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Abstract. This paper investigates automatic speech recognition system using context-dependent
graphemes as subword units based on the conventional HMM/GMM system as well as TANDEM
system. Experimental studies conducted on two different continuous speech recognition tasks show
that systems using only context-dependent graphemes can yield competitive performance when
compared to state-of-the-art context-dependent phoneme-based automatic speech recognition sys-
tem. We further demonstrate that a system using both context-dependent phoneme and grapheme
subword units can out perform either of these systems alone.
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1 Introduction

State-of-the art automatic speech recognition (ASR) systems represent words as a sequence of subword
units, typically phonemes which are more strongly correlated with the acoustic observation. In recent
studies, attention has been drawn toward speech recognition systems using grapheme as subword units
[STNE+93, KN02, KSS03, MDSBB03]. The main advantages of using grapheme as subword units
are (1) the definition of lexicon is easy (orthographic transcription), (2) the pronunciation models
are relatively noise free. The main drawback of using graphemes as subword units is that a single
grapheme can map on to different phonemes, i.e. there is a weak correspondence between graphemes
and phonemes, particularly in English language.

Schukat-Talamazzaini et al. were one of the first who presented results in speech recognition based
on graphemes [STNE+93]. They used “polygraph” as subword units for word modelling, which is
essentially letters-in-context similar to polyphones (phonemic units allowing preceding and following
context of arbitrary length). Experimental studies conducted on continuous speech recognition task
and isolated word recognition showed that good results (better than context-independent phone) can
be obtained using “polygraph” as subword units.

In a recent study, the approach of mapping orthographic transcription to a phonetic one has
been investigated in the context of speech recognition [KN02]. In this approach, the orthographic
transcription of the words are used to map them onto acoustic hidden Markov model (HMM) state
models using phonetically motivated decision tree questions. For instance, a grapheme is assigned to
a phonetic question if the grapheme maps to the phoneme. Recognition studies performed on Dutch,
German and English yielded performances comparable to phoneme-based ASR system for languages
Dutch and German and, fairly poor performance for English language.

Killer et al. have investigated a context dependent grapheme based speech recognition, where
the context is modelled through a decision tree based clustering procedure [KSS03]. Experimental
studies conducted on English, German and Spanish languages yielded competitive results compared
to phoneme-based system for German and Spanish languages, but fairly poor performance for the
English language.

In [MDSBB03, MDBB04], we proposed a phoneme-grapheme based system that jointly models
the both phoneme and grapheme subword units during training. During decoding, recognition is done
either using one or both subword units. This system was investigated in the framework of hybrid hidden
Markov model/artificial neural network (HMM/ANN) system and improvements were obtained over a
context-independent phoneme based system using both subword units in recognition on two different
tasks isolated word recognition task [MDSBB03] and recognition of numbers task [MDBB04].

In later work we studied the use of context-dependent graphemes for the numbers task (for which
there are only a limited number of word internal contexts) [MDDBH04]. We investigated a system with
context-independent phonemes and context-dependent graphemes. During recognition, the phoneme
information was marginalized out and the decoding was performed in the context-dependent grapheme
space. This system performed similar to the context-independent phoneme based system. This moti-
vated further investigation into using context-dependent graphemes as subword units in state-of-the-
art systems.

In this paper, we present our studies using context-dependent graphemes as subword units on OGI
Numbers95 task and DARPA resource management (RM) task. The paper is organized as follows.
In Section 2, we describe our studies on OGI Numbers95 task. In Section 3, we present our analysis
on the behaviour of context-dependent graphemes. Section 4 describes the studies on DARPA RM
corpus. Finally, in Section 5 we conclude with discussion and future work.
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2 Context-Dependent Grapheme Studies on OGI Numbers95

Corpus

We use OGI Numbers95 database for connected word recognition task [CFNL94]. The training set
contains 3233 utterances spoken by different speakers and the validation set consists of 357 utterances.
The test set contains 1206 utterances. The vocabulary consists of 31 words with a single pronunciation
for each word.

The acoustic vector comprises of PLP cepstral coefficients [Her90] extracted from the speech signal
using a window of 25 ms with a shift of 12.5 ms, followed by cepstral mean subtraction. At each time
frame, 13 PLP cepstral coefficients c0 · · · c12 and their first-order and second-order derivatives are
extracted, resulting in 39 dimensional acoustic vector.

There are 24 context-independent phonemes and 80 context-dependent phonemes including si-
lence and, 19 context-independent graphemes and 85 context-dependent graphemes including silence
representing the characters in the orthographic transcription of the words.

We trained HMM/Gaussian mixture models (GMMs) system with 80 context-dependent phonemes,
3 emitting states per phoneme and 12 mixtures per state with PLP feature vectors using HTK toolkit
[YOO+97] (GMM-P). We also trained HMM/GMM system with 85 context-dependent graphemes,
3 emitting states per phoneme and 12 mixtures per state with PLP feature vectors (GMM-G). In
addition to this, we trained context-dependent phoneme based hybrid HMM/ANN system (ANN-

P) and context-dependent grapheme based hybrid HMM/ANN system (ANN-G). The performances
of these systems are given in Table 2. The results show that the systems using context-dependent
graphemes perform better than their context-dependent phoneme counterparts.

System Subword Unit WER
GMM-P Phoneme 6.8
GMM-G Grapheme 6.0

ANN-P Phoneme 6.9
ANN-G Grapheme 6.3

Table 1: Performance of different context-dependent subword units systems on OGI Numbers95
Database. The performance is expressed in terms of word error rate (WER) and expressed in %.

TANDEM systems have been shown to yield state-of-the-art performance [HES00]. A TANDEM
system combines the discriminative feature of an ANN with Gaussian mixture modelling by using the
processed posterior probabilities as the input feature for the HMM/GMMs-based system. Hence, to
further validate our results, we obtained tandem features from a trained MLP (used earlier in our
context-independent phoneme studies) with 24 context-independent phonemes as output and trained
two TANDEM systems, one with context-dependent grapheme units (Tandem-CD-G) and the second
with context-dependent phoneme units (Tandem-CD-P), with the same configurations of GMM-CD-G

and GMM-CD-P, respectively. The results are given in Table 2. It can be seen from the results that
both systems yield similar performance.

System Subword Unit WER
Tandem-P Phoneme 4.9

Tandem-G Grapheme 5.1

Table 2: Performance of TANDEM system using different context-dependent subword units on OGI
Numbers 95 database. The performance is expressed in terms of word error rate (WER) and expressed
in %.
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3 Analysis

In the previous section we noted that the context-dependent grapheme-based ASR system performance
is similar to the performance of state-of-the-art context-dependent phoneme-based ASR system. How-
ever, this not true with ASR system using context-independent graphemes as subword units (17%
WER with PLP features). Hence, in order to further understand the effect of contextual modelling in
grapheme-based ASR system we performed some contextual modelling studies.

We trained systems with only preceding context and only following context. The number of
preceding-context and following-context phonemes were 81 and 71 (including short pause model in
HTK), respectively. The number of preceding-context and following-context graphemes were 75 and
68, respectively. All the systems were trained using HTK toolkit with 3 emitting states per subword
unit and 12 mixtures per state. The results of this study are given in Table 3. The results indicate
that the effect of modelling context in grapheme-based system is similar to that of modelling context
in phoneme-based system. Moreover, the results also suggest that context-dependent grapheme units
behave like phoneme units.

Subword unit Context Feature WER
Phoneme Following PLP 9.1
Phoneme Preceding PLP 13.5
Grapheme Following PLP 9.6
Grapheme Preceding PLP 14.1

Phoneme Following TANDEM 5.2
Phoneme Preceding TANDEM 6.8
Grapheme Following TANDEM 6.6
Grapheme Preceding TANDEM 9.5

Table 3: Results of contextual modelling studies on OGI Numbers95 database. The performance is
expressed in terms of Word Error Rate (WER) and expressed in %.

The main idea behind modelling context in phoneme-based ASR is to capture coarticulation effects;
where as in grapheme-based system, our studies suggest that by modelling context we can expect to
jointly model co-articulatory effects and pronunciation variation. However, the numbers task has only
31 words and it can be expected that there is a singular mapping between the context-dependent
grapheme and context-dependent phoneme. Hence, we extended this study the context-dependent
grapheme-based ASR studies to DARPA RM corpus which has a vocabulary size of 997 words.

4 Context-Dependent Grapheme Studies on DARPA RM

Corpus

The DARPA RM corpus consists of read queries on the status of Naval resources [PFB88]. The task
is artificial in many aspects such as speech type, range of vocabulary and grammatical constraint.
The training set consists of 3,990 utterances spoken by 109 speakers corresponding to approximately
3.8 hours of speech. We use 2,880 utterances for training and 1,100 for cross validation and develop-
ment. The test set contains 1,200 utterances amounting to 1.1 hours in total. The test set is evaluated
using a word pair grammar which is included in the task specification. There are 44 phonemes and
29 graphemes including silence. The feature vector comprises 13th order PLP cepstral coefficients,
their deltas and delta-deltas. The features were computed every 10ms over a window of 30 ms. In the
grapheme dictionary, the numbers and abbreviated words were replaced by their graphemic represen-
tation.

We trained a HMM/GMM system with context-dependent phoneme acoustic models and a
HMM/GMM system with context-dependent graphemes acoustic models. The system was trained
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using HTK toolkit [YOO+97]. The acoustic models were trained through: 8 iterations of reestimation
on context-independent models, 2 iterations of reestimation on context-dependent models followed by
model tying, 7 iterations of reestimation on tied context-dependent models and finally increment of
mixtures from 1 to 8 in multiples of two with 3 iterations of reestimation at each increment step. The
question set for tying consisted of singleton questions about left and right contexts. The number of
context-dependent phoneme and grapheme models after tying are 2294 and 1912, respectively. The
recognition results are given in Table 4.

Subword Unit WER

Phoneme 7.6

Grapheme 10.2

Table 4: Recognition performance of HMM/GMM system trained on DARPA resource management
corpus with context-dependent phoneme acoustic models and context-dependent grapheme acoustic
models. The performance is measured in terms of word error rate (WER) expressed in %.

We further studied the above systems in the framework of TANDEM systems. We trained an MLP
with 44 output units corresponding to the context-independent phonemes. We extracted the tandem-
features using the phoneme posterior estimates generated by this MLP followed by Karhunen-Loeve
transformation and, then trained HMM/GMM system with these features with the same configura-
tion as that of PLP HMM/GMM system. The recognition results for the different systems are given
in Table 5. We observe that TANDEM system performs better than the PLP-based HMM/GMM
system for both type of subword units. Also, the amount of gain for grapheme-based system (2.8%
absolute) is much greater than the phoneme-based system (0.8% absolute) making the two systems
more comparable.

Subword Unit WER

Phoneme 6.8

Grapheme 7.4

Table 5: Recognition performance of TANDEM system trained on DARPA resource management
corpus with context-dependent phoneme acoustic models and context-dependent grapheme acoustic
models. Performance is measured in terms of word error rate (WER) and expressed in %.

In our earlier phoneme-grapheme studies, the decoding is done in the 2D state space [MDSBB03,
MDBB04], but in large vocabulary systems with context-dependent acoustic models this is an expen-
sive computation. One way to combine the information from these two different subword units would
be to decode in each individual space and then combine the recognized word sequences. Another way
would be to merge the two acoustic models and dictionaries and perform decoding in a standard way.
In this way the best acoustic model representation of the word is chosen at the decoding time. In this
paper the later approach was taken. We performed recognition studies by merging the acoustic models
(without retraining) and the two dictionaries of the phoneme and grapheme units. The results of this
study are given in Table 6, showing that the merged model system performs the best compared to the
systems reported earlier in this paper.

System WER

HMM/GMM 7.4
TANDEM 6.4

Table 6: Recognition performance of HMM/GMM system using PLP features and TANDEM system
trained on DARPA resource management corpus with merged acoustic models and dictionaries. The
performance is measured in terms of word error rate (WER) and expressed in %.
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Further analysis performed using the merged models and dictionaries on the development set of
DARPA RM task showed that grapheme is more preferred when the word is a function word and
short in terms of length (number of graphemes).

5 Summary and Conclusion

In this paper we have studied the use of context-dependent graphemes as subword units for automatic
speech recognition. ASR studies conducted on different tasks show that by using context-dependent
graphemes as subword units, performance similar to the state-of-the-art context-dependent phoneme
based ASR system can be achieved. Analysis demonstrates that the contextual modelling of grapheme
units gives behaviour similar to phonemes.

In OGI Numbers95 studies we obtained better performance using graphemes when the acoustic
models were trained with PLP features and similar performance when trained with tandem features.
In the DARPA RM task studies we observed a marked difference between ASR systems using phoneme
and grapheme when trained with PLP features. However, this difference is reduced when using tandem
features. An explanation for this can be that the TANDEM system is able to incorporate phonetic
knowledge through discriminative tandem features while still having no requirement for an explicit
phonetic lexicon. Moreover, we also observed that the performance of the the ASR system can be
further improved by merging the acoustic models and dictionaries of phoneme and grapheme units.

In both OGI Numbers95 task and DARPA RM task the words that are present in the dictionary
are present in both training data and test data. In otherwords, there were no unseen contexts. Hence,
in future work we are interested in extending these studies to less constrained task such as switch-
board conversational telephone speech to study how the grapheme-based system generalizes to unseen
contexts.
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