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Abstract. This paper presents a novel approach for visual scene modelinglassification, investigating
the combined use of text modeling methods and local invariant featOwaswork attempts to elucidate (1)
whether a text-likdag-of-vistermsrepresentation (histogram of quantized local visual features) is suftable
scene (rather than object) classification, (2) whether some analogiesdmediscrete scene representations
and text documents exist, and (3) whether unsupervised, latent spateds can be used both as feature
extractors for the classification task and to discover patterns of vist@@arrence. Using several data sets,
we validate our approach, presenting and discussing experimentstonfahese issues. We first show, with
extensive experiments on binary and multi-class scene classificatianusisig a 9500-image data set, that
thebag-of-vistermsrepresentation consistently outperforms classical scene classificapicoaahes. In other
data sets we show that our approach competes with or outperformsetkeeat, more complex, methods. We
also show that Probabilistic Latent Semantic Analysis (PLSA) generatesnpact scene representation,
discriminative for accurate classification, and more robust thababef-visterms representation when less
labeled training data is available. Finally, through aspect-based imagmgaetperiments, we show the
ability of PLSA to automatically extract visually meaningful scene patterrekimg such representation

useful for browsing image collections.
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1 Introduction

Scene classification is an important task in computer vidiaa a difficult problem, interesting in its own right,
but also as a means to provide contextual information toegatter processes such as object recognition [39].
From the application viewpoint, scene classification igvaht in systems for organization of personal and
professional image and video collections. As such, thidlpra has been widely explored in the context of
content-based image retrieval [38, 37, 41], but existingragches have traditionally been based on global
features extracted on the whole image, on fixed spatial ksyar on image segmentation methods whose
results are often difficult to predict and control [5, 38, 81, 15, 16, 42].

In a different direction, viewpoint invariant local degutdrs (i.e. features computed over automatically
detected local areas) have proven to be useful in long-stgmioblems such as viewpoint-independent object
recognition [7, 44, 27], wide baseline matching [21, 40, 483, more recently, in image retrieval [34, 12].
Thanks to their local character, they provide robustnessage clutter, partial visibility, and occlusion. Thanks
to their invariant nature, changes in viewpoint can be deiéiitin a natural way, while providing robustness to
changes in lighting conditions. All these properties mdilefeatures stable, producing a relatively repeatable
representation of a particular object. In the case of scesiese we expect the component parts of a given
scene class to have relatively similar image representgtibese features could potentially be useful to detect
and describe similar local scene areas consistently, ttayéding good generalization properties.

In a sense, these local invariant features show many conlitienavith the role played by words in tradi-
tional document analysis techniques [1], in that they acalldhave a high repeatability between similar images
of similar scenes, and have a relatively high discriminaower. This analogy has been exploited in recent
works to perform retrieval within videos [34], or object s$dfication [44], and is studied here in more detail.

However, scene classification is clearly different from gmaetrieval and object categorization. On one
hand, images of a given object are usually characterizedhéyptesence of a limited set of specific visual
parts, tightly organized into different view-dependendmetrical configurations. On the other hand, a scene is
generally composed of several entities (e.g. car, housidjry, face, wall, door, tree, forest, rocks), organized
in often unpredictable layouts. Hence, the visual contentitjes, layout) of a specific scene class exhibits a
large variability, characterized by the presence of a lamg@mber of different visual descriptors. In view of
this, while the specificity of an object strongly relies oe theometrical configuration of a relatively limited
number of visual descriptors [34, 12], the specificity of arge class greatly rests on the particular patterns of
co-occurrence of a large number of visual descriptors.

In this paper, we propose a novel approach for scene claggificthat integrates scale-invariant feature
extraction and latent space modeling methods. The cotisiimiof our paper are the following.

1) An approach for scene classification, based on the ulsagsfof-visterms (BOV) (i.e. quantized invari-
ant local descriptors) to represent scenes. Even thoughtre®rk used quantized local descriptors for object
matching in videos [34], and for object classification [42l)r work demonstrates that this approach is success-
ful to classify scenes. We show this by presenting extersiperiments on two binary and four multi-class
classification tasks (including 3, 5, 6, and 13 classes).eldhar, we show by a rigorous comparison that our
work consistently outperforms classical scene classifioapproaches [41]. We also show that our approach
is clearly competitive when compared to approaches tha resently appeared [42] or that have been devel-
oped in parallel to ours [11]. Finally, to provide new indiglabout the analogy between the bag-of-visterms
representation and text, we have conducted a study of gpazsioccurrence, and discriminative power of
visterms, which complements and extends the work by [34], different media source.

2) A novel approach for scene classification, based on thefysmbabilistic latent space models [14, 3]
that have proven to be successful in text modeling, to buithe representations beyond the bag-of-visterms.
Latent space models capture co-occurrence informatiomdset elements in a collection of discrete data that
simpler representations usually cannot, and allow to asdigsues related to synonymy (different visterms
may represent the same scene type) and polysemy (the saimernvinay represent different scene types in
different contexts), which can be encountered in scenssifileetion. We show that Probabilistic Latent Se-
mantic Analysis (PLSA) allows for the extraction of a compaéscriminant representation for accurate scene
classification, that outperforms global scene representgtand remains competitive with recently proposed
approaches. This compact representation is especiallstothen labeled training data is scarce, and allows
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for a greater re-usability of our framework, as labeling t8v@&-consuming task. All of our findings are based
on extensive experiments. Although related, the approachnapose differs from the ones discussed in [11]
for scene classification and [33] for object clustering. Aailed discussion of the differences is presented in
the next Section.

3) A novel approach for scene ranking and clustering, bas¢desuccessful use of the PLSA formulation.
We show that PLSA is able to automatically capture meanirsgiene aspects from data, where scene similarity
is evident, which makes our PLSA-derived representati@iulido explore the scene structure of an image
collection, and thus turning it into a tool with potentiahiisualization, organization, browsing, and annotation
of images in large collections.

The rest of the paper is organized as follows. The next Sediscusses related work. Section 3 presents
the image representations we explore. Section 4 compaogeies of these representations with text doc-
ument representations. Section 5 describes the class#ierse. Section 6 presents our experimental setup.
Classification results are provided and discussed in Se¢ti®ection 8 describes the aspect-based image rank-
ing results. Section 9 compares our method with recentlggsed works, on other existing scene classification
data sets. Section 10 concludes the paper.

2 Related Work

The problem of scene classification using low-level featiras been studied in image and video retrieval for
several years [13, 38, 41, 26, 25, 28, 37]. Broadly speakiteexisting methods differ by the definition of the
target scene classes, the specific image representatimhf)eclassification method. We focus the discussion
on the first two points. With respect to scene definition, nmsthods have aimed at classifying images into
a small number of semantic scene classes, including inolatoidor [38, 36], city/landscape [41], and sets of
natural scenes (e.g. sunset/forest/mountain) [25]. Heweas the number of categories increases, the issue of
overlapping between scene classes in images arises. Teehhislissue, a continuous organization of scene
classes (e.g. from man-made to natural scenes) has bearsptbj26]. Alternatively, the issue of scene class
overlap can be addressed by doing scene annotation (edlintla scene as depicting multiple classes). This
approach is followed by Boutell et al. [5], which exploitetbutput of one-against-all classifiers to derive
multiple class labels. Although the attributions of mukipabels is not explored in our work, the framework
we present, in particular the PLSA approach, can be eadignded to perform multi-label attribution [23].
Regarding global image representations for scene clestsifi; the work by Vailaya et al. is regarded as
representative of the literature in the field [41]. This agmh relies on a combination of distinct low-level
cues for different two-class problems (global edge featfwe city/landscape, and local color features for in-
door/outdoor). In the work by Oliva and Torralba [26], areimhediate classification step into a set of global
image propertiesnatural ness, openness, roughness, expansion, andruggedness) is proposed. Images are man-
ually labeled with these properties, and a DiscriminantBpéTemplate (DST) is estimated for each property.
The DSTs are based on the Discrete Fourrier Transform (Dkffaeed from the whole image, or from a
four-by-four grid. A new image is represented by the degifeeach of the five properties based on the cor-
responding estimated DST, and this representation is wsebd classification into semantic scene categories
(coast, country, forest, mountain, etc.). Other approsithecene classification also rely on an intermediate su-
pervised region classification step [25, 31, 8]. Based onye&ian Network formulation, Naphade and Huang
defined a number of intermediate regional concepts (e.gwsker, rocks) in addition to the scene classes [25].
The relations between the regional and the global conceetspecified in the network structure. Serrano et
al. [31] propose a two-stage classification of indoor/oatcszenes, where features of individual image blocks
from a spatial grid layout are first classified into indoor atdwor. These local classification outputs are further
combined to create the global scene representation uséukféinal image classification. Similarly, Vogel and
Schiele recently used a spatial grid layout in a two-stagméwork to perform scene retrieval and scene classi-
fication [42]. The first stage does classification of imagekdanto a set of regional classes, which extends the
set of classes defined in [25] (this requires block grounthttabeling). The second stage performs retrieval
or classification based on the occurrence of such regiomalegis in query images. Alternatively, Lim and
Jin [18] successfully used the soft output of semi-supen/iggional concept detectors in an image indexing
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and retrieval application. In a different formulation, Kanand Herbert used a conditional random field model
to detect and localize man-made scene structures, doihisivaly scene segmentation and classification [15].
Overall, a large number of local, regional, and global repreations have been used for scene classification.

The combination of interest point detectors and local de&us are increasingly popular for object de-
tection, recognition, and classification [19]. The literatin the field is too large to discuss in details here
[34, 12, 9, 7, 27, 35, 44, 17]. For the classification tasken¢avorks include [12, 9, 7, 27, 10, 44]. Most
existing works have targeted a relatively small number gédiclasses. Fergus et al. optimized, in a joint
unsupervised model, a scale-invariant localized appeararmdel and a spatial distribution model [12]. Fei-
Fei et al. proposed a method to learn object classes from tisamaber of training examples [9]. The same
authors extended their work to an incremental learninggmtore, and tested it on a large number of object
categories [10]. Dorko and Schmid performed feature selet¢b identify local descriptors relevant to a par-
ticular object class, given weakly labeled training imaf@s Opelt et al. proposed to learn classifiers from
a set of visual features, including local invariant ones, wbosting [27]. Although our work shares the use
of invariant local descriptors with all these methods, ssesre different than objects in a number of ways, as
discussed in the Introduction, and pose specific challenges

The analogy between invariant local descriptors and woadsaiso been exploited recently [34, 35, 44].
Sivic and Zisserman proposed to cluster and quantize loeatiant features into visterms, for object matching
in frames of a movie. Such approach allows to reduce noisgtséty in matching and to search efficiently
through a given video for frames containing taene visual content (e.g. an object) using inverted files [34, 35]
Willamowski et al. extended the use of visterms creatingstesy for object matching and classification based
on a bag-of-words representation built from local invatrf@atures and various classifiers [44]. However, these
methods neither investigated the task of scene modelinglasdification, nor considered latent aspect models
as we do here.

In another research direction, a number of works have alggdren the definition of visterms and/or on
variations of latent space models to model annotated imageso link images with key words [2, 4, 22, 45].
However, all these methods have relied on traditional regjionage features without much viewpoint and/or
illumination invariance. In our work, we characterize arse@sing local descriptors as visterms, taking into
account the problems that exist in the construction of a&xistvocabulary. We use latent space models not to
annotate images but to address some limitations of thermistecabulary, describing images with a model that
explicitly accounts for the importance of visterm co-oceuce.

In parallel to our work [29, 24], the joint use of local invanit descriptors and probabilitic latent aspect
models has been investigated by Sivic et al. for object elusg in image collections [33], and by Fei-Fei
and Perona for scene classification [11]. Although relatedse two approaches differ from ours in their
assumptions. Sivic et al. [33] investigated the use of baitent Dirichlet Allocation (LDA) [3] and PLSA
for clustering objects in image collections. With the sammage representation as ours, they showed that
latent aspects closely correlate with object categorias fthe Caltech object data set, though these aspects
are learned in an unsupervised manner. The number of aspastehosen by hand to be equal (or very
close) to the number of object categories, so that imagesemr as mixtures of one 'background’ aspect
with one 'object’ aspect. This allows for a direct match be#w object categories and aspects, but at the
same time implies a strong coherence of the appearence edtslfjom the same category: each category is
defined by only one multinomial distribution over the quaetl local descriptors. Closer to our work, Fei-Fei
and Perona [11] proposed two variations of LDA [3] to modeadrse categories. They tested different region
detection processes to build an image representation loasgdantized local descriptors. Contrarily to [33],
Fei-Fei and Perona [11] propose to model a scene categorynaguae of aspects, and each aspect is defined
by a multinomial distribution over the quantized local dgstors. This is achieved by the introduction of an
observed class node in their models [11], which explicilguires each image example to be labeled during
the learning process.

In this paper, we model scene images using a probabilisggat@aspect model and quantized local descrip-
tors, but without assuming a one-to-one correspondeneeeketcategories and aspects as in [33], and without
learning a single distribution over aspects per scene oategs in [11]. Images - not categories - are modeled
as mixtures of aspects in a fully unsupervised way, withdagscinformation. The distribution over aspects
serves as image representation, that is inferred on neweisreatd used for supervised classification in a second
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Figure 1: Representation computation of an image.

step. These differences are crucial, as they allow us tcsiigage the use of unlabeled data for learning the
aspect-based image representation.

3 Image representation

There are two main elements in an image classification sysiém first one refers to the computation of the
feature vector representing an imageand the second one is the classifier, the algorithm thasifiles an
input image into one of the predefined category using theifeatector. In this section, we focus on the image
representation and describe the two models that we usersghetfe is the bag-of-visterms, built from quantized
local descriptors, and the second one is obtained throwghiginer-level abstraction of the bag-of-visterms into
a set of aspects using latent space modeling.

3.1 Bag-of-visterms representation from local descriptors

The construction of the bag-of-visterms (BOV) feature weét from an imagel involves the different steps
illustrated in Fig. 1. In brief, interest points are autoivalty detected in the image, then local descriptors
are computed over the image regions associated with thésts pall descriptors are quantized into visterms,
and all occurrences of each specific visterm of the vocaputathe image are counted to build the BOV
representation of the image. In the following we describmare detail each step.

3.1.1 Interest point detection

The goal of the interest point detector is to automaticalliraxt characteristic points -and more generally
regions- from the image, which are invariant to some geamatrd photometric transformations. This in-
variance property is interesting, as it ensures that giveimage and its transformed version, the same image
points will be extracted from both and hence, the same imageesentation will be obtained. Several interest
point detectors exist in the literature. They vary mosthtiy amount of invariance they theoretically ensure,
the image property they exploit to achieve invariance, dadtype of image structures they are designed to
detect [40, 19, 21]. In this work, we use the difference of &ans (DOG) point detector [19]. This detector
essentially identifies blob-like regions where a maximumarimum of intensity occurs in the image, and it is
invariant to translation, scale, rotation and constaatihation variations. We chose this detector since it has
previously shown to perform well [20], and also since we fbitrto be a good choice in practice for the task
at hand, performing competively compared to other detecttihe DOG detector is also faster and more com-
pact than similarly performing detectors. An additionalgen to prefer this detector over fully affine-invariant
ones [21, 40], is also motivated by the fact that an incre&tieealegree of invariance may remove information
about the local image content that is valuable for classifina An empirical evaluation of point detectors for
classification will be presented in Section 7, see also Table
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3.1.2 Local descriptors

Local descriptors are computed on the region around eaelesttpoint identified by the local interest point
detector. We use the SIFT (Scale Invariant Feature Tram}fi@ature as local descriptors [19]. Our choice was
motivated by findings in the literature [20, 11], where SIFasfound to work best; we also confirm this for our
own work in Section 7. This descriptor is based on the grdgsegresentation of images. SIFT features are
local histograms of edge directions computed over diffepants of the interest region. These features capture
the structure of the local image regions, which corresporgpecific geometric configurations of edges or to
more texture-like content. In [19], it was shown that the of8 orientation directions and a grid of 4x4 parts
gives a good compromise between descriptor size and agoofreepresentation. The size of the feature vector
is thus 128. Orientation invariance is achieved by estimgetfie dominant orientation of the local image patch
using the orientation histogram of the keypoint region. ditection computations to obtain the SIFT feature
vector are done with respect to this dominant orientation.

3.1.3 Quantization and vocabulary model construction

When applying the two preceding steps to a given image, werohtaet of real-valued local descriptors. In
order to obtain a text-like representation, we quantizé éacal descriptos into one of a discrete sét of
vistermsv according to a nearest neighbor rule:

s — Q(s) = v; <= dist(s, v;) < dist(s,v;), (1)

Vi € {1,..., Ny}, where Ny, denotes the size of the visterm set. Thelsaif all visterms will be called
vocabulary.

The construction of the vocabulary is performed througlstelting. More specifically, we apply the K-
means algorithm to a set of local descriptors extracted framing images, and the means are kept as visterms.
We used the Euclidean distance in the clustering (and in Eapd choose the number of clusters depending on
the desired vocabulary size. The choice of the Euclideaantie to compare SIFT features is common [19, 21].

Technically, the grouping of similar local descriptorsairet specific visterm can be thought of as being
similar to thestemming preprocessing step of text documents, which consists d¢diciy all words by their
stem. The rationale behind stemming is that the meaning odsvs carried by their stem rather than by their
morphological variations [1]. The same motivation applieghe quantization of similar descriptors into a
single visterm. Furthermore, in our framework, local dggors will be considered as distinct whenever they
are mapped to different visterms, regardless of whethegrdhe close or not in the SIFT feature space. This
also resembles the text modeling approach which considatall information is in the stems.

3.1.4 Bag-of-visterms representation

The first representation of the image that we will use forgifasation is the bag-of-visterms (BOV), which is
constructed from the local descriptors according to:

h(d) = (hi(d))izl..Nv7 with hl(d) = n(d, 7)1‘)7 (2)

where rid, v;) denotes the number of occurrences of visternn imaged. This vector-space representation
of an image contains no information about spatial relatigmbetween visterms. The standard bag-of-words
text representation results in a very similar 'simplificati of the data: even though word ordering contains a
significant amount of information about the original datdasicompletely removed from the final document
representation.

3.2 Probabilistic Latent Semantic Analysis (PLSA)

The bag-of-words approach has the advantage of produciimgpdesrepresentation, but potentially introduces
the well knownsynonymy andpolysemy ambiguities, as will be shown in the next Section. Receptiybabilis-
tic latent space models [14, 3] have been proposed to captsoecurrence information between elements in
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a collection of discrete data in order to disambiguate tlgedfavords representation. The analysis of visterm
co-occurrences can thus be considered using similar agipeeaand we use the Probabilistic Latent Semantic
Analysis [14] (PLSA) model in this paper for that purpose otligh PLSA suffers from a non-fully generative
formulation, its tractable likelihood maximization makean interesting alternative to fully generative models
[3] with comparative performance [33].
PLSA is a statistical model that associates a latent varigbke Z = {z1,...,2n,}, WhereNis the

number of aspects, with each observation (occurrence ofrd imoa document). These variables, usually
called aspects, are then used to build a joint probabilitdg@hover images and visterms, defined as the mixture

Na

P(vj,di) = P(di) > Pz | di) P(v; | ). (3)
=1

PLSA introduces a conditional independence assumptianghethat the occurrence of a vistenmis inde-
pendent of the image; it belongs to, given an aspegt The model in Equation 3 is defined by the probability
of an imageP(d;), the conditional probabilities(v;|z;), which represent the probability of observing the
vistermo; given the aspect;, and by the image-specific conditional multinomial prolities P(z;|d;). The
aspect model expresses the conditional probabilfies;|d;) as a convex combination of the aspect-specific
distributionsP (v, |z;).

The parameters of the model are estimated using the maxifkalinbod principle. More precisely, given
a set of training imageP, the likelihood of the model parameteapscan be expressed by

Ny
c©D) =[] [[ow, ", 4)

deD j=1

where the probability model is given by Eq. 3. The optimiaais conducted using the Expectation-Maximization
(EM) algorithm [14]. This estimation procedure allows tarie the aspect distributior3(v,|z;). These image
independent parameters can then be used to infer the asp#ataparameter®(z;|d) of any imaged given
its BOV representation(d). Consequently, the second representation of the imagevthaill use is defined
by

a(d) = (P(z1]d))i—1..xs. (5)

4 Analogy with text

In our framework, we consider the visterms like text termd amdel them with techniques that are com-
monly applied to text. In this section, we compare propsrtieterms in documents with those of visterms
within images. We first discuss tisparsity of the document representation, an important charadteostext
documents. We then consider issues related to the seméigities, namelysynonymy andpolysemy.

4.1 Representation sparsity

To investigate the analogy with text representation, wepame the behavior between the BOV representation
of an image data set and the bag-of-words representatiostahdard text categorization data set.

The REUTERS-21578data set contains 12900 documents. The standard word stpppd stemming
process produces a vocabulary of 17900 words. As previasgrved in natural language statistics, the
frequency of each word across the text data set follows thEsdaw: P, = »~°, wherer is the keyword rank
according to its frequency aridis close to unity (see Fig. 2 (top)). This distribution résuh an average
number of 45 non-zero elements per document, which cornelspio an average sparseness of 0.25%. Out of
the 17900 words in the dictionary, 35% occur once in the dattarsd 14% occur twice. Only 33% of the words
appear in more than five documents.

Lwww.daviddlewis.com/resources/testcollections/rea&§78.
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Figure 2: Top: relative frequency distribution of the woedgracted from REUTERS-21578, first 1000 words.
Bottom: relative frequency distribution of the vistermglie city-landscape data def.

In our case, we applied the K-means algorithm on@iemage data set described in Section 6.2, which
contains 6680 images of city and landscape, and generaeBiQN representation for each image document
of this data set for a vocabulafy; oy of size N, = 1000. Since the visterm vocabulary is created by the
K-means clustering of SIFT descriptors, the resulting botary shows different properties than in text. As
shown in Fig. 2 (right), the frequency distribution of vistes differs from the Zipf’s law behavior usually
observed in text. The K-means algorithm identifies regionthe feature space containing clusters of points,
which prevents the low frequency effect observed in texa gste Fig. 2 bottom). The visterm with the lowest
frequency appears in 117 images of the full data set (0.0a#ve frequency). We also observed an average of
175 non-zero elements per image, which corresponds to agatseness of 17.5%.

The construction of the visual vocabulary by clusteringingically leads to a "flatter” distribution for vis-
terms than for words. On one hand, this difference can beiderezl as an advantage, as the data sparseness
observed in the text bag-of-words representation is indeedof the main problems encountered in text re-
trieval and categorization. Similar documents might hasey different bag-of-words representations because
specific words in the vocabulary appear separately in thesicidption. On the other hand, a flatter distribution
of the features might imply that, on average, visterms irvikeal vocabulary provide less discriminant infor-
mation. In other words, the semantic content captured biyithaal visterms is not as specific as the one of
words. We address this issue in the next subsection.

4.2 Polysemy and synonymy with visterms

To study the “semantic” nature of the visterms, we first cdesed the class conditional average of the BOV
representation. Fig. 3 (top) shows the average of visteonthé city and landscape scene categories, computed
over the first split of data s€&1 (see Section 6.2 for details). We display the results wharguke vocabulary
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Figure 3: Bag-of-visterms representation. Top: averagh@BOV representation with respect to city (blue)
and landscape (red) computed over the first split of dat®seBottom: landscape average (blue) compared
with individual samples (red and green).

of 100 visterms}/ g, defined in Section 7.1. The behavior is similar for otheramdary sizes.

We first notice that there is a large majority of terms thategspn both classes: all the terms are substan-
tially present in the city class; only a few of them do not appie the landscape class. This contrasts with
text documents, in which words are in general more spedifitiald to a given category. Furthermore, we can
also observe that the major peaks in the two class averagesd®in general. Thus, when using the BOV
representation, the discriminant information with respecthe classification task seems to lie in the difference
of average word occurrences. It is worth noticing that thieat due to a bias in the average in visterm num-
bers, since the difference in the average number of vistpenglass is only in the order of 4% (city: 268/
landscape: 259). Additionally, these average curves Hidddct that there exists a large variability between
samples, as illustrated in Fig. 3 (bottom), where two ran@samples are plotted along with the average of
the landscape class. Overall, all the above consideraitimlisate that visterms, taken in isolation, are not so
class-specific, which in some sense advocates againstdesglection only based on the analysis of the total
occurrence of individual features (e.g. [7]), and reflebtsfact that the semantic content carried by visterms,
if any, is strongly subject to polysemy and synonymy issues.

To illustrate that visterms are subjectgolysemy -a single visterm may represent different scene content-
andsynonymy -several visterms may characterize the same image contemtshow samples from three dif-
ferent visterms obtained when building the vocabuléyy,, (see Section 7.1 for details) in Fig. 4. As can be
seen, the top visterm (first two rows in Fig. 4) representstiyeges. However, windows and publicity patches
get also indexed by this visterm, which provides an indaratif the polysemic nature of that visterm, which
means here that although this visterm will mostly occur ae$a it can also occur in city environments. The
two middle rows in Fig. 4 present samples from another viste€learly, this visterm also represents eyes,
which makes it a synonym of the first displayed visterm. Hjnghe samples of a third visterm (last two rows
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Figure 4: Samples from three randomly selected visternm &wvocabulary of 1000 visterms.

of Fig. 4) indicate that this visterm captures a certain firergtexture that has different origins (rock, trees,
road or wall texture...), which illustrates that not allteisns have a clear semantic interpretation.

To conclude, it is interesting to notice that one factor et affect the polysemy and synonymy issue is
the vocabulary size: the polysemy of visterms might be miomgoirtant when using a small vocabulary size
than when using a large vocabulary. Conversely, with a laogabulary, there are more chances to find many
synonyms than with a small one. Since PLSA can in theory leabdth synonymy and polysemy issues, it
could in principle lead to a more stable representation ifiterént vocabulary sizes.

5 Scene classification

To classify an input imagé represented either by the BOV vectdrsthe aspect parameteisor any of the
feature vector of the baseline approach (see next sectimgmployed Support Vector Machines (SVMs)
[6]. SVMs have proven to be successful in solving machinenieg problems in computer vision and text
categorization applications, especially those invollarge dimensional input spaces. In the current work, we
used Gaussian kernel SVMs, whose bandwidth was chosen base8-fold cross-validation procedure.

Standard SVMs are binary classifiers, which learn a decisination f(x) throughmargin optimization
[6], such thatf(z) is large (and positive) when the inputbelongs to the target class, and negative otherwise.
For multi-class classification, we adopt a one-againstygtiroach [43]. Given a-class problem, we train
SVMs, where each SVM learns to differentiate images of oasscfrom images of all other classes. In the
testing phase, each test image is assigned to the class®¥Vehat delivers the highest output of its decision
function.

6 Experimental setup

In this section, we describe the classification tasks weidersd, the origin and composition of our data sets,
the classification protocol we followed, and the baseliného@s we used for comparison purposes.
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6.1 Classification tasks

Four classification tasks, ranging from binary to five-clesssification, have been considered to evaluate the
performance of the proposed approaches. We first consiti@cestandard, unambiguous binary classification
tasks: indoor vs. outdoor, and landscape vs. city. Thesdasks allow a first evaluation of the classification
performance, and a fair comparison with approaches tha heen proposed for the same tasks [41]. For
a more detailed analysis of the performance, we then mefgetiro binary classification tasks to obtain a
three-class problem (indoor vs. city vs. landscape). We sibdivided the landscape class into mountain and
forest, and the city class into street view and panoramiw Weobtain a five-class data set.

In Section 9 we present additional results on two sceneifitzg®n data sets, with 13 and 6 scene cate-
gories respectively, that have been proposed in recerdtiites [11, 42].

6.2 Datasets

Five data sets were created four our experimebitk: this data set of 6680 images contains a subset of the
Corel data set [41], and is composed of 2505 city and 4175kEamk images of 38456 pixels.D2: this set

is composed of 2777 indoor images retrieved from the Inteiftee size of these images is typically 38256
pixels. Original images with larger dimensions were ra$izging bilinear interpolation. The image size in the
data set was kept approximately constant to avoid a potdidisiin the BOV representation, since it is known
that the number of detected interest points is highly dependn the image resolutiorD3: this data set is
constituted by 3805 images from several sources: 1002ibgilchages (ZuBud) [32], 144 people and outdoor
images [27], 435 indoor human faces [44], 490 indoor ima@esdl) [41], 1516 city/landscape overlap images
(Corel) [41], and 267 Internet photographic imagp4d. this data set is composed of all images from the data
setsD1 andD2. The total number of images in this data set is 94B4v: this is a subset b4 composed

of 3805 randomly chosen imageB5: this is a five-class data set. It comprises all images fronttia set
D2, and images fronD1 whose content corresponds to the selected classes. Frad6&damages oD1 we
kept : 590 mountain images, 492 forest images, 1957 citgsingages (close-up of buildings), and 548 city
panoramic images (middle to far views from buildings). Théadsets contains a total of 6364 images.

In the experiments, We use the dataBétfor the city vs. landscape scene classification task,éhbr
indoor vs. outdoor scene classificati@¥ in the three-class case, ab& in the five-class problem.

Alternative vocabularies were constructed from eith8ror D4v, allowing us to study the influence of the
data on the vocabulary model, and its impact on classificgg@formance. With 3805 images, we obtained in
both cases approximately one million descriptors to traéwocabulary models. These data sets are available
at: http://carter.idiap.ch/data sets.htm.

6.3 Protocol

The protocol for each of the classification experiments vea®idows. The full data set of a given experiment
was divided into 10 parts, thus defining 10 different splitthe full data set. One split corresponds to keeping
one part of the data for testing, while using the other ninésgar training (hence the amount of training data
is 90% of the full data set). In this way, we obtain 10 diffarelassification results. Reported values for all
experiments correspond to the average error over all split$ standard deviations of the errors are provided
in parentheses after the mean value.

Additional experiments were conducted with less amountaifiing data, to test the robustness of the
image representation. In that case, for each of the spfitagés were chosen randomly from the training part
of the split to create a reduced training set. Care was tak&edp the same class proportions in the reduced
set as in the original set, and to use the same reduced gaietrin those experiments involving two different
representation models. The test data of each split wasreftanged.

6.4 Baseline method

As a baseline method, we use the image representationsgewfy Vailaya et al. [41]. We selected this
approach, as it reports some of the best results from alksdessification approaches for data sets with land-
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Method indoor/outdoor  city/landscape
baseline 10.4 (0.8) 8.3 (1.5

BOV Vi 85 (1.0) 55 (0.8)
BOV Viso 7.4 (0.8) 52 (1.1
BOV Vo 7.6 (0.9) 50 (0.8)
BOV Vise 7.6 (1.0) 53 (L.1)
BOV Vi, 81 (05 55 (0.9)
BOV Vi, 76 (09) 51 (1.2
BOV VY, 73 (0.8 51 (0.7)
BOV Vipe 7.2 (1.0) 54 (0.9)

Table 1: Classification error for the baseline model and t©% Bepresentation, for 8 vocabularies. Standard
deviations are shown in parentheses.

scape, city and indoor images on a significantly large dadtareeis, it can be regarded as a good representative
of the state-of-the-art.

Two different representations are used for each binansifieation tasks: color features are used to clas-
sify images as indoor or outdoor, and edge features are osdddsify outdoor images as city or landscape.
Color features are based on the LUV first- and second-ordenents computed over a Q0 spatial grid of
the image, resulting in a 600-dimensional feature spacge Ezhtures are based on edge coherence histograms
calculated on the whole image, and are computed by extraetilges in only those neighborhoods exhibit-
ing some edge direction coherence. Directions are thematized into 72 directions, and their histogram is
computed. An extra non-edge pixels bin is added to the hiatogleading to a feature space of 73 dimensions.

In the three-class problem Vailaya et al. apply both methondshierarchical way [41]. Images are first
classified as indoor or outdoor given their color repreganta All correctly classified outdoor images are
further classified as either city or landscape, accordirteo edge direction histogram representation.

7 Classification results

In this section, we present the classification results ofagroach, first using the BOV representation, then
using the aspect representation, and compare both of thénthve baseline method. The performance of the
methods under different conditions (vocabulary size, nemd§ latent aspects, amount of training data) are
presented and discussed.

7.1 Scene classification with bag-of-visterms

Binary classification

To analyze the effect of the size of the vocabulary emplogednstruct the BOV representation, we considered
four vocabularies of 100, 300, 600, and 1000 visterms, a&hby V10, V300, Voo, andVigeo, respectively,
and constructed fror®3 as described in Section 3. Additionally, four vocabulafigs,, Vg, Vg, andVygo
were constructed frorB4v.

Table 1 provides the classification error for the two bindgssification tasks. We can observe that the
BOV approach consistently outperforms the baseline mathbis is confirmed in all cases by a paired T-test,
for p = 0.05. It is important to remind that contrarily to the baselinetihoels, the BOV representation uses the
same features for both tasks and no color information.

Regarding vocabulary size, overall we can see that for wdaabs of 300 visterms or more the classifi-
cation errors are equivalent. This contrasts with the worK44], where the "flattening’ of the classification
performance was observed only for vocabularies of 100@nist or more. A possible explanation may come
from the difference in task (object classification) and ia tise of the Harris-Affine point detector [21], known
to be less stable than DOG [20].
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Method indoor/city/landscape
baseline 159 (1.0

BOV Vigo 12.3  (0.9)

BOV V30 11.6 (1.0)

BOV Vioo 115 (0.9)

BOV Viooo 11.1 (0.8)

BOV Viooo hier. 11.1 (11)

Table 2: Three-class classification error for baseline aB¥ Bhodels. The baseline model system is hierarchi-
cal.

Total class. error 11.1 (0.8)
Classification (%) Class. # of
Gr. Truth | indoor | city | land. | Error (%) | images
indoor 89.7 | 9.0 | 1.3 10.3 2777
city 145 | 748 | 10.7 25.2 2505
landscape| 1.2 20 | 96.8 3.1 4175

Table 3: Confusion matrix for the three-class classificaficoblem, using vocabulary; gog.

The comparison of the rows 2-5 and 6-9 in Table 1 shows thagusivocabulary constructed from a data
setdifferent than the one used for the classification experimdd8andD4v respectively, does not affect the
results (error rates differences are within random fluadnavalues). This result confirms the observations
made in [44], and suggests that it might be feasible to bugérzeric visterm vocabulary that can be used for
different tasks. Based on these results, we use the vocasutailt fromD3 in all the remaining experiments.

Three-class classification
Table 2 shows the results of the BOV approach for the thragsatlassification problem. Classification results
were obtained using both a multi-class SVM and two binary S\ivithe hierarchical case.

First, we can see that once again our system outperform9fireach proposed in [41] with statistically
significant differences. This is confirmed in all cases by ieggarl-test, withp = 0.05. Secondly, we observe
the stability of results with vocabularies of 300 or moreteims, the vocabulary of 1000 visterms giving
slightly better performance. Based on these results, waasE; oo to be an adequate choice and 56y
for all experiments in the rest of this paper. Finally, we olserve that the classification strategy, hierarchical
or multi-class SVM, has little impact on the results for ttzisk.

A closer analysis of the results can be done by looking at dméusion matrix, shown in Table 3. First,
we can see that landscape images are well classified. Sgcaredbbserve that there exists some confusion
between the indoor and city classes. This can be explaindldebfact that both classes share not only similar
local image structures (which will be reflected in the sansevims appearing in both cases), but also similar
visterm distributions, due to the resemblance between soore general patterns (e.g. doors or windows).
The two images on the top in Fig. 5 illustrate some typicabsrmade in this case, when city images contain
a majority of geometric shapes and little texture. In thedtiplace, the confusion matrix also shows that city
images are also misclassified as landscape. The main eliplamathat city images often contain natural
elements (vegetation like trees or flowers, or natural tesf) and specific structures which produce many
visterms. The images to the bottom in Fig. 5 illustrate tgpristakes in this case.

We now explore different combinations of point detectogsfdiptors. We purposely choose to do this study
on the 3-class problem since we believe that a multi-classstfication task is a more representative problem
for this data, but at the same time it is not obscured by mairiyeo&ddditional issues of a many-class task. Four
point detection methods: DOG [19], multi-scale Harris &fiMHA) [21], multi-scale Harris (MH) [21], and
a fixed 15x20 grid (GRID), and three descriptor methods: SIPT, complex filters (CF) [30], and &l x 11
pixel sample of the area defined by the detector (PATCH) weeel in paired combinations. The results are
shown in Table 4.
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Figure 5: Typical classification errors of city images in theee-class problem. Top: city images classified as
indoor. Bottom: city images classified as landscape.

In Table 4, we can see that the combination DOG+SIFT is thefdmrorming one, this is confirmed by
a paired T-test, witp = 0.05. However, MHA+SIFT and MH+SIFT produce similar results.ig’bonfirms
SIFT as the best performing descriptor, as pointed out ititér@ture, although for other tasks [11, 20]. As for
detectors, it is important to note that, although the medade Harris and multi-scale Harris affine detectors [21]
allow for similar performance, DOG is computationally meféicient and more compact (less feature points
per image). Although Table 4 shows DOG+SIFT to be the bedtetfor this particular task, it is possible that
other combinations may perform better for other tasks. 8asethese results, however, we have confirmed in
practice that DOG+SIFT constitutes a reasonable choice.

Five-class classification

Table 5 presents the overall error rate and the confusionxraitained with the BOV approach in the five-
class experiment, along with the baseline overall erra. rdthe latter number was obtained using the edge
coherence histogram global feature [41].

The BOV representation performs much better than the glfgzdlires in this task, and the results show
that we can apply the BOV approach to a larger number of sdasseas and obtain good results.

Analyzing the confusion matrix, we first observe that sometakies are made between the forest and
mountain classes, reflecting their sharing of similar teeduand the presence of forest in some mountain
images. A second observation is that city-panorama imagesften confused with city-street images. This
result is not surprising because of the somewhat ambiguefisitibn of the classes (see Fig. 6), which was
already observed during the human annotation process. Toes &€an be further explained by the scale-
invariant nature of the interest point detector, which nsake distinction between some far-field street views in
the city-panoramic images, and middle-view similar stnoes in the city-street images. Another explanation
is the unbalanced data set, with almost four times as maystieet images than panoramic ones. Finally,
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| SIFT CF PATCH [ av. # of points

DOG | 11.1(0.8) 225(1.1) 22.1(0.9 271
MHA | 11.9(1.1) 18.4(1.1) 20.6(1.3 424
MH | 11.8(1.0) 19.3(0.9) - 580
GRID | 19.9 (0.9) - 19.8 (0.8) 300

Table 4: Comparison of combinations of detector/descrpfor indoor/city/landscape classification. The
average number of detected points per image is also shown.
Total class. error rate: 20.8 (2.1) (Baseline: 30.1 (1.1))

m. | f. | i. |c.-p.|c.-s.|error (%) # of images
mount. [85.8/ 8.6| 2.5/ 0.5| 2.6| 14.2 590
forest | 8.9/80.3 1.6|2.4|6.7| 19.7 492
indoor | 0.4| 0 |91.10.4|8.1| 8.9 2777
city-pan) 3.5| 1.8 | 8.0 46.9/39.8] 53.1 549
city-str. | 2.0 | 2.2 |20.8/ 6.0 (68.9] 31.1 1957

Table 5: Classification rate and confusion matrix for the-filass, using BOV and vocabulaby .

we observe that the main source of confusion lays betweemtlo®r images and the city-street images, for
similar reasons as those described in the three-class task.

7.2 Scene classification with PLSA

In PLSA, we use the probability distributiafi(z;|d;) of latent aspects given each specific document &5 a
dimensional feature vectar(d) (Eqg. 5). Given that PLSA is an unsupervised approach, whereference to
the class label is used during the aspect model learning, ayewonder how much discriminant information
remains in the aspect representation. To answer this queste compare the classification errors obtained
with the PLSA and BOV representations. Furthermore, tottesinfluence of the training data on the aspect
model, we conducted two experiments which only differ indla¢a used to estimate tii&v;|z;) multinomial
probabilities. More precisely, we defined two cases:

PLSA-I: for each data set split, the training data part (that is usé@in the SVM classifier, cf Section 6.3)
was also used to learn the aspect models.

PLSA-O: the aspect models are trained only once on the auxiliarys#a3, which is disjoint from the
sets used for SVM learning.

As the data seD3 comprises city, outdoor, and city-landscape overlap imaB&SA learned on this set
should capture valid latent aspects for all the classificatasks simultaneously. Such a scheme presents the
clear advantage of constructing a uniqdig-dimensional representation for each image that can bedtest
all classification tasks.

Classification results: two and three-class cases

Table 6 shows the classification performance of the lateattespepresentation for 20 and 60 aspects for the two
strategies PLSA-I and PLSA-O, usifngqyo. The corresponding results for BOV with the same vocabidaey
re-displayed for comparison purposes.

Discussing first the PLSA training data issue, we observigadidormance of both strategies is comparable
for the city/landscape scene classification, being PLSAetiebthan PLSA-I for indoor/outdoor (paired T-test,
with p = 0.05). This might suggest that aspect models learned on the samused for SVM training may
cause some over-fitting in the indoor/outdoor case. SinagyURBLSA-O allows to learn one single model
for all tasks, we chose this approach for the rest of the éxmaits. Of course, the data set from which the
aspects are learned must be sufficiently representatiVeeafdilection to be classified in order to obtain a valid
aspect-based representation.

Comparing the 60-aspect PLSA-O model with the BOV approaehpbserve that their performance is
similar, and that PLSA performs better in the city/landgcapse (although not significantly), while the op-
posite holds for the three-class task. Learning visual ansrences with 60 aspects in PLSA allows for
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Figure 6: lllustration of the five classes, with 8 randomlyested examples per class. From left to right:
mountain, forest, indoor, city-panorama, city-street.idlages have been cropped for display.

dimensionality reduction by a factor of 17 while keeping digcriminant information contained in the original
BOV representation. Note that PLSA with 60 aspects perfdietter than the BOV representation with the
vocabularyl/og in all cases (see Tables 1 and 2).

We also conducted experiments to study the importance ohtingber of aspects on the classification
performance. Table 7 displays the evolution of the errohwlite number of aspects for the city/landscape
classification task. The results show that the performasnoelatively independent of the number of aspects in
the range [40,100]. For the rest of this paper we use a PLSAehwaith N4 = 60 aspects.

For comparison purposes, we present in Table 8 the confusatrix in the three-class classification task.
The errors are similar to those obtained with the BOV (TableThe only noticeable difference is that more
indoor images were misclassified in the city class.

Decreasing the amount of training data

Since PLSA captures co-occurrence information from tha das learned from, it can provide a more stable
image representation. We expect this to help in the caseckfdé sufficient labeled training data for the
classifier. Table 9 compares classification errors for th& B@d the PLSA representations for the different
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Method A  ind./Jout. city/land. ind./city/land.

BOV 76(1.0) 53(1.1) 11.1(0.8)
PLSA-l 20 95(1.0) 55(09) 12.6(0.8)
PLSA-1 60 8.3(0.8) 4.7(0.9)  11.2(1.3)
PLSA-O 20 89(14) 56(09) 12.3(1.2)
PLSA-O 60 7.8(1.2) 4.9(0.9)  11.9(1.0)

Table 6: Comparison of BOV, PLSA-I and PLSA-O strategiestanttvo- and three-class classification tasks,
using 20 and 60 aspects, and vocabuldgyo.

Ny \ 20 40 60 80 100

Error| 5.6 (0.9) 4.9(0.8) 4.9(0.9) 4.8(1.0) 5.0(0.9)

Table 7: Classification results for the city/landscape,taskg different number of aspects for PLSA-O.

tasks when using less data to train the SVMs. The amountiofricadata is given both in proportion to the
full data set size, and as the total number of training imaghe test sets remain identical in all cases.

Several comments can be made from this table. A general dhatir all methods, the larger the training
set, the better the results, showing the need for buildirgeland representative data sets for training purposes.
Qualitatively, with the PLSA and BOV approaches, perforoedegrades smoothly initially, and sharply when
using 1% of training data. With the baseline, on the othedhparformance degrades more steadily.

Comparing methods, we first notice that PLSA with 10% of fregrdata outperforms the baseline approach
with full training set (i.e. 90%), this is confirmed in all @&sby a Paired T-test, wifh= 0.05. BOV with 10%
of training still outperforms the baseline approach with fiaining set (i.e. 90%) for indoor/outdoor (paired
T-test withp = 0.05). More generally, we observe that both PLSA and BOV perfoattds than the baseline
for -almost- all cases of reduced training set. An excepsdhe city/landscape classification case, where the
baseline is better than the BOV when using 2.5% and 1% trqidata, and better than the PLSA model for
1%. This can be explained by the fact that edge orientatiatufes are particularly well adapted for this task,
and that with only 25 city and 42 landscape images for trgingiobal features are competitive.

Furthermore, we notice that PLSA deteriorates less as diang set is reduced, producing better results
than BOV for all reduced training set experiments (althonghalways significantly better).

Previous work on probabilistic latent space modeling hpented similar behavior for text data [3]. PLSA's
better performance in this case is likely due to its abiltycapture aspects that contain general information
about visual co-occurrence. Thus, while the lack of dataainspthe simple BOV representation in covering
the space of documents belonging to a specific scene clasduedgo the synonymy and polysemy issues) the
PLSA-based representation is less affected.

Classification results: five-class case

Table 10 reports the overall error rate and the confusiomixtttained with PLSA-O in the five-class problem,
and with the full training set. As can be seen, PLSA perforlighy worse than BOV, but still better than
the baseline. By comparing the confusion matrix with thathef BOV case (Table 5), we can see that, while
the forest, mountain, and indoor classification behavionaies almost unchanged, the results for the two
city classes were significantly altered. The main explamatomes from the rather loose definition of the

Total class. error 11.9(1.0)
indoor | city | land. | class error(%)| # images
indoor | 86.6 | 11.8| 1.6 13.4 2777
city 148 | 75.4| 9.8 24.5 2505
land. 1.3 19 | 96.8 3.1 4175

Table 8: Classification error and confusion matrix for thee&class problem using PLSA, withqoo and 60
aspects.
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Method Amount of training data

90% 10% 5% 2.5% 1%
Indoor/Outdoor
#images 8511 945 472 236 90

PLSA  7.8(1.2) 9.1(1.3) 10.0(1.2) 11.4(1.1) 13.9(1.0)
BOV  7.6(1.0) 9.7(1.4) 10.4(0.9) 12.2(1.0) 14.3(2.4)
Baseline 10.4(0.8) 15.9(0.4) 19.0(1.4) 23.0(1.9) 26.0(1.9)

City/Landscape

#images 6012 668 334 167 67
PLSA  4.9(0.9) 5.8(0.9) 6.6(0.8) 8.1(0.9) 17.1(1.2)
BOV  5.3(1.1) 7.4(0.9) 8.6(1.0) 12.4(0.9) 30.8(1.1)
Baseline 8.3(1.5) 9.5(0.8) 10.0(1.1) 11.5(0.9) 13.9(1.3)

Indoor/City/Landscape

#images 8511 945 472 236 90
PLSA  11.9(1.0) 14.6(1.1) 15.1(1.4) 16.7(1.8) 22.5(4.5)
BOV  11.1(0.8) 15.4(1.1) 16.6(1.3) 20.7(1.3) 31.7(3.4)
Baseline 15.9(1.0) 19.7(1.4) 24.1(1.4) 29.0(1.6) 33.9(2.1)

Table 9: Classification performance for PLSA (@] W|th 60 ai;geBOV with vocabulary o, and baseline
approaches, when using-a Y he amount of training data is
given as percentage of t Zlara 2 {re gimages.
m. f. i c.-p. | c.-s. | error (%)
mountain| 85.5| 12.2| 0.8 0.3 1.2 14.5
forest 128 | 78.3| 0.8 0.4 7.7 21.7
indoor 03 | 0.1 |889]| 0.2 | 105 111
city-pan. | 3.6 | 4.9 88 | 126 | 70.1 87.4
city-str. 1.6 1.4 | 204 | 1.7 | 749 25.1

Table 10: Classification error and confusion matrix for tre-tlass problem using PLSA-O with 60 aspects.

city-panorama class, which contains many more images fasrrhark buildings in the middle distance than
‘cityscape’ images. Due to this fact, combined with theetfist scale invariance, the PLSA modeling generates
a representation for the city-panorama images which gleantains building-related aspects, and introduces
confusion with the city-street class. In this case, therabgbn level of PLSA loses some of the discriminative
elements of the BOV. Due to the unbalanced data set, thestigt class beneficiates from this confusion, as
shown by its reduced misclassification rate with respedhéocity-panorama class. Furthermore, aspects are
learned on thé3 data set, which contains a relatively small amount of céygrama images compared to
city-street images. This imbalance can explain the amhig@aspect representation of the city-panorama class
and the resulting poor classification performance.

Table 11 presents the evolution of the classification erfoemiess labeled training data is available. It
shows that the loss of discriminative power between themdtyorama and city-street classes continue to affect
the PLSA representation, and that, in this task, the BOV @gogr outperforms the PLSA model for reduced
training data. Both methods, however, perform better thargtobal approach.

The five-class experiment raises a more general issue. Agtmeiice more classes or labels, the possibility
of defining clear-cut scenes and of finding images that beflormyly one class diminishes, while the number
of images whose content belongs to several concepts irged¥ith more classes, the task could be better
formulated as an annotation problem rather than a clagsificane. PLSA-based approaches have shown
promising performance for this task [23].

In the case of less confusing class definitions, the PLSAcgmbr can be valid for other multi-class prob-
lems. We have recently applied our approach on a seven-algsst data set with good performance (88%
classification rate), and obtaining similar conclusionthwispect to the properties of our approach [24].

We have performed additional experiments with more claseeSection 9 where we investigate the appli-
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Perc. data 90% 10% 5% 2.5% 1%
# images 5727 636 318 159 64
PLSA  23.1(1.2) 27.9(2.2) 29.7(2.0) 33.1(2.5) 38.5(2.6)
BOV 20.8(2.1) 25.5(1.7) 28.3(1.3) 30.8(1.6) 37.2(3.4)
Baseline 30.1(1.1) 36.8(1.4) 39.3(1.4) 42.8(1.6) 49.9(3)

Table 11: Comparison between BOV, PLSA-O, and baseline&s¥M trained with reduced data on the 5-class
RERRIS ¥ both BOV and PLSA scene modeling to problems witheraasses (13 and 6).

8 Aspect-based image ranking

With PLSA, aspects can be conveniently illustrated by tingist probable images in a data set. Given an aspect
z, Images can be ranked according to:

z|d)P(d)

Pldle) = TR o b ), ©

where P(d) is considered as uniform. The top-ranked images for a gigpedt illustrate its potential 'vi-
sual meaning’. Fig. 7 displays the 10 most probable imaga® fthe 668 test images of the first split of
the D1 data set, for seven out of 20 aspects learned orDhielata set. The top-ranked images represent-
ing aspects 1, 6, 8, and 16 all clearly belong to the landsckgss. More precisely, aspect 1 seems to be
mainly related to horizon/panoramic scenes, aspect 6 aodddst/vegetation, and aspect 16 to rocks. Con-
versely, aspect 4 and 12 are related to the city class. Howaseaspects are identified by analyzing the co-
occurrence of local visual patterns, they may be consi$tent this point of view (e.g. aspect 19 is consistent
in terms of texture) without allowing for a direct semantitarpretation. The results can be better appreciated
at http://carter.idiap.ch/aspect_ranking/index.html.

Considering the aspect-based image ranking as an infamedirieval system, the correspondence be-
tween aspects and scene classes can be measured objeEtafaiyng thePrecision andRecall paired values
by:

Precision(r) = %; Recall(r) = %,

where Ret is the number of retrieved imageRBegl is the total number of relevant images aRdl Ret is the
number of retrieved images that are relevant, we can contpatprecision/recall curves associated with each
aspect-based image ranking considering either city ardstape queries, as illustrated in Fig. 8. Those curves
prove that some aspects are clearly related to such conegptsonfirm observations made previously with
respect to aspects 4, 6, 8, 12, and 16. As expected, aspeceshdt appear in either the city or landscape
top precision/recall curves. The landscape-related rgnkiom aspect 1 does not hold as clearly for higher
recall values, because the co-occurrences of the vistett@rps appearing in horizons that it captures is not
exclusive to the landscape class. Overall, these reslustrate that the latent structure identified by PLSA
highly correlates with the visual structure of our data. sTitentially makes PLSA a very attractive tool for
browsing/annotating unlabeled image collections.

9 Experiments with other data sets

Given the recent appearance of other works and data setsriks wa scene classification [11, 42], we have
also compared our framework to them. In [11], the authorkl¢égihe classification of 13 different scene types.
In [42], the authors tackle the classification of 6 differeatural scenes types, all collected from outdoor
images. We present a short description of those data séts imet paragraphs.

13-class data set [11T his data set contains a total of 3859 images of approx. 6pB@0resolution, vary-
ing in exact size and XY ratio. The images are distributed @@escene classes as follows (the number in paren-
thesis indicates the number of images in each class): bed{db6), coast (360), forest (328), highway (260),
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Figure 7: The 10 most probable images from Diedata set for seven aspects (out of 20) learned othe
data set.

inside city (308), kitchen (210), living room (289), mouint§374), open country (410), office (215), street
(292), suburb (241), and tall buildings (356) (availabledownload at: http://faculty.ece.uiuc.edu/feifeilifda
sets.html).

6-class data set [42]his relatively small data set contains a total of 700 imagfegsolution720 x 480
pixels. They are distributed over 6 natural scene classégllas/s: coasts (142), river/lakes (111), forests
(103), plains (131), mountains (179), and sky/clouds (34).
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Figure 8: Precision/recall curves for the image rankingedasn each of the 20 individual aspects, relative
to the landscape (left) and city (right) query. Each cunmesents a diferent aspect. Floor precision values
correspond to the proportion of landscape(resp. city) esayg the data set.

These two data sets are challenging given their respeativgoar of classes and the intrinsic ambiguities
that arise from their definition. In the 13-class data setefample, images from the inside city and street
categories share a very similar scene configuration. Silyildhe differences between bedroom and living
room examples can be subtle. In the 6-class data set, examoptbe coasts and waterscapes classes are
hard to distinguish. The same ambiguous class definitionolvasrved for our five-class classification task in
Section 7.1.

In Section 7, we evaluated visterm vocabularies built frofiecent data sources, and conducted a compar-
ison of aspect representations learned from extra dataARD)Sor learned on the same data used to learn the
SVM classifier (PLSA-I). Given that we have no extra set offespntative images for the 13-class or 6-class
data, we can not present the same experiments for theseedsitd s keep consistency with the way in which
results are presented in [11, 42], we report classificattmuigcy instead of classification error.

9.1 Classification results: 13-class

We first classify the images based on their BOV as in Sectidkesults were obtained by training a multi-class
SVM using a 10-split protocol, as in Section 6.3. No paramieteing on the vocabulary was done in this case,
as we directly apply the vocabula® o, used in Section 7.

The confusion matrix for the 13 classes and the classificgg@formance per class are presented in Fig-
ure 9. The classification performance is substantially éiighan the one presented by [11], which reported
an overall classification performance of 52.5% when usiggsiime combination of detector/descriptors we
adopted here (DOG+SIFT) for learning their model. The penénce of our method is also slightly better than
thebest performance reported in [11] (65.2%, obtained with a diférdetector/descriptor pair: GRID/SIFT).
As we do not have access to the individual per-image resiflid§ we cannot assess the statistical significance
of these results, but we can nevertheless consider that@veapproach is competitive.

We also applied the PLSA-I approach to solve the same clest$ifih problem, as in Section 7.2. We
learned PLSA with 40 aspects, since this is the number ofcéspesed in [11]. Results were obtained, as
before, with a multi-class SVM trained using a 10-split paatl.

Figure 10 shows the performance of the PLSA-I represemtafibe classification accuracy is higher than
the one in [11] when using the (DOG+SIFT) combination, bubiser than thebest performance reported
in [11], and also lower that one obtained with BOV. The perfance degradation between BOV and PLSA
results from the same phenomena observed for the five-ctassiments in Section 7.2. In the presence of a
high number of classes, the PLSA decomposition tends tdtiesuloss of important details for the distinction



22 IDIAP—-RR 05-40

class confusion matrix perf.
bedroom 30.6
coast 78.3

forest 89.0
highway 67.7
inside city 64.6
kitchen 40.0
living room 45.7
mountain 82.1
open country 60.5
office 77.2

street 72.3
suburb 89.2

tall buildings 66.9

Figure 9: Classification accuracy for the BOV representgtio the 13-class problem from [11]. The overall
classification accuracy is 66.5%.

Class confusion matrix perf.
coasts 509 99 21 85 183 145938
river/lakes| 1.6 24.3 10.8 10.8 27.0 5.424.3
forests 29 58 816 49 49 00816
plains 183 6.1 84 527 115 31527
mountains| 11.2 8.9 22 28 73.7 11737
sky/clouds| 5.9 29 00 59 59 794794
overall 61.9

Table 12: Classification accuracy for the BOV represemaiiothe 6-class problem presented in [42].

of ambiguous classes. As with the BOV case, we can also sayhthd@LSA approach remains competitive
with respect to [11].

9.2 Classification results: 6-class

The data set presented by Vogel et al. [42] is composed o€lasses than [11], with a total of six natural scene
types. The ambiguity between class definitions is howevaenmportant, and some images are difficult to
classify in only one scene type. The number of examples pssds significantly smaller than that in [11] and
than the five-class data set in Section 7.

The multi-class SVM results, obtained using a 10-split@cot on the BOV representation; (o vocab-
ulary learned orD3) are presented in Table 12. In this case, our system hastdlgligduced classification
accuracy (61.9%) when compared with the performance predem [42](67.2%). Note, however, that these
results have not been obtained using identical featur@§:rfdies on a fixed grid, where a texture and color
features are extracted. We believe that the differencerioeance with respect to our work arises from the
fact that natural scene discrimination can benefit greadiyfthe use of color, something we have not made use
of, but which in light of these results constitutes an issuevestigate in the future. Moreover, the intermediate
classification step proposed in [42] requires the expemaaeual labeling of hundreds of regional descriptors,
which is not needed in our case.

Given the reduced set of examples per class, and the needsigieanumber of representative examples to



IDIAP—-RR 05-40 23

class confusion matrix perf.
bedroom 31.9
coast 65.3

forest 86.3
highway 58.8
inside city 63.6
kitchen 15.7
living room 45.0
mountain 73.8
open country 64.4
office 67.0

street 68.2
suburb 88.4

tall buildings 62.1

Figure 10: Classification accuracy for the PLSA-I repreaton, in the 13-class problem from [11]. The
overall classification accuracy is 60.8%.

Class confusion matrix perf.
coasts 40.1 9.9 9.2 120 254 35401
river/lakes| 20.7 21.6 11.7 12.6 30.6 2.J21.6
forests 19 39 786 78 7.8 0.0786
plains 20.6 6.9 115 359 214 3.8359
mountains| 84 7.3 11.7 56 659 1.165.9
sky/clouds| 14.7 0.0 0.0 8.8 59 70.670.6
overall 52.1

Table 13: Classification for the PLSA-O representationhan@-class problem presented in [42].

train a PLSA model, we could not perform the PLSA-I approamttliis 6-class problem. However, in order
to evaluate the performance of the aspect representatidhese data, we use the previous PLSA model with
60 aspects learned on ti¥8 data set (see Section 7.2). The corresponding classificegigults, as shown

in Table 13, indicate a decrease in performance (52.1%) mepect to both BOV and the results reported
in [42]. The fact that the PLSA model has been learned oib®data set, which does not contain any coasts,
river/lakes, or plain examples, likely explains the poacdimination between the 6-classes when the aspect
representation is used.

Overall, these experiments support some of the findingsradatan Section 7, namely that modeling scenes
as abag-of-visterms performs well even in problems with a large amount of clasaed that PLSA modeling
can find limitations in cases of large amount of overlappitagses. At the same time, these experiments offer
other insights: our framework is competitive with recenpigaches, and feature fusion mechanisms (adding
color) have a potential for an increased classificationgoarance.

10 Conclusion

Based on the results presented in this paper, we believehbgiresented scene modeling methodology is
effective for solving scene classification problems. Weehstvown, with extensive results, that it outperforms
classical scene classification methods. We have also shuatrittis able to handle a variety of problems

without having to redesign the features used.
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Regarding the specific contributions of this paper, we firsspnted results that demonstrate thatodge
of-visterms approach is adequate for scene classification, consigteatperforming methods relying on a
suite of hand-picked global features. In the second plaeealgo showed that the PLSA-based representation
is competitive with the BOV in terms of performance and resuh general, in a more graceful performance
degradation with decreasing amount of training data. Tsslt is potentially relevant for the portability and re-
usability of future systems, since it allows to reuse a dfi@ssion system for a new problem using less training
data. Thirdly, we also demonstrated that PLSA-based clngtef images reveals visually coherent grouping
that we showed to be valuable for aspect-based image rankinglly, as part of our work, we explored the
visterm vocabulary co-occurrence properties, and conapdrem to those of words in text documents. The
results of such analysis showed the presence of cases afiyaygcand polysemy as in text words, but also
showed other statistical properties, such as sparsityetdifferent than those in text. This, we believe, is
mainly due to the vocabulary construction methodology, ahebcates for improved vocabulary construction
approaches.

The description of a visual scene as a mixture of aspects iistaguing concept worth of further explo-
ration. We are currently exploring the extension of PLSA elod) for scene segmentation. Further areas to
investigate with the approach are the extraction of moreningéul vocabularies, the study of the influence of
the degree of invariance of the local descriptors, and tffi@itlen of feature fusion mechanisms (e.g. color
and local descriptors) in the latent space framework.
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