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Abstract

We address the problem of segmentation and recognition of sequences of multimodal human interactions in
meetings. These interactions can be seen as a rough structure of a meeting, and can be used either as input for
a meeting browser or as a first step towards a higher semantic analysis of the meeting. A common lexicon of
multimodal group meeting actions, a shared meeting data set, and a common evaluation procedure enable us
to compare the different approaches. We compare three different multimodal feature sets and four modelling
infrastructures: a higher semantic feature approach, multi-layer HMMs, a multi-stream DBN, as well as a
multi-stream mixed-state DBN for disturbed data.

1 Introduction

Recordings of multi-party meetings are useful to recall important pieces of information (decisions, key-points,
milestones, etc.), and eventually share it with people who were not able to attend those meetings. Unfortu-
nately, watching raw audio-video recordings is tedious. Therefore an automatic approach to extract high-level
information could facilitate this task.

In this paper we address the problem of recognising sequences of human interaction patterns in meetings,
with the goal of structuring them in semantic terms. Our aim is to discover repetitive patterns into natural
group interactions and associate them with a lexicon of meeting actions or phases (such as discussions or
monologues). The detected sequence of meeting actions will provide a relevant summary of the meeting struc-
ture. The investigated patterns are inherently group-based (involving multiple simultaneous participants), and
multimodal (as captured by cameras and microphones).

Automatic modelling of human interactions from low-level multimodal signals is an interesting topic for
both theoretical and practical reasons. First, from the theoretical point of view, modelling multichannel mul-
timodal sequences provides a particular challenging task for machine learning techniques. Secondly, from the
application point of view, automatic meeting analysis could add value to the raw data for browsing and retrieval
purposes.

Starting from a common lexicon of meeting actions (section 2) and sharing the same meeting data-set
(section 3), each site (TUM, IDIAP and UEDIN) has selected a specific feature set (section 4) and proposed
relevant models (section 5). Then a common evaluation metric (section 6) has been adopted in order to compare
several experimental setups (section 7).

2 Action Lexicon

Two sets of meeting actions have been defined. The first set (lexicon 1, defined in [8]) includes eight meeting
actions, like discussion, monologue, or presentation. The monologue action is further distinguished by the
person actually holding the monologue (e.g. monologue � is meeting participant one speaking). The second
set (lexicon 2, defined in [15]) comprehends the full first set, but also has combinations of two parallel actions
(like a presentation and note-taking). The second set includes fourteen group actions. Both sets and a brief
description are shown in table 1.

3 Meeting Data Set

We used a public corpus of 59 five-minute, four-participant scripted meetings [8]. The recordings took place at
IDIAP in an instrumented meeting room equipped with cameras and microphones1. Video has been recorded
using 3 fixed cameras. Two cameras capture a frontal view of the meeting participants, and the third camera
captures the white-board and the projector screen. Audio was recorded using lapel microphones attached to
participants, and an eight-microphone array placed in the centre of the table.

1This corpus is publicly available from http://mmm.idiap.ch/
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Table 1: Group action lexicon 1 and 2
Action Lexicon Description

Discussion lexicon 1 and 2 most participants engaged in conversations
one participant speaking

Monologue lexicon 1 and 2
continuously without interruption

Monologue+ contained only one participant speaking continuously
Note-taking in lexicon 2 others taking notes
Note-taking lexicon 1 and 2 most participants taking notes

one participant presenting
Presentation lexicon 1 and 2

using the projector screen
Presentation+ contained only one participant presenting using
Note-taking in lexicon 2 projector screen, others taking notes

one participant speaking
White-board lexicon 1 and 2

using the white-board
White-board+ contained only one participant speaking using
Note-taking in lexicon 2 white-board, others taking notes

4 Features

The investigated individual actions are multimodal, we therefore use different audio-visual features. They are
distinguished between person-specific AV features and group-level AV features. The former are extracted from
individual participants. The latter are extracted from the white-board and projector screen regions. Furthermore
we use a small set of lexical features. The features are described in the next sections, for details please refer to
the indicated literature.

From the large number of available features each site has chosen a set, used to train and evaluate their
models. The complete list of features, and the three different sets IDIAP, TUM, UEDIN are listed in table 2.

4.1 Audio features

MFCC: For each of the speakers four MFC coefficients and the energy were extracted from the lapel-
microphones. This results in a 20-dimensional vector ��������	� containing speaker-dependent information.

A binary speech and silence segmentation (BSP) for each of the six locations in the meeting room was
extracted with the SRP-PHAT measure [8] from the microphone array. This results in a six-dimensional discrete
vector ���
���
����	� containing position dependent information.

Prosodic features are based on a denoised and stylised version of the intonation contour, an estimate of the
syllabic rate of speech and the energy [5]. These acoustic features comprise a 12 dimensional feature vector (3
features for each of the 4 speakers).

Speaker activity features rely on the active speaker locations evaluated using a sound source localisation
process based on a microphone array [8]. A 216 element feature vector resulted from all the ��� possible
products of the 6 most probable speaker locations (four seats and two presentation positions) during the most
recent three frames [5]. A speaker activity feature vector at time � thus gives a local sample of the speaker
interaction pattern in the meeting at around time � .

Further audio features: From the microphone array signals, we first compute a speech activity measure
(SRP-PHAT). Three acoustic features, namely energy, pitch and speaking rate, were estimated on speech seg-
ments, zeroing silence segments. We used the SIFT algorithm to extract pitch, and a combination of estimators
to extract speaking rate [8].
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Table 2: Audio, visual and semantic features, and the resulting three feature sets.
Description IDIAP TUM UEDIN

head vertical centroid X
head eccentricity X

right hand horizontal centroid X
Visual right hand angle X

right hand eccentricity X
head and hand motion X

Person- global motion features from each seat X
Specific SRP-PHAT from each seat X
Features speech relative pitch X X

speech energy X X X
Audio speech rate X X

4 MFCC coefficients X
binary speech and silence segmentation X

individual gestures X
Semantic talking activity X

mean difference from white-board X
mean difference from projector screen X

Visual
global motion features from whiteboard X

global motion features from projector screen X
Group SRP-PHAT from white-board X

Features SRP-PHAT from projector screen X
Audio speaker activity features X

binary speech from white-board X
binary speech from projector screen X

4.2 Global motion visual features

In the meeting room the four persons are expected to be at one of six different locations: one of four chairs, the
whiteboard, or at a presentation position. For each location � in the meeting room a difference image sequence���� ��������� is calculated by subtracting the pixel values of two subsequent frames from the video stream. Then
seven global motion features [16] are derived from the image sequence: The centre of motion is calculated for
the x- and y-direction, the changes in motion are used to express the dynamics of movements. Furthermore
the mean absolute deviation of the pixels relative to the centre of motion is computed. Finally the intensity
of motion is calculated from the average absolute value of the motion distribution. These seven features are
concatenated for each time step in the location dependent motion vector. Concatenating the motion vectors
from each of the six positions leads to the final visual feature vector that describes the overall motion in the
meeting room with 42 features.

4.3 Skin-colour blob visual features

Visual features derived from head and hands skin-colour blobs were extracted from the three cameras. For the
two cameras looking at people, visual features extracted consist of head vertical centroid position and eccen-
tricity, hand horizontal centroid position, eccentricity, and angle. The motion magnitude for head and hand
blobs were also extracted. The average intensity of difference images computed by background subtraction
was extracted from the third camera. All features were extracted at 5 frames per second, and the complete set
of features is listed in table 2. For details refer to [15].
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4.4 Semantic features

Originating from the low level features also features on a higher level have been extracted. For each of the six
locations in the meeting room the talking activity has been detected using results from [7]. Further individual
gestures of each participant have been detected using the gesture recogniser from [16]. The possible features
were all normalised to the length of the meeting event to provide the relative duration of this particular fea-
ture. From all available events only those that are highly discriminative were chosen which resulted in a nine
dimensional feature vector.

5 Models for Group Action Segmentation and Recognition

5.1 Meeting segmentation using semantic features

This approach combines the detection of the boundaries and classification of the segments in one step. The
strategy is similar to that one used in the BIC-Algorithm [14]. Two connected windows with variable length
are shifted over the time scale. Thereby the inner border is shifted from the left to the right in steps of one
second and in each window the feature vector is classified by a low-level classifier. If there is a different result
in the two windows, the inner border is considered a boundary of a meeting event. If no boundary is detected
in the actual window, the whole window is enlarged and the inner border is again shifted from left to the right.
Details can be found in [13].

5.2 Multi-stream mixed-state DBN for disturbed data

In real meetings the data can be disturbed in various ways: events like slamming of a door may mask the audio
channel or background babble may appear; the visual channel can be (partly) masked by persons standing or
walking in front of a camera. We therefore developed a novel approach for meeting event recognition, based
on mixed-state DBNs, that can handle noise and occlusions in all channels [1, 2]. Mixed-state DBNs are an
HMM coupled with a LDS, they have been applied to recognising human gestures in [10]. Here, this approach
has been extended to a novel multi-stream DBN for meeting event recognition.

Each of the three observed features: microphone array (BSP), lapel microphone (MFCC) and the visual
global motion stream (GM) is modelled in a separate stream. The streams correspond to a multi-stream HMM,
where each stream has a separate representation for the features. However, the visual stream is connected to a
LDS, resulting in a mixed-state DBN. Here the LDS is a Kalman filter, using information from all streams as
driving input, to smooth the visual stream. With this filtering, movements are predicted based on the previous
time-slice and on the state of the multi-stream HMM at the current time. Thus occlusions can be compensated
with the information from all channels. Given an observation � and the model parameters ��� for the mixed-
state DBN, the joint probability of the model is the product of the stream probabilities: � � � � ��� ��� � 
��
�
	 � �
� . The model parameters are learned for each of the eight event classes � with a variational learning
EM-algorithm during the training phase. During the classification an unknown observation � is presented to
all models � � . Then � � ��
 � � � is calculated for each model and � is assigned to the class with the highest
likelihood: ��������������������� � ��
 � � � . Applying the Viterbi-algorithm to the model, leads to a meeting event
segmentation framework. The mixed-state DBN can therefore easily be combined with other models presented
in this work.

5.3 Multi-layer Hidden Markov Model

In this section we summarise the multi-layer HMM applied to group action recognition. For a detailed discus-
sion, please refer to [15].

In the multi-layer HMM framework, we distinguish group actions (which belong to the whole set of par-
ticipants, such as discussion and presentation) from individual actions (belonging to specific persons, such as
writing and speaking). To recognise group actions, individual actions act as the bridge between group actions
and low-level features, thus decomposing the problem in stages, and simplifying the complexity of the task.
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Figure 1: Multi-layer HMM on group action recognition.
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Figure 2: Multistream DBN model (a) enhanced with a “counter structure” (b); square nodes represent discrete
hidden variables and circles must be intend as continuous observations

Let I-HMM denote the lower recognition layer (individual action), and G-HMM denote the upper layer
(group action). I-HMM receives as input audio-visual (AV) features extracted from each participant, and out-
puts posterior probabilities of the individual actions given the current observations. In turn, G-HMM receives
as input the output from I-HMM, and a set of group features, directly extracted from the raw streams, which
are not associated to any particular individual. In the multi-layer HMM framework, each layer is trained inde-
pendently, and can be substituted by any of the HMM variants that might capture better the characteristics of
the data, more specifically asynchrony [3], or different noise conditions between the audio and visual streams
[6]. The multi-layer HMM framework is summarised in figure 1.

Compared with a single-layer HMM, the layered approach has the following advantages, some of which
were previously pointed out by [9]: (1) a single-layer HMM is defined on a possibly large observation space,
which might face the problem of over-fitting with limited training data. It is important to notice that the amount
of training data becomes an issue in meetings where data labelling is not a cheap task. In contrast, the layers
in our approach are defined over small-dimensional observation spaces, resulting in more stable performance
in cases of limited amount of training data. (2) The I-HMMs are person-independent, and in practice can be
trained with much more data from different persons, as each meeting provides multiple individual streams of
training data. Better generalisation performance can then be expected. (3) The G-HMMs are less sensitive
to slight changes in the low-level features because their observations are the outputs of the individual action
recognisers, which are expected to be well trained. (4) The two layers are trained independently. Thus, we can
explore different HMM combination systems. In particular, we can replace the baseline I-HMMs with models
that are more suitable for multi-modal asynchronous data sequences. The framework thus becomes simpler to
understand, and amenable to improvements at each separate level.
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5.4 Multistream DBN model

The DBN formalism allows the construction and development of a variety of models, starting from a simple
HMM and extending to more sophisticated models (hierarchical HMMs, coupled HMMs, etc). With a small
effort, DBNs are able to factorise the internal state space, organising it in a set of interconnected and specialised
hidden variables.

Our multi-stream model (bottom of figure 2) exploits this principle in two ways: decomposing meeting
actions into smaller logical units, and modelling parallel feature streams independently. We assume that a
meeting action can be decomposed into a sequence of small units: meeting subactions. In accordance with
this assumption the state space is decomposed into two levels of resolution: meeting actions (nodes � ) and
meeting subactions (nodes ��� ). Note that the decomposition of meeting actions into meeting subactions is
done automatically through the training process.

Feature sets derived from different modalities are usually governed by different laws, have different charac-
teristic time-scales and highlight different aspects of the communicative process. Starting from this hypothesis
we further subdivided the model state space according to the nature of features that are processed, modelling
each feature stream independently (multistream approach). The resulting model has an independent substate
node ��� for each feature class � , and integrates the information carried by each feature stream at a ‘higher
level’ of the model structure (arcs between � and ��� , � ��� � �
	�� ). Since the adopted lexicon 1 (section 2) is
composed by 8 meeting actions, the action node � has a cardinality of 8. The cardinalities of the sub-action
nodes � are part of parameter set, and in our experiments we have chosen a value of 6 or 7.

The probability to remain in an HMM state corresponds to an inverse exponential [11]: a similar behaviour
is displayed by the proposed model. This distribution is not well-matched to the behaviour of meeting action
durations. Rather than adopting ad hoc solutions, such as action transition penalties, we preferred to improve
the flexibility of state duration modelling, by enhancing the existing model with a counter structure (top of
figure 2). The counter variable 
 , which is ideally incremented during each action transition, attempts to
model the expected number of recognised actions. Action variables � now also generate the hidden sequence
of counter nodes 
 , together with the sequence of sub-action nodes � . Binary enabler variables � have an
interface role between action variables � and counter nodes 
 .

This model presents several advantages over a simpler HMM in which features are “early integrated” into
a single feature vector: feature classes are processed independently according to their nature; more freedom
is allowed in the state space partitioning and in the optimisation of the sub-state space assigned to each fea-
ture class; knowledge from different streams is integrated together at an higher level of the model structure;
etc. Unfortunately all these advantages, and the improved accuracy that can be achieved, are balanced by an
increased model size, and therefore by an increased computational complexity.

6 Performance Measures

Since group meeting actions are high level symbols and their boundaries are extremely vague. In order to
evaluate results of the segmentation and recognition task we used the Action Error Rate, a metric that privileges
the recognition of the correct action sequence, rather than the precise temporal boundaries. AER is defined as
the sum of insertion (Ins), deletion (Del), and substitution (Subs) errors, divided by the total number of actions
in the ground-truth:

AER � Subs � Del � Ins
Total Actions � ������� (1)

Measures based on deletion (Del) and insertion (Ins) and substitution (Subs) are also used to evaluate action
recognition results.
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Table 3: Segmentation results using the higher semantic feature approach (BN: Bayesian Network, GMM:
Gaussian Mixture Models, MLP: Multilayer Perceptron Network, RBF: Radial Basis Network, SVM: Support
Vector Machines). The columns denote the insertion rate, the deletion rate, the accuracy in seconds and the
classification error rate (using lexicon 1 in Table 1).

Classifier Insertion (%) Deletion (%) Accuracy Error (%)

BN 14.7 6.22 7.93 39.0
GMM 24.7 2.33 10.8 41.4
MLP 8.61 1.67 6.33 32.4
RBF 6.89 3.00 5.66 31.6
SVM 17.7 0.83 9.08 35.7

7 Experiments and Discussions

7.1 Higher semantic feature approach

The results of the segmentation are shown in table 3 (BN: Bayesian Network, GMM: Gaussian Mixture Models,
MLP: Multilayer Perceptron Network, RBF: Radial Basis Network, SVM: Support Vector Machines). Each
row denotes the classifier that was used. The columns show the insertion rate (number of insertions in respect
to all meeting events), the deletion rate (number of deletions in respect to all meeting events), the accuracy
(mean absolute error) of the found segment boundaries in seconds and the recognition error rate. In all columns
lower numbers denote better results. As can be seen from the tables, the results are quite variable and heavily
depend on the used classifier. These results are comparable to the ones presented in [12]. With the integrated
approach the best outcome is achieved by the radial basis network. Here the insertion rate is the lowest. The
detected segment boundaries match pretty well with a deviation of only about five seconds to the original
defined boundaries.

7.2 Multi-stream mixed-state DBN for disturbed data

To investigate the influence of disturbance to the recognition performance, the evaluation data was cluttered:
the video data was occluded with a black bar covering one third of the image at different positions. The audio
data from the lapel microphones and the microphone array was disturbed with a background-babble with 10dB
SNR. 30 undisturbed videos were used for the training of the models. The remaining 30 unknown videos have
been cluttered for the evaluation.

The novel DBN was compared to single-modal (audio and visual) HMMs, an early fusion HMM, and a
multi-stream HMM. The DBN showed a significant improvement of the recognition rate for disturbed data.
Compared to the baseline HMMs, the DBN reduced the recognition error by more than 1.5% (9% relative
error reduction) for disturbed data. It may therefore be useful to combine this approach with the other models
presented in this work, to improve the noise robustness. Please refer to [1, 2] for detailed recognition results,
as well as a comprehensive description of the model.

7.3 Multi-layer hidden Markov model

Table 4 reports the performance in terms of action error rate (AER) for both multi-layer HMM and the single-
layer HMM methods. Several configurations were compared, including audio-only, visual-only, early integra-
tion, multi-stream [6] and asynchronous HMMs [3]. We can see that (1) the multi-layer HMM approach always
outperforms the single-layer one, (2) the use of AV features always outperforms the use of single modalities for
both single-layer and multi-layer HMM, supporting the hypothesis that the group actions we defined are inher-
ently multimodel, (3) the best I-HMM model is the asynchronous HMM, which suggests that some asynchrony
exists for our task of group action recognition, and is actually well captured by the asynchronous HMM.
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Table 4: AER (%) for single-layer and multi-layer HMM (using lexicon 2 in Table 1).
Method AER (%)

Visual only 48.2
Audio only 36.7

Single-layer HMM Early Integration 23.7
Mutli-stream 23.1

Asynchronous 22.2

Visual only 42.4
Audio only 32.3

Multi-layer HMM Early Integration 16.5
Multi-stream 15.8

Asynchronous 15.1

7.4 Multistream DBN model

All the experiments depicted in this section were conducted on 53 meetings (subset of the meeting corpus
depicted in section 3) using the lexicon � of eight group actions. We implemented the proposed DBN models
using the Graphical Models Toolkit (GMTK) [4], and the evaluation is performed using a leave-one-out cross-
validation procedure.

Table 5 shows experimental results achieved using: an ergodic 11-states HMM, a multi-stream approach
(section 5.4) with two feature streams, and the full counter enhanced multi-stream model. The base 2-stream
approach has been tested in two different sub-action configurations: imposing �� ������

� �� ������
��� �
	��

�� . There-

fore four experimental setups were investigated; and each setup has been tested with 3 different feature sets,
leading to 12 independent experiments. The first feature configuration (“UEDIN”) associates prosodic features
and speaker activity features (section 4.1) respectively to the stream ��� and to ��� . The feature configuration la-
belled as “IDIAP” makes use of the multimodal features extracted at IDIAP, representing audio related features
(prosodic data and speaker localisation) through the observable node ��� and video related measures through
��� . The last setup (“TUM”) relies on two feature families extracted at the Technische Universität München:
binary speech profiles derived from IDIAP speaker locations and video related global motion features; each
of those has been assigned to an independent sub-action node. Note that in the HMM based experiment the
only observable feature stream � has been obtained by merging together both the feature vectors ��� and ��� .
Considering only the results (of table 5) obtained within the UEDIN feature setup, it is clear that the simple
HMM shows much higher error than any other multi-stream configuration. The adoption of a multistream
based approach reduces the AER to less than 20%, providing the lowest AER (11%) when sub-action cardi-
nalities are fixed to 7. UEDIN features seem to provide a higher accuracy if compared with IDIAP and TUM
setups, but it is essential to remember that our DBN models have been optimised for the UEDIN features. In
particular sub-action cardinalities have been intensively studied with our features, but it will be interesting to
discover optimal values for IDIAP and TUM features too. Moreover overall performances achieved with the
multistream approach are very similar (AER are always in the range from 26.7% to 11.0%), and all my be
considered promising. The TUM setup seems to be the configuration for which switching from a HMM to a
multistream DBN approach provides the greatest improvement in performance: the error rate decreases from
92.9% to 21.4%. If with the UEDIN feature set the adoption of a counter structure is not particularly effective,
with IDIAP features the counter provides a significant AER reduction (from 26.7% to 24.9%). We are confident
that further improvements with IDIAP features could be obtained by using more than 2 streams (such as the
3 multistream model adopted in [5]). Independently of the feature configuration, the best overall results are
achieved with the multistream approach and a state space of 7 by 7 substates.
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Table 5: AER (%) for an HMM, and for a multi-stream (2 streams) approach with and without the “counter
structure”; the models have been tested with the 3 different feature sets (using lexicon 1)

Model Feature Set Corr. Sub. Del. Ins. AER
UEDIN 63.3 13.2 23.5 11.7 48.4

HMM IDIAP 62.6 19.9 17.4 24.2 61.6
TUM 60.9 25.6 13.5 53.7 92.9
UEDIN 86.1 5.7 8.2 3.2 17.1

2 streams � �� � � ��
� ��� IDIAP 77.9 8.9 13.2 4.6 26.7

TUM 85.4 9.3 5.3 6.8 21.4
UEDIN 85.8 7.5 6.8 4.6 18.9

2 streams � �� � � ��
� � � + counter IDIAP 79.4 10.0 10.7 4.3 24.9

TUM 85.1 5.7 9.3 6.4 21.4
UEDIN 90.7 2.8 6.4 1.8 11.0

2 streams � �� � � ��
� 
�� IDIAP 86.5 7.8 5.7 3.2 16.7

TUM 82.9 7.1 10.0 4.3 21.4

8 Conclusions

In this work, we have presented the joint efforts of the three institutes (TUM, IDIAP and UEDIN) towards
structuring meetings into sequences of multimodal human interactions. A large number of different audio-
visual features have been extracted from a common meeting data corpus. From this features, three multimodal
sets have been chosen. Four different approaches towards automatic segmentation and classification of meet-
ings into action units haven been proposed. We then deeply investigated the three feature sets, as well as the
four different group action modelling frameworks:

The first approach from TUM exploits higher semantic features for structuring a meeting into group actions.
It thereby uses an algorithm that is based on the idea of the Bayesian-Information-Criterion. The mixed-state
DBN approach developed by TUM compensates for disturbances in both the visual and the audio channel. It is
not a segmentation framework but can be integrated into the other approaches presented in this work to improve
their robustness. The multi-layer Hidden Markov Model developed by IDIAP decomposes group actions as a
two-layer process, one that models basic individual activities from low-level audio-visual features, and another
one that models the group action (belonging to the whole set of participants). The multi-stream DBN model
proposed by UEDIN operates an unsupervised subdivision of meeting actions into sequences of group sub-
actions, processing multiple asynchronous feature streams independently, introducing also a model extension
to improve state duration modelling.

All presented approaches have provided comparable good performances. The AER are already promising,
but there is still space for further improvements both in the feature domain (i.e.: exploit more modalities) and in
the model infrastructure. Therefore in the near future we are going to investigate combinations of the proposed
systems to improve the AER and to exploit the complementary strengths of the different approaches.
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