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Abstra
t. In this paper we investigate the use of a temporal extension of Independent ComponentAnalysis (ICA) for the dis
rimination of three mental tasks for asyn
hronous EEG-based BrainComputer Interfa
e systems. ICA is most 
ommonly used with EEG for artifa
t identi�
ationwith little work on the use of ICA for dire
t dis
rimination of di�erent types of EEG signals. Ina re
ent work we have shown that, by viewing ICA as a generative model, we 
an use Bayes' ruleto form a 
lassi�er obtaining state-of-the-art results when 
ompared to more traditional methodsbased on using temporal features as inputs to o�-the-shelf 
lassi�ers. However, in that modelno assumption on the temporal nature of the independent 
omponents was made. In this workwe model the hidden 
omponents with an autoregressive pro
ess in order to investigate whethertemporal information 
an bring any advantage in terms of dis
rimination of spontaneous mentaltasks.



2 IDIAP�RR 05-081 Introdu
tionEEG-based Brain Computer Interfa
e (BCI) systems allow a person to 
ontrol devi
es by using ob-served ele
tri
al a
tivity vj
t , at time t, re
orded by ele
trodes pla
ed over the s
alp at lo
ations

j = 1, . . . , V . In the 
ase of systems based on spontaneous brain a
tivity, the user 
on
entrates ondi�erent mental tasks (e.g. imagination of hand movement) whi
h are asso
iated with di�erent devi
e
ommands. Tasks are normally sele
ted so that task-dependent areas in the brain be
ome a
tive. Themost prominent 
hara
terization of a
tivity is the attenuation of rhythmi
 
omponents, mostly in the
α band. Standard approa
hes extra
t the frequen
y 
ontent of the signal, whi
h is then pro
essed bya stati
 
lassi�er (see [12℄ for a general introdu
tion on BCI resear
h).Signals re
orded at s
alp ele
trodes are 
ommonly 
onsidered as a linear and instantaneous super-position of unobserved or hidden ele
tromagneti
 a
tivity hi

t generated by independent brain pro
esses,
i = 1, . . . , H . For these reasons Independent Component Analysis (ICA) [6℄ seems an appropriatemodel of EEG signals and has been extensively applied to related tasks, su
h as the identi�
ation ofartifa
ts ([7, 11℄) and the analysis of the underlying brain sour
es.More spe
i�
ally related to BCI resear
h, several studies have addressed the issue of whether anICA de
omposition 
an enhan
e di�eren
es in the mental tasks su
h as to improve the performan
eof brain-a
tuated systems. Most of these studies use stati
 versions of ICA either as a form of prepro-
essing, or to aid analysis of the signal. In 
ontrast to our approa
h below, they do not use ICA itselfto dire
tly form a 
lassi�er. In [8℄, the authors analyze a visual attention task and show that ICA�nds µ-
omponents whi
h show a spe
tral rea
tivity to motor events stronger than the one measuredfrom s
alp 
hannels. They suggest that ICA 
an be used for optimizing brain-a
tuated 
ontrol. In [3℄ICA is used for analyzing EEG data re
orded from subje
ts whi
h attempt to regulate power at 12Hz over the left-right 
entral s
alp. Other studies use ICA as a denoising te
hnique or as a featureextra
tor for improving the performan
e of a separate 
lassi�er. For example, in [4℄ ICA is used toremove o
ular artefa
ts, while [5℄ extra
ts task-related independent 
omponents prior the appli
ationof several 
lassi�ers. In 
ontrast to these approa
hes, in [10℄ the authors introdu
e a 
ombination ofHidden Markov Models and Independent Component Analysis as a generative model of the EEG dataand give a demonstration of how this model 
an be applied dire
tly to the dete
tion of when swit
hingo

urs between the two mental 
onditions of baseline a
tivity and imaginary movement.Following a similar approa
h, in a re
ent work [2℄ we have used dire
tly a simple stati
 ICA genera-tive model of EEG signals as a 
lassi�er for the re
ognition of three mental tasks. We have shown thata performan
e similar to standard approa
hes based on using temporal features as inputs to o�-the-shelf 
lassi�ers 
an be obtained. It is still an open question whether we 
an do better by using a more
omplex model of the data, sin
e in [2℄ the temporal nature of the independent 
omponents was nottaken into a

ount. Temporal modeling of the hidden 
omponents, for example with autoregressivemodels [9℄, has shown to improve separation in the 
ase of other types of re
ordings.In this paper we further investigate the use of ICA for 
lassi�
ation by modeling ea
h hidden
omponent with an autoregressive pro
ess. Our interest is to asses performan
e in experiments whi
hare 
lose to the real use of a BCI system. Rather than using a syn
hronous proto
ol, in our systemthe subje
t performs repetitive movements and word generation in a self-pa
ed manner, without beingsyn
hronized to an external 
ue.Our approa
h is to �t, for ea
h person, an ICA generative model to ea
h separate task, and then useBayes' rule to form dire
tly a 
lassi�er. This model will be 
ompared with its stati
 spe
ial 
ase, whereno temporal information is taken into a

ount, and with two standard te
hniques for the re
ognitionof mental tasks: the Multilayer Per
eptron (MLP) and Support Ve
tor Ma
hine (SVM) [1℄, trainedwith power spe
tral density features.2 Generative Temporal Independent Component AnalysisGenerative Independent Component Analysis is a probabilisti
 model in whi
h a ve
tor of observa-tions vt is assumed to be generated by statisti
ally independent (hidden) random variables ht via an
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al representation of an ICA model with temporal dependen
e between the hiddenvariables (of order p = 1).instantaneous linear transformation:

vt = Wht + ǫt ,where ǫt is noise. For reasons of tra
tability, in our model (and others in the literature) ǫt will beassumed to be zero throughout, and W will be assumed to be a square matrix.Like in Contextual ICA [9℄ and HMMICA [10℄, we assume temporal dependen
e between thehidden variables ht by modeling the ith hidden brain pro
ess hi
t with a linear autoregressive model oforder p:

hi
t =

p
∑

k=1

ai
khi

t−k + ηi
t = ĥi

t + ηi
t ,where ηi

t is the noise term. Graphi
ally, the Bayesian network whi
h 
orresponds to this model isshown in Fig. 1.Our aim will be to �t a model of the above form to ea
h 
lass of task c. In order to do this, we willdes
ribe the model as a joint probability distribution, and use maximum likelihood as the training
riterion.Given the above assumptions, we 
an fa
torize the density of the observed and hidden variables asfollow1:
p(v1:T , h1:T |c) =

T
∏

t=1

p(vt|ht, c)

H
∏

i=1

p(hi
t|h

i
t−1:t−p, c) . (1)Using p(vt|ht) = δ(vt − Wht) we 
an easily integrate (1) over the hidden variables ht to form thelikelihood of the observed sequen
e v1:T :

p(v1:T |c) = | detWc|
−T

T
∏

t=1

H
∏

i=1

p(hi
t|h

i
t−1:t−p, c) , (2)where ht = W−1

c vt.We will model p(hi
t|h

i
t−1:t−p, c) with the generalized exponential distribution:

p(hi
t|h

i
t−1:t−p, c) =

f(αic)

σic
exp

(

− g(αic)
∣

∣

∣

hi
t − ĥi

t

σic

∣

∣

∣

αic
)

,where
f(αic) =

αicΓ(3/αic)1/2

2Γ(1/αic)3/2
, g(αic) =

(Γ(3/αic)

Γ(1/αic)

)αic/21This is a slight abuse for reasons of notational simpli
ity. The model is only de�ned for t > p. This is true for allsubsequent dependent formulae.
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Figure 2: Generalized exponential distribution for α = 2 (solid line), α = 1 (dashed line) and α =
100 (dotted line), whi
h 
orrespond to Gaussian, Lapla
ian and approximately uniform distributionsrespe
tively.and Γ(·) is the Gamma fun
tion. The generalized exponential family en
ompasses many types of sym-metri
 and unimodal distributions. The parameter σ is the standard deviation2, while α determinesthe sharpness of the distribution, as shown in Fig. 2.The logarithm of the likelihood (2) is summed over all training sequen
es belonging to ea
h 
lassand then maximized by using the s
aled 
onjugate gradient method des
ribed in [1℄. This requires
omputing the derivatives with respe
t to all the parameters, that is, the mixing matrix Wc, theautoregressive 
oe�
ients ai

k, and the parameters of the exponential distribution σic and αic (seeAPPENDIX).After training, a novel test sequen
e v∗
1:T is 
lassi�ed using Bayes' rule p(c|v∗

1:T ) ∝ p(v∗
1:T |c), assuming

p(c) is uniform.3 Experimental SetupEEG potentials were re
orded with the Biosemi A
tiveTwo system (http://www.biosemi.
om), using32 ele
trodes lo
ated at standard positions of the 10-20 International System, at a sample rate of 512Hz. The raw potentials were re-referen
ed to the Common Average Referen
e in whi
h the overallmean is removed from ea
h 
hannel. Subsequently, the band 6-16 Hz was sele
ted with a Butterworth�lter. This prepro
essing �lter is a simple way to remove strong drift terms in the signals (the so-
alled DC level) and the 50 Hz noise, whi
h are artifa
ts of instrumentation and do not 
orrespondto brain a
tivity. Experimentally, we also found that removing frequen
ies outside the band 6-16 Hzrobusti�ed the performan
e. Only the following 19 ele
trodes were 
onsidered for the analysis: F3,FC1, FC5, T7, C3, CP1, CP5, P3, Pz, P4, CP6, Cp2, C4, T8, FC6, FC2, F4, Fz and Cz.The data were a
quired in an unshielded room from two healthy subje
ts without any previousexperien
e with BCI systems. During an initial day the subje
ts learned how to perform the mentaltasks. In the following two days, 10 re
ordings, ea
h lasting around 4 minutes, were a
quired forthe analysis. During ea
h re
ording session, every 20 se
onds an operator instru
ted the subje
t toperform one of three di�erent mental tasks. The tasks were: (1) imagination of self-pa
ed left, (2)right hand movement and (3) mental generation of words starting with a given letter.4 ResultsThe time series obtained from ea
h re
ording session was split into segments of signal lasting onese
ond. ICA was 
ompared with two standard approa
hes, in whi
h for ea
h segment the power spe
-tral density was extra
ted and then pro
essed using an MLP and a SVM. The best performan
e wasobtained using the following Wel
h's periodogram method: ea
h pattern was divided into a quarterof se
ond long windows with an overlap of 1/8 of se
ond. Then the overall average was 
omputed.2Due to the indetermina
y of varian
e of the hi (hi 
an be multiplied by a s
aling term a as long as the 
orresponding
olumn of Wc is multiplied by 1/a), σ 
ould be set to one in the general model des
ribed above. However this 
annotbe done in the 
onstrained version Wc = W 
onsidered in the experiments (see Se
. 3).
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h day were used for training the models while the other two sessionswhere used alternatively for validation and testing.A softmax, one hidden layer MLP was trained using 
ross-entropy, with the validation set used to
hoose the number of iterations, the number of tanh hidden units (ranging from 1 to 100) and thelearning rate of the gradient as
ent method.In the SVM, ea
h 
lass was trained against the others, and the standard deviation for the GaussianSVM found using the validation set (ranging from 1 to 20000).In the ICA model, for 
omputational expedien
y only, the data were down-sampled from 512 to 64samples per se
ond. The validation set was used to 
hoose the number of 
onjugate gradient iterationsand the order p of the autoregressive model (from 1 to 8), even if we have observed that the appro-priate order does not 
hange for di�erent sessions. Sin
e we assume that the s
alp signal is generatedby linear mixing of sour
es in the 
ortex, provided the data are a
quired under the same 
onditions,it would seem reasonable to further assume that the mixing is the same for all 
lasses (Wc ≡ W ) andthis 
onstrained version is also 
onsidered.A 
omparison of the performan
e is shown in Table 1. Besides the results obtained with the Tem-poral ICA model (T. ICA), in whi
h the independent 
omponents are modeled by an autoregressivepro
ess, we present the results obtained with a Stati
 ICA model (S. ICA), whi
h 
an be seen as aparti
ular 
ase in whi
h the autoregressive order p is set to zero. Classi�
ation is measured on around420 test examples.ICA 
onsistently performs as well as the temporal feature approa
h using MLP and SVMs. However,by modeling the independent 
omponents with an autoregressive pro
ess we don't obtain improve-ments in dis
rimination with respe
t to the stati
 
ase.For Subje
t A, we used the third day's data to sele
t the three hidden 
omponents whose distri-bution varied most a
ross the three 
lasses, using the ICA model with a matrix W 
ommon to all
lasses. In the Stati
 ICA model, the three 
omponents were sele
ted by looking at the distribution
p(hi

t), while in the Temporal ICA model they were sele
ted by looking at the 
onditional distribution
p(hi

t|h
i
t−1:t−p) for the order p that gave the best performan
e in the test set. The proje
tion of ea
h
omponent on the 19 s
alp ele
trodes (ith 
olumn of W ) gives an indi
ation of whi
h part of the s
alpre
eived more a
tivity from that 
omponent. The s
alp proje
tions and time 
ourses (300 frames ofthe word task) of the sele
ted hidden 
omponents are shown in Fig. 3. As we 
an see from the proje
-tions, there is a 
orresponden
e between the stati
 
omponents (s1, s2, s3) and temporal 
omponents(t1, t2, t3). The time 
ourses are also very similar. In general we have found a high 
orresponden
eamong almost all the 19 
omponents of the Stati
 and Temporal ICA model. The 
omponents forwhi
h a 
orresponden
e was not found don't show di�eren
es in the autoregressive 
oe�
ients andin the 
onditional distribution, thus are not relevant for dis
rimination. Finally note that the hidden
omponents found by the Temporal ICA don't look smoother as we would expe
t.Subje
t A Subje
t BDay 2 Day 3 Day 2 Day 3S. ICA W 40.0% 34.8% 28.5% 31.5%T. ICA W 40.2% 36.7% 27.8% 30.8%S. ICA Wc 37.1% 36.0% 25.6% 30.8%T. ICA Wc 38.8% 36.2% 27.1% 28.2%MLP 37.1% 38.1% 30.5% 34.2%SVM 35.1% 38.1% 32.4% 36.6%Table 1: Classi�
ations errors for three mental tasks using Stati
 ICA, Temporal ICA, MLP and SVM.

Wc uses a separate matrix for ea
h 
lass, as opposed to a 
ommon matrix W .
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Comp.
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0 100 200 300

0 100 200 300

0 100 200 300

0 100 200 300Figure 3: Proje
tion on the s
alp of three hidden 
omponents for Subje
t A, Day 3 using Stati
 ICA(Comp. s1, Comp. s2, Comp. s3) and Temporal ICA (Comp. t1, Comp. t2, Comp. t3) (From blue tored, negative to positive values). The topographi
 plots have been obtained by interpolating the valuesat the ele
trode (bla
k dots) using the open sour
e eeglab toolbox (http://www.s

n.u
sd.edu/eeglab).Below the proje
tions, time 
ourses (300 frames) of the 
orresponding hidden 
omponents. Due tothe indetermina
y of varian
e of the hidden 
omponents, axes s
ale between di�erent �gures 
annotbe 
ompared and has been removed. This also applies to the absolute s
alp proje
tion.5 Con
lusionsIn this work we have presented a preliminary analysis on the use of a simple temporal IndependentComponent Analysis model for the dis
rimination of three mental tasks for asyn
hronous EEG-basedBCI systems. Unlike standard stati
 ICA, whi
h assumes temporal independen
e of the hidden 
om-ponents, we have modeled ea
h 
omponent with an autoregressive pro
ess. While this approa
h hasbeen su

essfully applied to the separation of sour
es not well separable using stati
 ICA, it does notseem to bring additional dis
riminant information when ICA is used as a generative model for dire
t
lassi�
ation. The reason may be that a simple linear model is not suitable for our EEG data, due tostrong non-stationarity in the hidden dynami
s. It may be more appropriate to use a swit
hing model
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h 
an handle 
hanges of regime in the EEG dynami
s.A
knowledgmentThis work was supported by the Swiss NSF through the NCCR IM2 and by the PASCAL Network ofEx
ellen
e, IST-20002-506778, funded in part by the Swiss OFES.The authors would like to a
knowledge Dr. S. Bengio and C. Dimitrakakis for useful dis
ussions.APPENDIXHere we write the normalized log-likelihood of a set of
L(c) =

1

Sc(T − p)

Sc
X

s=1

log p(vs
p+1:T |h

s
1:p, c) ,where s indi
ates the sth training pattern of 
lass c. We write p(vs

p+1:T |h
s
1:p, c), rather than the notationalabuse p(vs

1:T |c) in the main text, sin
e this takes 
are of the initial time steps whi
h would otherwise beproblemati
. In the following, hs
t = W−1

c vs
t , for t = 1, . . . , T . We want to maximize L =

P

c L(c). Droppingthe pattern index s, the 
omponent index i and the 
lass index c we have:
∂L

∂σ
= −

1

σ
+

g(α)α

S(T − p)(σ)α+1

S
X

s=1

T
X

t=p+1

|ht − ĥt|
α ,that is the maximum likelihood solution is:

σ =
“ g(α)α

S(T − p)

S
X

s=1

T
X

t=p+1

|ht − ĥt|
α

”1/α

.Using this solution we obtain:
∂L

∂α
=

1

α
+

1

α2

Γ(1/α)′

Γ(1/α)
+

1

α2
log

“α
PS

s=1

PT
t=p+1

|ht − ĥt|
α

S(T − p)

”

−

PS
s=1

PT
t=p+1

|ht − ĥt|
α log |ht − ĥt|

α
PS

s=1

PT
t=p+1

|ht − ĥt|α
.Setting A = W−1:

∂L

∂A
= −

1

S(T − p)

S
X

s=1

T
X

t=p+1

btv
′

t +
1

S(T − p)

S
X

s=1

T
X

t=p+1

B̂t + (A′)−1 ,where bt is a ve
tor of elements
bi
t =

g(αi)αi

(σi)αi
sign(hi

t − ĥi
t)|h

i
t − ĥi

t|
αi

−1and B̂t is a matrix of rows
B̂i

t =
g(αi)αi

(σi)αi
sign(hi

t − ĥi
t)|h

i
t − ĥi

t|
αi

−1

p
X

k=1

ai
kv′

t−k .Finally, the derivative with respe
t to the autoregressive 
oe�
ient ak is:
∂L

∂ak
=

g(α)α

S(T − p)(σ)α

S
X

s=1

T
X

t=p+1

sign(ht − ĥt)|ht − ĥt|
α−1ht−k .
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