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Abstrat. In this paper we investigate the use of a temporal extension of Independent ComponentAnalysis (ICA) for the disrimination of three mental tasks for asynhronous EEG-based BrainComputer Interfae systems. ICA is most ommonly used with EEG for artifat identi�ationwith little work on the use of ICA for diret disrimination of di�erent types of EEG signals. Ina reent work we have shown that, by viewing ICA as a generative model, we an use Bayes' ruleto form a lassi�er obtaining state-of-the-art results when ompared to more traditional methodsbased on using temporal features as inputs to o�-the-shelf lassi�ers. However, in that modelno assumption on the temporal nature of the independent omponents was made. In this workwe model the hidden omponents with an autoregressive proess in order to investigate whethertemporal information an bring any advantage in terms of disrimination of spontaneous mentaltasks.



2 IDIAP�RR 05-081 IntrodutionEEG-based Brain Computer Interfae (BCI) systems allow a person to ontrol devies by using ob-served eletrial ativity vj
t , at time t, reorded by eletrodes plaed over the salp at loations

j = 1, . . . , V . In the ase of systems based on spontaneous brain ativity, the user onentrates ondi�erent mental tasks (e.g. imagination of hand movement) whih are assoiated with di�erent devieommands. Tasks are normally seleted so that task-dependent areas in the brain beome ative. Themost prominent haraterization of ativity is the attenuation of rhythmi omponents, mostly in the
α band. Standard approahes extrat the frequeny ontent of the signal, whih is then proessed bya stati lassi�er (see [12℄ for a general introdution on BCI researh).Signals reorded at salp eletrodes are ommonly onsidered as a linear and instantaneous super-position of unobserved or hidden eletromagneti ativity hi

t generated by independent brain proesses,
i = 1, . . . , H . For these reasons Independent Component Analysis (ICA) [6℄ seems an appropriatemodel of EEG signals and has been extensively applied to related tasks, suh as the identi�ation ofartifats ([7, 11℄) and the analysis of the underlying brain soures.More spei�ally related to BCI researh, several studies have addressed the issue of whether anICA deomposition an enhane di�erenes in the mental tasks suh as to improve the performaneof brain-atuated systems. Most of these studies use stati versions of ICA either as a form of prepro-essing, or to aid analysis of the signal. In ontrast to our approah below, they do not use ICA itselfto diretly form a lassi�er. In [8℄, the authors analyze a visual attention task and show that ICA�nds µ-omponents whih show a spetral reativity to motor events stronger than the one measuredfrom salp hannels. They suggest that ICA an be used for optimizing brain-atuated ontrol. In [3℄ICA is used for analyzing EEG data reorded from subjets whih attempt to regulate power at 12Hz over the left-right entral salp. Other studies use ICA as a denoising tehnique or as a featureextrator for improving the performane of a separate lassi�er. For example, in [4℄ ICA is used toremove oular artefats, while [5℄ extrats task-related independent omponents prior the appliationof several lassi�ers. In ontrast to these approahes, in [10℄ the authors introdue a ombination ofHidden Markov Models and Independent Component Analysis as a generative model of the EEG dataand give a demonstration of how this model an be applied diretly to the detetion of when swithingours between the two mental onditions of baseline ativity and imaginary movement.Following a similar approah, in a reent work [2℄ we have used diretly a simple stati ICA genera-tive model of EEG signals as a lassi�er for the reognition of three mental tasks. We have shown thata performane similar to standard approahes based on using temporal features as inputs to o�-the-shelf lassi�ers an be obtained. It is still an open question whether we an do better by using a moreomplex model of the data, sine in [2℄ the temporal nature of the independent omponents was nottaken into aount. Temporal modeling of the hidden omponents, for example with autoregressivemodels [9℄, has shown to improve separation in the ase of other types of reordings.In this paper we further investigate the use of ICA for lassi�ation by modeling eah hiddenomponent with an autoregressive proess. Our interest is to asses performane in experiments whihare lose to the real use of a BCI system. Rather than using a synhronous protool, in our systemthe subjet performs repetitive movements and word generation in a self-paed manner, without beingsynhronized to an external ue.Our approah is to �t, for eah person, an ICA generative model to eah separate task, and then useBayes' rule to form diretly a lassi�er. This model will be ompared with its stati speial ase, whereno temporal information is taken into aount, and with two standard tehniques for the reognitionof mental tasks: the Multilayer Pereptron (MLP) and Support Vetor Mahine (SVM) [1℄, trainedwith power spetral density features.2 Generative Temporal Independent Component AnalysisGenerative Independent Component Analysis is a probabilisti model in whih a vetor of observa-tions vt is assumed to be generated by statistially independent (hidden) random variables ht via an
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vt+1Figure 1: Graphial representation of an ICA model with temporal dependene between the hiddenvariables (of order p = 1).instantaneous linear transformation:

vt = Wht + ǫt ,where ǫt is noise. For reasons of tratability, in our model (and others in the literature) ǫt will beassumed to be zero throughout, and W will be assumed to be a square matrix.Like in Contextual ICA [9℄ and HMMICA [10℄, we assume temporal dependene between thehidden variables ht by modeling the ith hidden brain proess hi
t with a linear autoregressive model oforder p:

hi
t =

p
∑

k=1

ai
khi

t−k + ηi
t = ĥi

t + ηi
t ,where ηi

t is the noise term. Graphially, the Bayesian network whih orresponds to this model isshown in Fig. 1.Our aim will be to �t a model of the above form to eah lass of task c. In order to do this, we willdesribe the model as a joint probability distribution, and use maximum likelihood as the trainingriterion.Given the above assumptions, we an fatorize the density of the observed and hidden variables asfollow1:
p(v1:T , h1:T |c) =

T
∏

t=1

p(vt|ht, c)

H
∏

i=1

p(hi
t|h

i
t−1:t−p, c) . (1)Using p(vt|ht) = δ(vt − Wht) we an easily integrate (1) over the hidden variables ht to form thelikelihood of the observed sequene v1:T :

p(v1:T |c) = | detWc|
−T

T
∏

t=1

H
∏

i=1

p(hi
t|h

i
t−1:t−p, c) , (2)where ht = W−1

c vt.We will model p(hi
t|h

i
t−1:t−p, c) with the generalized exponential distribution:

p(hi
t|h

i
t−1:t−p, c) =

f(αic)

σic
exp

(

− g(αic)
∣

∣

∣

hi
t − ĥi

t

σic

∣

∣

∣

αic
)

,where
f(αic) =

αicΓ(3/αic)1/2

2Γ(1/αic)3/2
, g(αic) =

(Γ(3/αic)

Γ(1/αic)

)αic/21This is a slight abuse for reasons of notational simpliity. The model is only de�ned for t > p. This is true for allsubsequent dependent formulae.
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Figure 2: Generalized exponential distribution for α = 2 (solid line), α = 1 (dashed line) and α =
100 (dotted line), whih orrespond to Gaussian, Laplaian and approximately uniform distributionsrespetively.and Γ(·) is the Gamma funtion. The generalized exponential family enompasses many types of sym-metri and unimodal distributions. The parameter σ is the standard deviation2, while α determinesthe sharpness of the distribution, as shown in Fig. 2.The logarithm of the likelihood (2) is summed over all training sequenes belonging to eah lassand then maximized by using the saled onjugate gradient method desribed in [1℄. This requiresomputing the derivatives with respet to all the parameters, that is, the mixing matrix Wc, theautoregressive oe�ients ai

k, and the parameters of the exponential distribution σic and αic (seeAPPENDIX).After training, a novel test sequene v∗
1:T is lassi�ed using Bayes' rule p(c|v∗

1:T ) ∝ p(v∗
1:T |c), assuming

p(c) is uniform.3 Experimental SetupEEG potentials were reorded with the Biosemi AtiveTwo system (http://www.biosemi.om), using32 eletrodes loated at standard positions of the 10-20 International System, at a sample rate of 512Hz. The raw potentials were re-referened to the Common Average Referene in whih the overallmean is removed from eah hannel. Subsequently, the band 6-16 Hz was seleted with a Butterworth�lter. This preproessing �lter is a simple way to remove strong drift terms in the signals (the so-alled DC level) and the 50 Hz noise, whih are artifats of instrumentation and do not orrespondto brain ativity. Experimentally, we also found that removing frequenies outside the band 6-16 Hzrobusti�ed the performane. Only the following 19 eletrodes were onsidered for the analysis: F3,FC1, FC5, T7, C3, CP1, CP5, P3, Pz, P4, CP6, Cp2, C4, T8, FC6, FC2, F4, Fz and Cz.The data were aquired in an unshielded room from two healthy subjets without any previousexperiene with BCI systems. During an initial day the subjets learned how to perform the mentaltasks. In the following two days, 10 reordings, eah lasting around 4 minutes, were aquired forthe analysis. During eah reording session, every 20 seonds an operator instruted the subjet toperform one of three di�erent mental tasks. The tasks were: (1) imagination of self-paed left, (2)right hand movement and (3) mental generation of words starting with a given letter.4 ResultsThe time series obtained from eah reording session was split into segments of signal lasting oneseond. ICA was ompared with two standard approahes, in whih for eah segment the power spe-tral density was extrated and then proessed using an MLP and a SVM. The best performane wasobtained using the following Welh's periodogram method: eah pattern was divided into a quarterof seond long windows with an overlap of 1/8 of seond. Then the overall average was omputed.2Due to the indeterminay of variane of the hi (hi an be multiplied by a saling term a as long as the orrespondingolumn of Wc is multiplied by 1/a), σ ould be set to one in the general model desribed above. However this annotbe done in the onstrained version Wc = W onsidered in the experiments (see Se. 3).



IDIAP�RR 05-08 5The �rst three sessions of eah day were used for training the models while the other two sessionswhere used alternatively for validation and testing.A softmax, one hidden layer MLP was trained using ross-entropy, with the validation set used tohoose the number of iterations, the number of tanh hidden units (ranging from 1 to 100) and thelearning rate of the gradient asent method.In the SVM, eah lass was trained against the others, and the standard deviation for the GaussianSVM found using the validation set (ranging from 1 to 20000).In the ICA model, for omputational expedieny only, the data were down-sampled from 512 to 64samples per seond. The validation set was used to hoose the number of onjugate gradient iterationsand the order p of the autoregressive model (from 1 to 8), even if we have observed that the appro-priate order does not hange for di�erent sessions. Sine we assume that the salp signal is generatedby linear mixing of soures in the ortex, provided the data are aquired under the same onditions,it would seem reasonable to further assume that the mixing is the same for all lasses (Wc ≡ W ) andthis onstrained version is also onsidered.A omparison of the performane is shown in Table 1. Besides the results obtained with the Tem-poral ICA model (T. ICA), in whih the independent omponents are modeled by an autoregressiveproess, we present the results obtained with a Stati ICA model (S. ICA), whih an be seen as apartiular ase in whih the autoregressive order p is set to zero. Classi�ation is measured on around420 test examples.ICA onsistently performs as well as the temporal feature approah using MLP and SVMs. However,by modeling the independent omponents with an autoregressive proess we don't obtain improve-ments in disrimination with respet to the stati ase.For Subjet A, we used the third day's data to selet the three hidden omponents whose distri-bution varied most aross the three lasses, using the ICA model with a matrix W ommon to alllasses. In the Stati ICA model, the three omponents were seleted by looking at the distribution
p(hi

t), while in the Temporal ICA model they were seleted by looking at the onditional distribution
p(hi

t|h
i
t−1:t−p) for the order p that gave the best performane in the test set. The projetion of eahomponent on the 19 salp eletrodes (ith olumn of W ) gives an indiation of whih part of the salpreeived more ativity from that omponent. The salp projetions and time ourses (300 frames ofthe word task) of the seleted hidden omponents are shown in Fig. 3. As we an see from the proje-tions, there is a orrespondene between the stati omponents (s1, s2, s3) and temporal omponents(t1, t2, t3). The time ourses are also very similar. In general we have found a high orrespondeneamong almost all the 19 omponents of the Stati and Temporal ICA model. The omponents forwhih a orrespondene was not found don't show di�erenes in the autoregressive oe�ients andin the onditional distribution, thus are not relevant for disrimination. Finally note that the hiddenomponents found by the Temporal ICA don't look smoother as we would expet.Subjet A Subjet BDay 2 Day 3 Day 2 Day 3S. ICA W 40.0% 34.8% 28.5% 31.5%T. ICA W 40.2% 36.7% 27.8% 30.8%S. ICA Wc 37.1% 36.0% 25.6% 30.8%T. ICA Wc 38.8% 36.2% 27.1% 28.2%MLP 37.1% 38.1% 30.5% 34.2%SVM 35.1% 38.1% 32.4% 36.6%Table 1: Classi�ations errors for three mental tasks using Stati ICA, Temporal ICA, MLP and SVM.

Wc uses a separate matrix for eah lass, as opposed to a ommon matrix W .
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0 100 200 300Figure 3: Projetion on the salp of three hidden omponents for Subjet A, Day 3 using Stati ICA(Comp. s1, Comp. s2, Comp. s3) and Temporal ICA (Comp. t1, Comp. t2, Comp. t3) (From blue tored, negative to positive values). The topographi plots have been obtained by interpolating the valuesat the eletrode (blak dots) using the open soure eeglab toolbox (http://www.sn.usd.edu/eeglab).Below the projetions, time ourses (300 frames) of the orresponding hidden omponents. Due tothe indeterminay of variane of the hidden omponents, axes sale between di�erent �gures annotbe ompared and has been removed. This also applies to the absolute salp projetion.5 ConlusionsIn this work we have presented a preliminary analysis on the use of a simple temporal IndependentComponent Analysis model for the disrimination of three mental tasks for asynhronous EEG-basedBCI systems. Unlike standard stati ICA, whih assumes temporal independene of the hidden om-ponents, we have modeled eah omponent with an autoregressive proess. While this approah hasbeen suessfully applied to the separation of soures not well separable using stati ICA, it does notseem to bring additional disriminant information when ICA is used as a generative model for diretlassi�ation. The reason may be that a simple linear model is not suitable for our EEG data, due tostrong non-stationarity in the hidden dynamis. It may be more appropriate to use a swithing model
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L(c) =

1

Sc(T − p)

Sc
X

s=1

log p(vs
p+1:T |h

s
1:p, c) ,where s indiates the sth training pattern of lass c. We write p(vs

p+1:T |h
s
1:p, c), rather than the notationalabuse p(vs

1:T |c) in the main text, sine this takes are of the initial time steps whih would otherwise beproblemati. In the following, hs
t = W−1

c vs
t , for t = 1, . . . , T . We want to maximize L =

P

c L(c). Droppingthe pattern index s, the omponent index i and the lass index c we have:
∂L

∂σ
= −

1

σ
+

g(α)α

S(T − p)(σ)α+1

S
X

s=1

T
X

t=p+1

|ht − ĥt|
α ,that is the maximum likelihood solution is:

σ =
“ g(α)α

S(T − p)

S
X

s=1

T
X

t=p+1

|ht − ĥt|
α

”1/α

.Using this solution we obtain:
∂L

∂α
=

1

α
+

1

α2

Γ(1/α)′

Γ(1/α)
+

1

α2
log

“α
PS

s=1

PT
t=p+1

|ht − ĥt|
α

S(T − p)

”

−

PS
s=1

PT
t=p+1

|ht − ĥt|
α log |ht − ĥt|

α
PS

s=1

PT
t=p+1

|ht − ĥt|α
.Setting A = W−1:

∂L

∂A
= −

1

S(T − p)

S
X

s=1

T
X

t=p+1

btv
′

t +
1

S(T − p)

S
X

s=1

T
X

t=p+1

B̂t + (A′)−1 ,where bt is a vetor of elements
bi
t =

g(αi)αi

(σi)αi
sign(hi

t − ĥi
t)|h

i
t − ĥi

t|
αi

−1and B̂t is a matrix of rows
B̂i

t =
g(αi)αi

(σi)αi
sign(hi

t − ĥi
t)|h

i
t − ĥi

t|
αi

−1

p
X

k=1

ai
kv′

t−k .Finally, the derivative with respet to the autoregressive oe�ient ak is:
∂L

∂ak
=

g(α)α

S(T − p)(σ)α

S
X

s=1

T
X

t=p+1

sign(ht − ĥt)|ht − ĥt|
α−1ht−k .
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