices are used in this paper as
they perform better than full matrices in experiments [16].

The following two-step training procedure is used. In the first step, all training data from all
writers is used to train a single, writer independent universal background model (UBM). Maximum
likelihood writer model parameters are estimated using the iterative Expectation-Maximization (EM)
algorithm [3]. The EM algorithm iteratively refines the GMM parameters to monotonically increase
the likelihood of the estimated model for the observed feature vectors.

In the second step, for each writer a writer dependent writer model is built by updating the trained
parameters in the UBM via adaptation using all the training data from this writer. We derive the
hypothesized writer model by adapting the parameters of the UBM using the writer’s training data
and a form of Bayesian adaptation called Maximum A Posteriori (MAP) estimation [16]. The basic
idea of MAP is to derive the writer’s model by updating the well-trained parameters in the UBM
via adaptation. The adaptation is a two-step process. The first step is identical to the expectation
step of the EM algorithm, where estimates of the sufficient statistics of the writer’s training data are
computed for each mixture in the UBM. Unlike the second step of the EM algorithm, for adaptation
these new statistical estimates are then combined with the old statistics from the UBM mixture
parameters using a data-dependent mixture coefficient [16].

The system was implemented using the Torch library [1]. In this implementation, only the means
are adapted during MAP adaptation. Variances and weights are unchanged, as experimental results
tend to show that there are no effects when they are adapted [16].

4 Experiments and Results

Our experiments are based on the IAM-OnDB database [10], which contains more than 1,700 hand-
written texts in on-line format from over 220 writers. During writing on the whiteboard, the data is
acquired using the eBeam system which is also used in the IDIAP Smart Meeting Room [13]. Each
writer writes eight paragraphs of text compiled from the Lancaster-Oslo/Bergen corpus (LOB) [8].
The acquired data is stored in XML-format, including the writer’s identity, the transcription and the
setting of the recording.

One paragraph of text contains 40 words on average. In Figure 6 an example of a paragraph of
recorded text is shown. Four paragraphs are used for training, two paragraphs are used to validate the
global parameters of the GMMs (see Sect. 3) and the remaining two paragraphs form the independent
test set.

The baseline system [17] uses 32 Gaussian mixture components with diagonal covariance matrices.
No adaptation is performed and each user model is initialised on its own data set. The nine point-based
features used are (x, y) position, writing path tangent angle φ, total velocity v, x and y components
of velocity vx, vy, total acceleration a, and x and y components of velocity ax, ay. Note that the
pen pressure feature which is used in [17] is not available from the whiteboard data. The data is



8 IDIAP–RR 05-70

Figure 6: Example of a paragraph of recorded text

 90

 92

 94

 96

 98

 100

 50  100  150  200  250  300  350  400

W
rit

er
 Id

en
tif

ic
at

io
n 

R
at

e

Number of Gaussians

Figure 7: Identification rate as a function of the number of Gaussians on the validation set

preprocessed by subtracting the initial point from all samples, so all paragraphs start at (0, 0). Each
feature is then normalized in respect to its mean and its variance.

In our system, all training data from each writer is used to train the UBM. The background model
is then adapted for each writer using all writer-specific training data. We have increased the numbers
of Gaussian from 50 to 400 by steps of 50. In this initial experiment the adaptation factor was set to
0.0, i.e., full adaptation was performed. For the other meta parameters we used standard values [1].
The optimal number of Gaussians was determined on the validation set and this number is then used
to compute the identification rate on the test set. The identification rate is determined by dividing
the number of correctly assigned text paragraphs by the total number of text paragraphs.

To examine the scalability of the system, we performed the experiments on four sets. First, we
randomly choose 50 writers that form the set S1. Than we added 50 randomly chosen writers to get
the second set S2 (S1 ⊂ S2). We continued adding 50 writers to get set S3 and set S4, respectively
(S2 ⊂ S3 ⊂ S4).

In Figure 7 the identification rate as a function of the number of Gaussians mixture components
on the validation set for the 200 writers experiment with the stroke-based features is shown. On this
set, the best identification rate of 96.75% is obtained when using 150 Gaussians. With this number
of Gaussians, an identification rate of 93.5% is achieved on the test set.

We repeated the experiments with different number of Gaussians and different adaptation factors
and optimized their values on the validation set. The number of Gaussians was varied between 50
and 400 by steps of 50. The MAP factor was increased from 0.0 to 0.5 in steps of 0.1. The other meta
parameters were again set to standard values. This optimization further increases the identification
rate. Table 1 shows the results on the test set. The performance of the baseline system [17] is
comparable to our system when point-based features are used. The stroke-based features perform
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Table 1: Identification rates on the test set (in %)

no. of writers 50 100 150 200

baseline system 94.4 91.4 90.5 85.3
point-based features 98.0 92.5 87.0 85.0
stroke-based features 100.0 100.0 96.7 94.75

Table 2: Identification rates on the test set using different number of paragraphs (in %)

no. of paragraphs 4 3 2 1

stroke-based features 94.75 91.75 86.25 71.25

superior to the point-based features for every number of writers tested. They achieve a perfect
identification rate of 100% for 50 and 100 writers. For 200 writers the identification rate is 94.75%.

To investigate how our system performs if fewer data is used for training, we have reduced the
number of paragraphs from each of the 200 writers from four paragraphs to one paragraph. The
stroked-based features are used in this experiment. The number of Gaussians was varied between
50 to 150 by steps of 50 and the MAP factor was increased from 0.0 to 0.5 in steps of 0.1. Both
parameters were optimized on the validation set. The results of our experiments on the test set are
given in Table 2. If we use two instead of four paragraphs of text, the writer identification rate of our
system using stroke-based features is still better compared to our system using point-based features
and the baseline system both trained on all four paragraphs of text (see Table 1).

5 Conclusions and Future Work

In this paper we introduced an on-line writer identification system for Smart Meeting Rooms. A
person’s writing on an electronic whiteboard is the input to a Gaussian mixture model based classifier,
which returns the identity of the writer. This identity can then be used for indexing and browsing
the recorded data of the meeting.

In our experiments we achieve perfect identification rates of 100% on data sets produced by 50
and 100 writers. Doubling the number of writers to 200, the identification rate decreases to 94.75%.
This results implies that our approach scales well with a larger number of writers. Furthermore, we
argue that even in large organizations, there will rarely be more than 200 potential participants to a
meeting held in a smart meeting room.

We have introduced two sets of new features extracted from the recorded on-line data. The first set
consists of feature vectors from each recorded point, while the second set consists of vectors extracted
from strokes. In our experiments the stroke-based features perform consistently better than the
point-based features. This indicates that strokes contain more information to characterize a person’s
handwriting than single points.

In future work we plan to test our writer identification system on a refined scenario. For real world
applications it is too time consuming and cumbersome to ask a person to copy large amounts of text
before the system can be adapted with the writer’s data. Therefore, we intend to further reduce the
amount of data which is needed for adapting the GMMs as well as the amount of data needed to test
the system. In the current scenario, we use the same data from each writer to train the UBM and
the client model. In our future work, we plan to train the UBM with a training set consisting of a
disjoint set of persons.

The point-based and the stroke-based feature sets describe different aspects of a person’s hand-
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writing. It is reasonable to combine the two sets to get a better performance. Initial experiments
show promising results. Another approach to increase the system’s performance is to generate mul-
tiple classifier systems by varying the system’s parameters, e.g., the number of Gaussian components
or the adaptation factor.

While our system has been developed for handwriting data acquired by the eBeam whiteboard
system, our approach can potentially also be applied to other on-line handwriting data, e.g., data
acquired by an electronic pen used on a Tablet PC [21].
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