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Abstract. In this paper we investigate the use of a temporal extension of Independent Component
Analysis (ICA) for the discrimination of three mental tasks for asynchronous EEG-based Brain
Computer Interface systems. ICA is most commonly used with EEG for artifact identification
with little work on the use of ICA for direct discrimination of different types of EEG signals. In
a recent work we have shown that, by viewing ICA as a generative model, we can use Bayes’ rule
to form a classifier obtaining state-of-the-art results when compared to more traditional methods
based on using temporal features as inputs to off-the-shelf classifiers. However, in that model
no assumption on the temporal nature of the independent components was made. In this work
we model the hidden components with an autoregressive process in order to investigate whether
temporal information can bring any advantage in terms of discrimination of spontaneous mental
tasks.
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1 Introduction

EEG-based Brain Computer Interface (BCI) systems allow a person to control devices by using ob-
served electrical activity v], at time ¢, recorded by electrodes placed over the scalp at locations
j=1,...,V. In the case of systems based on spontaneous brain activity, the user concentrates on
different mental tasks (e.g. imagination of hand movement) which are associated with different device
commands. Tasks are normally selected so that task-dependent areas in the brain become active. The
most prominent characterization of activity is the attenuation of rhythmic components, mostly in the
«a band. Standard approaches extract the frequency content of the signal, which is then processed by
a static classifier (see [12] for a general introduction on BCI research).

Signals recorded at scalp electrodes are commonly considered as a linear and instantaneous super-
position of unobserved or hidden electromagnetic activity hi generated by independent brain processes,
i =1,...,H. For these reasons Independent Component Analysis (ICA) [6] seems an appropriate
model of EEG signals and has been extensively applied to related tasks, such as the identification of
artifacts ([7, 11]) and the analysis of the underlying brain sources.

More specifically related to BCI research, several studies have addressed the issue of whether an
ICA decomposition can enhance differences in the mental tasks such as to improve the performance
of brain-actuated systems. Most of these studies use static versions of ICA either as a form of prepro-
cessing, or to aid analysis of the signal. In contrast to our approach below, they do not use ICA itself
to directly form a classifier. In [8], the authors analyze a visual attention task and show that ICA
finds p-components which show a spectral reactivity to motor events stronger than the one measured
from scalp channels. They suggest that ICA can be used for optimizing brain-actuated control. In [3]
ICA is used for analyzing EEG data recorded from subjects which attempt to regulate power at 12
Hz over the left-right central scalp. Other studies use ICA as a denoising technique or as a feature
extractor for improving the performance of a separate classifier. For example, in [4] ICA is used to
remove ocular artefacts, while [5] extracts task-related independent components prior the application
of several classifiers. In contrast to these approaches, in [10] the authors introduce a combination of
Hidden Markov Models and Independent Component Analysis as a generative model of the EEG data
and give a demonstration of how this model can be applied directly to the detection of when switching
occurs between the two mental conditions of baseline activity and imaginary movement.

Following a similar approach, in a recent work [2] we have used directly a simple static ICA genera-
tive model of EEG signals as a classifier for the recognition of three mental tasks. We have shown that
a performance similar to standard approaches based on using temporal features as inputs to off-the-
shelf classifiers can be obtained. It is still an open question whether we can do better by using a more
complex model of the data, since in [2] the temporal nature of the independent components was not
taken into account. Temporal modeling of the hidden components, for example with autoregressive
models [9], has shown to improve separation in the case of other types of recordings.

In this paper we further investigate the use of ICA for classification by modeling each hidden

component with an autoregressive process. Our interest is to asses performance in experiments which
are close to the real use of a BCI system. Rather than using a synchronous protocol, in our system
the subject performs repetitive movements and word generation in a self-paced manner, without being
synchronized to an external cue.
Our approach is to fit, for each person, an ICA generative model to each separate task, and then use
Bayes’ rule to form directly a classifier. This model will be compared with its static special case, where
no temporal information is taken into account, and with two standard techniques for the recognition
of mental tasks: the Multilayer Perceptron (MLP) and Support Vector Machine (SVM) [1], trained
with power spectral density features.

2 Generative Temporal Independent Component Analysis

Generative Independent Component Analysis is a probabilistic model in which a vector of observa-
tions v is assumed to be generated by statistically independent (hidden) random variables h; via an
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Figure 1: Graphical representation of an ICA model with temporal dependence between the hidden
variables (of order p = 1).

instantaneous linear transformation:
Ve = Wht + € y

where ¢, is noise. For reasons of tractability, in our model (and others in the literature) ¢; will be
assumed to be zero throughout, and W will be assumed to be a square matrix.

Like in Contextual ICA [9] and HMMICA [10], we assume temporal dependence between the
hidden variables h; by modeling the i*" hidden brain process h} with a linear autoregressive model of
order p:

hy =Y aphi_ =D+,

k=1

where 7! is the noise term. Graphically, the Bayesian network which corresponds to this model is
shown in Fig. 1.
Our aim will be to fit a model of the above form to each class of task ¢. In order to do this, we will
describe the model as a joint probability distribution, and use maximum likelihood as the training
criterion.
Given the above assumptions, we can factorize the density of the observed and hidden variables as
follow':

T H
p(vrerhurle) = [ porlie, o) T philhi o pec).- (1)

t=1 =1

Using p(vi|ht) = 6(vy — Why) we can easily integrate (1) over the hidden variables h; to form the
likelihood of the observed sequence vy.7:

T H
p(orrle) = [det Wl =T T T] p(hilhi_y.o—pec) (2)
t=11i=1

where hy = Wy,

We will model p(h{|h{_,.; ,,c) with the generalized exponential distribution:

hi — hi a)

o-ic

PN pr0) = PO exp (— ga)

O-’L(,

where
) aic aic 1/2 ) aic atc /2
flaie) = LLB3/a") g0 = (F(S/ )) /

o7 (1/aic)3/2 T(1/aic)

IThis is a slight abuse for reasons of notational simplicity. The model is only defined for ¢ > p. This is true for all
subsequent dependent formulae.
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Figure 2: Generalized exponential distribution for o« = 2 (solid line), @ = 1 (dashed line) and o =
100 (dotted line), which correspond to Gaussian, Laplacian and approximately uniform distributions
respectively.

and T'(+) is the Gamma function. The generalized exponential family encompasses many types of sym-
metric and unimodal distributions. The parameter ¢ is the standard deviation?, while « determines
the sharpness of the distribution, as shown in Fig. 2.

The logarithm of the likelihood (2) is summed over all training sequences belonging to each class
and then maximized by using the scaled conjugate gradient method described in [1]. This requires
computing the derivatives with respect to all the parameters, that is, the mixing matrix W,, the
autoregressive coefficients a};, and the parameters of the exponential distribution o and o' (see
APPENDIX).

After training, a novel test sequence v}, is classified using Bayes’ rule p(c|v].;) x p(v}.r|c), assuming
p(c) is uniform.

3 Experimental Setup

EEG potentials were recorded with the Biosemi ActiveTwo system (http://www.biosemi.com), using
32 electrodes located at standard positions of the 10-20 International System, at a sample rate of 512
Hz. The raw potentials were re-referenced to the Common Average Reference in which the overall
mean is removed from each channel. Subsequently, the band 6-16 Hz was selected with a Butterworth
filter. This preprocessing filter is a simple way to remove strong drift terms in the signals (the so-
called DC level) and the 50 Hz noise, which are artifacts of instrumentation and do not correspond
to brain activity. Experimentally, we also found that removing frequencies outside the band 6-16 Hz
robustified the performance. Only the following 19 electrodes were considered for the analysis: F3,
FC1, FC5, T7, C3, CP1, CP5, P3, Pz, P4, CP6, Cp2, C4, T8, FC6, FC2, F4, Fz and Cz.

The data were acquired in an unshielded room from two healthy subjects without any previous
experience with BCI systems. During an initial day the subjects learned how to perform the mental
tasks. In the following two days, 10 recordings, each lasting around 4 minutes, were acquired for
the analysis. During each recording session, every 20 seconds an operator instructed the subject to
perform one of three different mental tasks. The tasks were: (1) imagination of self-paced left, (2)
right hand movement and (3) mental generation of words starting with a given letter.

4 Results

The time series obtained from each recording session was split into segments of signal lasting one
second. ICA was compared with two standard approaches, in which for each segment the power spec-
tral density was extracted and then processed using an MLP and a SVM. The best performance was
obtained using the following Welch’s periodogram method: each pattern was divided into a quarter
of second long windows with an overlap of 1/8 of second. Then the overall average was computed.

2Due to the indeterminacy of variance of the h* (h? can be multiplied by a scaling term a as long as the corresponding
column of W, is multiplied by 1/a), o could be set to one in the general model described above. However this cannot
be done in the constrained version W, = W considered in the experiments (see Sec. 3).
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The first three sessions of each day were used for training the models while the other two sessions
where used alternatively for validation and testing.

A softmax, one hidden layer MLP was trained using cross-entropy, with the validation set used to
choose the number of iterations, the number of tanh hidden units (ranging from 1 to 100) and the
learning rate of the gradient ascent method.

In the SVM, each class was trained against the others, and the standard deviation for the Gaussian
SVM found using the validation set (ranging from 1 to 20000).

In the ICA model, for computational expediency only, the data were down-sampled from 512 to 64
samples per second. The validation set was used to choose the number of conjugate gradient iterations
and the order p of the autoregressive model (from 1 to 8), even if we have observed that the appro-
priate order does not change for different sessions. Since we assume that the scalp signal is generated
by linear mixing of sources in the cortex, provided the data are acquired under the same conditions,
it would seem reasonable to further assume that the mixing is the same for all classes (W, = W) and
this constrained version is also considered.

A comparison of the performance is shown in Table 1. Besides the results obtained with the Tem-
poral ICA model (T. ICA), in which the independent components are modeled by an autoregressive
process, we present the results obtained with a Static ICA model (S. ICA), which can be seen as a
particular case in which the autoregressive order p is set to zero. Classification is measured on around
420 test examples.

ICA consistently performs as well as the temporal feature approach using MLP and SVMs. However,
by modeling the independent components with an autoregressive process we don’t obtain improve-
ments in discrimination with respect to the static case.

For Subject A, we used the third day’s data to select the three hidden components whose distri-
bution varied most across the three classes, using the ICA model with a matrix W common to all
classes. In the Static ICA model, the three components were selected by looking at the distribution
p(hi), while in the Temporal ICA model they were selected by looking at the conditional distribution
p(hi|hi71:t7p) for the order p that gave the best performance in the test set. The projection of each
component on the 19 scalp electrodes (i*" column of W) gives an indication of which part of the scalp
received more activity from that component. The scalp projections and time courses (300 frames of
the word task) of the selected hidden components are shown in Fig. 3. As we can see from the projec-
tions, there is a correspondence between the static components (s1, s2, s3) and temporal components
(t1, t2, t3). The time courses are also very similar. In general we have found a high correspondence
among almost all the 19 components of the Static and Temporal ICA model. The components for
which a correspondence was not found don’t show differences in the autoregressive coefficients and
in the conditional distribution, thus are not relevant for discrimination. Finally note that the hidden
components found by the Temporal ICA don’t look smoother as we would expect.

Subject A Subject B
Day 2 | Day 3 | Day 2 | Day 3
S.ICAW | 40.0% | 34.8% | 28.5% | 31.5%
T.ICAW | 40.2% | 36.7% | 27.8% | 30.8%
S.ICA W, | 37.1% | 36.0% | 25.6% | 30.8%
T.ICA W, | 38.8% | 36.2% | 27.1% | 28.2%

MLP 37.1% | 38.1% | 30.5% | 34.2%

SVM 35.1% | 38.1% | 32.4% | 36.6%

Table 1: Classifications errors for three mental tasks using Static ICA, Temporal ICA, MLP and SVM.
W, uses a separate matrix for each class, as opposed to a common matrix W.
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Figure 3: Projection on the scalp of three hidden components for Subject A, Day 3 using Static ICA
(Comp. s1, Comp. s2, Comp. s3) and Temporal ICA (Comp. t1, Comp. t2, Comp. t3) (From blue to
red, negative to positive values). The topographic plots have been obtained by interpolating the values
at the electrode (black dots) using the open source eeglab toolbox (http://www.scen.ucsd.edu/eeglab).
Below the projections, time courses (300 frames) of the corresponding hidden components. Due to
the indeterminacy of variance of the hidden components, axes scale between different figures cannot
be compared and has been removed. This also applies to the absolute scalp projection.

5 Conclusions

In this work we have presented a preliminary analysis on the use of a simple temporal Independent
Component Analysis model for the discrimination of three mental tasks for asynchronous EEG-based
BCT systems. Unlike standard static ICA, which assumes temporal independence of the hidden com-
ponents, we have modeled each component with an autoregressive process. While this approach has
been successfully applied to the separation of sources not well separable using static ICA, it does not
seem to bring additional discriminant information when ICA is used as a generative model for direct
classification. The reason may be that a simple linear model is not suitable for our EEG data, due to
strong non-stationarity in the hidden dynamics. It may be more appropriate to use a switching model
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which can handle changes of regime in the EEG dynamics.
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APPENDIX

Here we write the normalized log-likelihood of a set of

S
1 - s s
L(C) = SC(T 7p) ZIng(Up+1:T|h1:p7C)7

s=1

where s indicates the s training pattern of class c. We write p(vpr1.7|hi.ps €), rather than the notational
abuse p(vi.p|c) in the main text, since this takes care of the initial time steps which would otherwise be
problematic. In the following, hf = W, 'vf, for ¢t = 1,...,T. We want to maximize L = Y, L(c). Dropping
the pattern index s, the component index 7 and the class index ¢ we have:

S T
oL _ 1. gle)a e
90 = o T ST oyt 2 2 el

s=1t=p+1
that is the maximum likelihood solution is:
o= (M 3 ZT: |he — M“)l/al
S(T=p) &= 57,

Using this solution we obtain:

oL _ 1 1 F(l/a)' 1 (azsszl Z$:p+1 |ht - iLt|a) _ Zsszl Z$:p+1 |ht — ilt'a log |ht — iLt|

— =—4 = o =
da a a?T(1l/a) o2 S(T —p) 0‘25:1 Zf:pﬂ |he — hul®

Setting A = W™

oL 1 5 1 T
_— — — bv/“!_ E + Al _17
oA~ T STp & 2 M sT g 2 2 Bt )

where b; is a vector of elements

i aha' i qiNypi fijat—
bt = g( ) Slgn(ht — ht)|ht - ht| !

(o)™

and B, is a matrix of rows
i g(ai)ai . i N i fdjat—1 - i
Bi = =——sign(hy — hi)|hi — hi| > aivi.
(o%) k=1

Finally, the derivative with respect to the autoregressive coefficient ay, is:

a—L—wiisin(hfﬁﬂh — he|* R
dar — ST —p)o) 2 Ly, WO T IO TR e

s=1t=p+1
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