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Abstract. Biometric authentication is a process of verifying an identity claim using a person’s
behavioral and physiological characteristics. This is in general a binary classification task because
a system either accepts or rejects an identity claim. However, a biometric authentication sys-
tem contains many users. By recognizing this fact, better decision can be made if user-specific

information can be exploited. In this study, we propose to combine user-specific information
with user-independent information such that the performance due to exploiting both information
sources does not perform worse than either one and in some situations can improve significantly

over either one. We show that this technique, motivated by a standard Bayesian framework, is
applicable in two levels, i.e., fusion level where multiple (multimodal or intramodal) systems are
involved, or, score normalization level, where only a single system is involved. The second ap-
proach can be considered a novel score normalization technique that combines both information
sources. The fusion technique was tested on 32 fusion experiments whereas the normalization
technique was tested on 13 single-system experiments. Both techniques that are originated from
the same principal share a major advantage, i.e., due to prior knowledge as supported by ex-
perimental evidences, few or almost no free parameter are actually needed in order to employ
the mentioned techniques. Previous works in this direction require at least 6 to 10 user-specific
client accesses. However, the proposed technique requires as few as 2 user-specific client accesses,
hence overcoming the learning problem with extremely few user-specific client samples. Finally,
but not the least, a non-exhaustive survey on the state-of-the-arts of incorporating user-specific
information in biometric authentication is also presented.
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1 Introduction

1.1 Fundamentals

Biometric authentication (BA) is a problem of verifying an identity claim using a person’s behavioral
and physiological characteristics. Although it is an important alternative to traditional authentication
methods such as keys (“something one has”, i.e., by possession) or PIN numbers (“something one
knows”, i.e., by knowledge), it is sensitive to various factors. Some of these factors are the deformable
nature of biometric traits, corruption by environmental noise, variability of biometric traits over time,
the state of users (especially behavioral biometrics) and occlusion by the user’s accessories.

Due to inherent properties in each biometric and external manufacturing constraints in the sensing
technologies, no single biometric trait can achieve 100% authentication performance. This problem
can be alleviated by combining two or more biometric traits, also known as the field of multimodal
biometric authentication. In the literature, there are several methods to combine multimodal informa-
tion. These methods are known as fusion techniques. From an architectural point of view, fusion can
be done either at the feature level (extracted or internal representation of the data stream) or score
level (output of a single system). Among the two, the latter is most commonly used in the literature.
Some studies further categorize three levels of score level fusion [6], namely, fusion using the scores
directly, using a set of most probable category labels (called abstract level) or using the single most
probable category label (called decision level). We will focus on the score for two reasons: the last
two cases can be derived from the score and more importantly, by using only labels instead of scores,
precious information is lost.

1.2 Terminology Referring to User-specific Information

BA is in general considered a two-class problem, i.e., a BA system is designed to accept a genuine
access request or to reject an imposture attempt. However, such task is composed of many users.
Hence, BA is actually an aggregated set of two-class tasks. This implies that if a BA system can make
the accept/reject decision on a per user basis, the system performance may be improved. We shall
call this strategy user-specific strategy.

Due to the evolving nature of this fields, several terms have been introduced by different authors
and none dominates the others. To avoid confusion, we will adopt some terms at least consistent in this
paper. Suppose that each authorized person is identified by a unique identity claim j ∈ J ≡ {1, . . . , J}
and there are J identities. In the following list, terms in bold are used in this paper and terms separated
by “/” are considered synonyms. These terms are also reported in the literature [12, 35] (to name a
few).

• Client/user: (noun) a person that should be granted access by the system and is assigned a
unique identity j.

• Impostor/abuser: (noun) a person that should be denied access by the system because he/she
is not the person being assigned identity j.

• User-specific/client-dependent/local: (adjective) on a per client basis.

• User-independent/client-independent/global/common: (adjective) indifferent to each client.

• User-adapted: (adjective) that makes use of both user-specific and user-independent informa-
tion.

• Client-centric/target-centric: (adjective) that makes use of user-specific client accesses only.

• Impostor-centric: (adjective) that makes use of user-specific impostor accesses only.

• Client-impostor centric/target-impostor centric: (adjective) that makes use of both user-
specific client and impostor accesses.
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1.3 User-Specific Techniques in Biometric Authentication

In the literature, there are several studies that rely on user-specific information, at different levels of
a BA architecture. They can further be divided into two categories, i.e., at feature level or score level.
They are listed below with the first two being user-specific techniques at the feature level and the rest
being techniques at the score level:

• User-specific feature set. In [8], it was demonstrated that the performance of a speaker
verification task can be enhanced by using a subset of features for each client. These features
are chosen using a feature selection technique.

• User-specific model/template. This is a standard approach whereby a BA system builds
a feature template or a model on a per client basis. A feature template can be the originally
scanned biometric data or representation extracted from it. A model, on the other hand, refers
to a set of parameters/numbers derived to represent the feature set of a particular user. For
instance, the-state-of-the-art approach in speaker verification is based on user-specific model [32].
Recent techniques in face verification also follow the same trend, e.g., [9] using local features
and [37] using client-specific Fisher’s projection.

• User-specific score (normalization). This approach is also known as score normalization.
The most representative example is called Z-norm and first proposed by [13], which relies on
user-specific impostor scores to carry out the normalization. In [33], a similar version of Z-Norm
but using only user-specific client scores was reported. However, this technique requires much
more user-specific client accesses. The authors’ experiments were based on 5 accesses per client.
Since the first work by [13], the form of normalization has not been changed much although
the context of application is extended beyond that of mitigating user-induced score variations,
such as T-Norm [1] (aiming at extenuating the mismatch during test), H-norm [16] (aiming
at extenuating the mismatch due to the use of different handsets) or D-Norm [3] (aiming at
reducing model-induced variations and is specific to Gaussian Mixture Models). A recent form
of normalization which makes use of both user-specific client and impostor scores is called F-
norm [31]. In the terms used in [12], Z-norm is impostor-centric because the normalization is
carried out with respect to the impostor distributions (or more precisely scores derived from
user-specific impostor data), whereas F-norm is client-impostor centric because it makes use of
both user-specific client and impostor scores.

• User-specific fusion. This technique was proposed by [18] using a linear weighing scheme to
weigh the outputs of several BA multimodal systems while a non-linear version, achieved via
Multi-Layer Perceptron (MLP) was reported in [21]. In [10], a Support Vector Machine (SVM)
classifier was used to construct a user-specific fusion function while in [11], a Bayesian classifier
was used.

• User-specific threshold. This class of techniques is commonly applied to speaker verification
tasks [13, 33, 23, 28, 7], for instance.

The score-level user-specific techniques are by far more explored than the feature-level ones as far
as user-specific information is concerned. Often, the score-level techniques are used together with
the feature-level techniques. For instance, the state-of-the-art speaker verification technique based on
adapted Gaussian Mixture Model [32, 1] use both user-specific model and user-specific score normal-
ization. Other similar techniques include [12] applied to signature verification or [34] applied to face
verification.

User-specific score and user-specific threshold are actually not two separate techniques but closely
linked together. It was shown [30] that if a user-specific threshold includes a global threshold, then
the same user-specific threshold procedure can equivalently be implemented by a user-specific score
normalization technique.
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A recent study [35] proposed a new paradigm consisting of two dichotomies: user-specific/user-
independent fusion (called “local/global learning” by the author) and user-specific/user-independent
threshold (called “local/global decision”). These two dichotomies thus give four categories of methods
to incorporate user-specific information, at the score level. Our study here separates the different
levels where user-specific information can be incorporated and thus generalizes the paradigm. It was
claimed that combining both user-specific fusion and threshold techniques that they called “local
learning with local decision” achieved the best performance. Yet in [25], another possible combination
was proposed, i.e., between user-specific score normalization (based on Z-norm) and user-independent
fusion. It is probable that this framework has been reported elsewhere in the literature. In [30], a
similar framework was employed except that F-norm was used in place of Z-norm. Employing F-norm
in place of Z-norm gives an additional advantage, i.e., an added discrimination ability between the
client and impostor classes, because F-norm is client-impostor centric while Z-norm is impostor centric.
It should be cautioned that when there is no user-specific variation which in turn affects the scores,
applying user-specific normalization techniques may deteriorate the performance. This is especially
true in a text-independent speaker verification task whereby linguistic contents (as captured by a
speaker’s model) from a user may be different from another user. Finally, all user-specific strategies
applied at the score level may suffer from lack of user-specific client data (scores). This can be a major
obstacle. The following section reviews several works that can compensate this problem and we will
focus on user-specific fusion.

1.4 Existing Techniques in User-specific fusion

Often, due to user-friendliness aspect of a BA system, at least at the initial phase of system operation,
very few biometric data samples are acquired from a new client. Hence, most of the precious data
samples are used to train/construct the user-specific model (with possibly adaptation of features from
other persons) while few samples are left to compute the unbiased user-specific score normalization.
One way to counter the lack of scores is to use cross-validation so that the biometric samples that
are not used to train the model are used to output the scores. These scores are subsequently used
to implement any of the three score-level user-specific techniques mentioned in the previous section.
Even with the cross-validated procedure, one is still very often left with extremely few user-specific
client accesses (in the order of one to three) as compared to the user-specific impostor accesses (in the
order of hundreds). Hence, in reality, implementing any of the three score-level user-specific techniques
is non-trivial. Consequently, most of the reported results in the previous section rely on more than
three user-specific client score accesses to implement, for instance as many as 10 in [35] and 5 in [14]1.
In [11], it was shown that the user-adapted technique requires at least 6 user-specific samples before
the adaptation procedure achieves the performance comparable to that of the user-independent mean
operator (the sum rule). One exception is F-norm [31], which was designed to work with as few as
two score accesses on a single-modal BA system.

A similar work in this direction can be found in [10], whereby, a standard SVM was used in a
somewhat novel way, i.e., an SVM was constructed using a user-independent set of scores plus a user-
specific set of scores. Each of these sets of scores contain both client and impostor classes of scores.
This strategy was called “adapted user-dependent fusion” by the author. This is to be distinguished
from “user-independent fusion” whereby no user-specific data is used, or “user-dependent fusion”
whereby only user-specific (client and impostor) scores are used (while ignoring the existence of user-
independent client and impostor scores). The mentioned novelty in the said study is the use of the C
parameter in SVM [36]. This parameter rates the relative influence of each example. When included
in the support vectors (i.e., examples falling in the margin), the relatively high C parameters of these
examples can change the decision boundary drastically. In [10], two C values are assigned to two sets
of scores, i.e., one for the user-specific scores and one for the user-independent scores. In order for
the adapted fusion to be effective a greater C value has to be associated to the precious user-specific

1Techniques that are impostor centric do not suffer from the lack of user-specific client data as they do not rely on
this data but instead rely on user-specific impostor data.
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scores as compared to the C value of the user-independent scores. It was demonstrated empirically
that when C was tuned a posteriori on the test set (due to lack of available data for tuning the C
parameter), the adapted fusion was potentially beneficial as compared to either user-independent or
user-specific fusion. Since the additional free parameter C was tuned a posteriori, hence providing
an additional degree of freedom to fit the data, the experimental results are thus biased towards the
adapted fusion strategy.

Another similar idea using Bayesian adaptation (instead of using SVM) was reported by the same
author in [11], also using the same multimodal database. The architecture employed is similar to
the Gaussian Mixture Model (GMM) with Maximum A Posteriori (MAP) adaptation, the current
state-of-the-art system in speaker verification [32]. However, a single Gaussian component with a
diagonal covariance matrix was used2. According to our understanding, the justification for using a
single Gaussian component is that there are just too few user-specific client scores to adapt (from
two to three, depending on bootstrap samples). Similar to the C parameter in SVM, the GMM-MAP
algorithm also has a free parameter called a “relevance factor”. This factor is crucial in that it balances
the right mix between the user-specific and user-independent information. In other words, both C and
relevance factor play the same role in this context. Again, the relevance factor was tuned a posteriori
and thus inevitably reporting biased performance towards the GMM-MAP algorithm. Ideally, any
free parameter should be tuned on a separate validation set.

1.5 Contribution and Organization

In this paper, we are motivated by the fact that user-independent information is directly dependent
on user-specific information, especially when the number of clients is small. However, as the number
of clients increases, the user-independent information is no longer dependent on the user-specific
information. In other words, when there are very few clients, any one of the clients may contribute
to the user-independent information. However, if there are many clients, and all clients have equal
probability of using a BA system, then the user-independent information cannot be dominated by the
information specific to any of the clients.

Our approach is best explained and implemented using a Bayesian framework. This hence shares
a similarity with [11]. However, different from the latter, the proposed approach does not suffer from
the requirement that the scores have to be normally distributed. Thus the proposed method actually
relaxes the Gaussian assumption. From a methodological point of view, although our approach also has
a free parameter as in [10, 11], this parameter can be automatically tuned via standard algorithms,
thus in a way, mitigating the small sample-size problem phenomenon. In comparison to [35], our
approach does not require noise injection because the uncertainty about the scores are inherent in the
Bayesian framework.

On top of unique advantages not shared by previously proposed techniques, this work contributes
to the state-of-the-art in user-specific information in the following way:

• it provides an overview of techniques where user-specific information can be introduced in a BA
system.

• it gives a Bayesian motivated justification for compensating between user-specific and user-
independent information (such justification has not been somewhat emphasized previously).

• by incorporating some general prior knowledge about BA, the proposed Bayesian framework
was turned into a practical algorithm and its performance was empirically measured.

• by extending the above-mentioned technique to a single modal biometric system, this technique
can be considered a novel user-adapted score normalization procedure, which does not suffer from

2In the context of speaker verification, the use of GMM with a diagonal matrix per Gaussian component is fine
since a full covariance matrix does not necessarily provide better performance. On the other hand, in the context of
score-level fusion, a single Gaussian component with a full covariance matrix may be more appropriate, if the covariance
information is believed to be valuable. Unfortunately, no comparative study was reported in this regard.
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the traditional impostor-centric score normalization technique (Z-Norm), i.e., Z-Norm could de-
grade the performance with respect to the performance when not performing any normalization.

The rest of the paper is organized as follow: Section 2 describes the proposed technique in details;
Section 3 presents the database and evaluation tools used, Section 4 presents the experimental results
and this is followed by conclusions in Section 5.

2 Towards Compensating User-Independent and User-Specific

Information

2.1 Preliminary

Suppose that each authorized person is identified by a unique identity claim j ∈ J ≡ {1, . . . , J} and
there are J identities. We sometimes call these users as clients to oppose a set of other unauthorized
persons known as impostors. Hence, a biometric authentication system is aimed at distinguishing
clients from impostors, which is an aggregated two-class problem, i.e., a two-class problem with J
distinctive users. In this problem, it is common to represent a user by his/her feature template or
model, i.e, a set of parameters derived from the features. Suppose that the output due to comparing
a user model Cj to a feature X is y(j). For each client model Cj , there is a corresponding impostor
model Ij . Lacking a proper definition3, the impostor model is often naively defined as the model of
other finite clients ∀j′ |j′ ∈ J − j. To decide whether to accept or reject the access request represented
by feature X claiming identity j, one can evaluate the posterior probability ratio in logarithmic domain
(called log-posterior ratio, LPR):

LPRj ≡ log

(
P (Cj |X)

P (Ij |X)

)

= log

(
P (X |Cj)P (Cj)

P (X |Ij)P (Ij)

)

= log
P (X |Cj)

P (X |Ij)
︸ ︷︷ ︸

+ log
P (Cj)

P (Ij)
︸ ︷︷ ︸

≡ y(j) − ∆j , (1)

where we introduced the term y(j) (also called a Log-Likelihood Ratio, LLR) and a threshold ∆ to
handle the case of different priors. This constant also reflects the different costs of false acceptance
and false rejection. In both cases, the threshold ∆ has to be fixed a priori. The decision of accepting
or rejecting an access is then:

decision(LPRj) =

{
accept if LPRj > 0
reject otherwise.

(2)

or

decision(y(j)) =

{
accept if y(j) > ∆j

reject otherwise.
(3)

Although both forms are equivalent, the explicit presence of a threshold in the second decision function
shows that the log-prior ratio can be adjusted separately from the score y(j). Note that y(j) is a
direct function of X and the model associated to it (say θj), i.e., y(j, X) = fθj

(X). However, for
simplicity, we write y(j)4. We use the function f with parameter θ to explicitly represent the functional
relationship between y(j) and X . Suppose that y(j) is an instance of the variable Y (j) and is drawn
from the distribution Y(j). The decision function in Eqn. (3) then implies that EY(j)|Cj

[Y (j)] >

3Ideally, this impostor model should be the world population minus the user j. In terms of computation and data
collection effort, this is not feasible and in practice not necessary.

4We are interested in the variability in a user-specific way. Hence, the functional relationship between y(j) and X

is not important in this study. Effectively, the variability due to X can be modeled as a random additive noise to
otherwise deterministic score y(j).
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EY(j)|Ij
[Y (j))], where EZ [Z] is the expectation of Z under the law Z. Typically, on a per client basis,

one has an extremely few number of samples (depending on the protocols, there are 2 or 3 in the
XM2VTS database [27], and 1 or 3 in the BANCA database [2]) to estimate the client distribution
Y(j)|Cj whereas one has a relatively large number of samples (typically in the order of hundreds) to
estimate the impostor distribution Y(j)|Ij .

Although y(j) is interpreted as an LLR here, many different machine-learning algorithms (e.g.,
Gaussian Mixture Models, Multi-Layer Perceptrons, Support Vector Machines) can be viewed as
an approximation to this relationship, without necessarily giving it a probabilistic interpretation.
This is to contrast with most Bayesian analyzes, e.g., [22, 20], that start by making an equivalence
between y(j) and p(Cj |X), i.e., y(j) ≡ p(Cj |X), such that the threshold ∆ = 0.5. Although this
probabilistic interpretation is correct, it does not explicitly consider the fact that the threshold changes
with the priors of client and impostor classes. In fact, the prior has already been integrated in
p(Cj |X) ∝ p(X |Cj)p(Cj), which is the product between likelihood and the client prior. As a matter of
fact, most biometric authentication systems crucially rely on this threshold to make the accept/reject
decision. For instance, if the matching score y(j) is based on a distance between a user template Xj

and the submitted feature X , i.e., y(j) ≡ dist(X, Xj), where dist is a distance measure, then our
Bayesian model above is still valid by interchanging between Cj and Ij , such that EY(j)|Cj

[Y (j)] <
EY(j)|Ij

[Y (j)]. This distance measure simply cannot be interpreted in the probabilistic framework
with y(j) ≡ p(Cj |X).

Depending on the outcome of the decision (as a function of the threshold ∆j), a biometric authen-
tication system can commit two types of errors, namely, False Acceptances (FA) and False Rejections
(FR). The error rates of FA and FR are defined as:

FAR(∆j) = 1 − P (Y (j) ≤ ∆j |Ij)

FRR(∆j) = P (Y (j) ≤ ∆j |Cj),

where P (Y (j) ≤ ∆j |kj) is the cumulative density function of the conditional variable Y (j) within the
range [−∞, ∆j ] for each class kj . Note that a unique point with ∆∗

j where FAR(∆∗
j ) = FRR(∆∗

j ) is
called Equal Error Rate (EER). EER is often used to characterize a system’s performance. Another
useful performance evaluation point for any given threshold ∆j (not necessarily ∆∗

j ) is called Half
Total Error Rate (HTER) and is defined as the average of FAR and FRR, i.e.,:

HTER(∆j) =
1

2
(FAR(∆j) + FRR(∆j)).

The discussion until here concerns only a particular client indexed by j. In reality, one has ex-
tremely few examples of client accesses y(j)|Cj and relatively large impostor accesses y(j)|Ij , as
mentioned earlier. As a result, the estimation of the threshold ∆j , i.e., user-specific threshold, is ex-
tremely unreliable. Hence, user-independent threshold is often used. This results in user-independent
FAR, FRR and EER.

2.2 Compensating User-Specific Information with User-Independent In-

formation

The analysis of LPR as in Eqn. (1) can be extended from feature to scores. Instead of considering the
posterior probability P (kj |X), one can further consider P (kj |X, y(j), θj), to emphasize the functional
relationship y(j) = fθj

(X) and this relationship can be modeled by any appropriate machine-learning
algorithm. For simplicity, one can write P (kj |y(j)), instead. The corresponding LPR at the score-level
of Eqn. (1) can be written as:

LPRj = log
P (y(j)|Cj)

P (y(j)|Ij)
︸ ︷︷ ︸

+ log
P (Cj)

P (Ij)
︸ ︷︷ ︸
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Hence the first right-hand term corresponds to the score-level LLR whereas the second term corre-
sponds to the same threshold as in Eqn. (1). At this point, it is useful to introduce an aggregated
score y without the subscript j (due to not considering the fact the the scores y(j) come from a
particular client model j). Similarly, we use k instead of kj to refer to the user-independent class
label. The likelihood of the user-independent y is thus a result of accumulated likelihood of each of
the user-dependent y(j) for j ∈ J , i.e.,

p(y|k) ≡
∑

i∈J

p(y|k, ki)P (ki)

=
∑

i∈J−j

(p(y(i)|k, ki)P (ki)) + p(y(j)|k, kj)P (kj),

=
∑

i∈J−j

(p(y(i)|k, ki))

(

1 −
1

J

)

+ p(y(j)|k, kj)

(
1

J

)

≈
∑

i∈J−j

(p(y(i)|k, ki)) when J → ∞

where P (ki) is the prior probably of client i using the system. Here, we assume that each client has
equal probability of using the system so that P (kj) = P (ki) = 1

J
. We then separated the likelihood

contribution of a particular client j from the rest of the clients. When the number of clients J is
large, we see that P (y|k) is independent of any specific client. Because of this phenomenon, we
can model p(y|k) by a mixture of user-independent (and hidden) (Gaussian) components which are
independent of any client. Let the n-th component be denoted by cn and there are Nc components.
The user-independent likelihood can be estimated by:

p(y|k) ≡
J∑

i=1

p(y|k, ki)P (ki) ≈
Nc∑

n

P (cn)p(y|k, cn) (4)

where both p(y|k, cn) and p(y|k, ki) are each modeled by a Gaussian distribution. This phenomenon
will be illustrated in Section 4.1 using real data.

The main idea of compensating the user-specific likelihood with user-independent likelihood is by
mixing them into one of the two forms below:

p(y|k, kj , w) = p(y|k)(1 − w) + p(y(j)|kj)w, (5)

p(y|k, kj , γ) = p(y|k)1−γp(y(j)|kj)
γ , (6)

where γ, w ∈ [0, 1]. The first form assumes that the two likelihoods are additive whereas the second
form assumes that they are multiplicative. To emphasize the equivalence, we illustrate this in Figure 1.
The top figure shows the likelihoods P (y|kj) of four different clients, j ∈ {1, 2, 3, 4}, together with the
user-independent likelihood P (y|k). The middle figure shows the likelihood P (y(2)|k2)

γP (y|k)1−γ for
three γ values. The bottom figure shows the likelihood using the additive approach P (y|k, kj , r) as in
Eqn. (5). For both the middle and bottom figures, the γ and r parameters were deliberately adjusted
to give similar user-adapted likelihoods here.

Using the same formulation, the resultant multiplicative and additive LLR between p(y|C, Cj) and
p(y|I, Ij) can be written as:

LLRmul ≡ log

{(
P (y|Cj)

P (y|Ij)

)γ (
P (y|C)

P (y|I)

)1−γ
}

= γLLRj + (1 − γ)LLR. (7)

and

LLRadd ≡ log

{
p(y|C)(1 − w) + p(y|Cj)w

p(y|I)(1 − w) + p(y|Ij)w

}

. (8)
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Figure 1: Top: The likelihood of four different clients and their user-independent mixture of (Gaussian)
likelihood . Middle: The posterior likelihood of client 2 adapted using the idea of CD-posterior
likelihood with different γ values. Bottom: The posterior-likelihood of client 2 obtained using the
user-specific Gaussian mixture with different weight (prior) for client 2 (the rest of the weights for
other clients are set to 1). All weights are then re-normalized to sum to one. Middle and bottom
figures are adjusted such that the CD posterior likelihoods are proportional.

As can be seen, the former LLR can be decomposed whereas the latter cannot. The ability to
decompose the two likelihoods in the former strategy is an advantage. This is because the user-
specific LLR and user-independent LLR in Eqn. (7) can be estimated separately. Furthermore, the
linear combination parameter γ can be estimated in a more elegantly, i.e., using standard algorithms,
instead of using cross-validation. The rest of the discussion concerns the multiplicative strategy.

2.3 A Bigger Picture: Extending to Multiple Systems

Although the discussion in the previous section concerns a single system with a single output y or
y(j) (when considering the fact that the output is from client model j), the framework can easily
be extended to cater to the case of a vector of scores, y(j) = [y1(j), . . . , yNj]T , whose elements are
each corresponding to a user-specific system and there are N such systems. The user-independent
output vector y can be interpreted similarly. For the the single system case, this adaptation procedure
can thus be considered a user-adapted score normalization procedure. For the multi-system case, the
same adaptation procedure becomes a user-adapted fusion procedure. These two versions of the same
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(a) User-specific score normalization

(b) User-specific Fusion

Figure 2: The architectures of (a) user-specific score normalization and (b) user-specific fusion

procedure are shown in Figure 2.

In each of these two settings, there are two important components: 1) user-specific and 2) users-
independent components. By user-specific component, we mean that one has to create a function
or module for each user. In contrast, only one global function or module is needed for the user-
independent component. For the score normalization procedure (dealing with a single system; see
Figure 2(a)), the user-specific component (denoted by the function fscore

θ1

j

takes y1(j) as input and

outputs the score yspec
1 whereas the user-independent component outputs the score yindep

1 . In other

words, yspec
1 models LLRj in Eqn. (7) whereas yindep

1 models LLR. Note that the user-independent
component is a linear identity function which does not require any module. Then, both types of scores
are then linearly combined via the function fadpat

com . Figure 2(a) is thus a block diagram representation
of Eqn. (7).

Similarly, Figure 2(b) is thus a block diagram representation of Eqn. (7) but in the context of
fusion, where two or more scores of different systems are combined Its user-specific component takes
in the vector y(j) and outputs a user-specific combined score. This score models the user-specific
combined LLR in Eqn. (7). Note that one such fusion function has to be created for each client. The
user-independent component (created only once and applied to all clients) also takes in the vector
y(j) but outputs a user-independent combined score via the fusion function fscore

θj
. Both types of

score are then linearly combined to obtain a user-adapted combined score.

We will first treat the fusion procedure, by handling its user-independent component in Section 2.4
and its user-specific in Section 2.5. Then for the normalization procedure, its user-specific component
will be discussed in Section 2.6. The user-independent component counterpart is a linear identity
function and thus does not require any processing. Finally, to combine both sources of information,
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linear procedures such as those to be discussed in Section 2.4 can be reused without modification.

2.4 User-Independent Fusion

Recall that an LLR is made up of two conditional likelihood functions, i.e., log{p(y|C)/p(y|I)}. Each
of these likelihoods can be modeled using a Gaussian Mixture Model (GMM), such that:

p̂(y|k) =

Nc∑

i

wk
i N (y|µk

i ,Σk
i ), (9)

where, the i-th component of the class conditional (denoted by k) mean vector is µ = [µ1, . . . , µN ]T

and its covariance matrix is Σk
i for each of the class k ∈ {C, I}. These parameters can be calculated

using standard Expectation-Maximization algorithm [5, Chap. 2] since there are enough data in each
category to do so. Another solution is to directly model the function LLR = log{p(y|C)/p(y|I)} by:

ˆLLRj = w
T
y. (10)

As can be seen, there exists many standard algorithms to estimate LLR, such as logistic regression
(often used in the statistics) [17], the perceptron algorithm or even its more advanced non-linear
counterpart, Multi-Layer Perceptron (MLP) [5] or the Support Vector Machine (SVM) algorithm [36].
Strictly speaking, these algorithms do not produce LLR but in our context, they can be viewed as an
approximation to LLR, i.e., their outputs correlate well with LLR.

2.5 Parameter Estimation of User-Specific LLR

Approximating user-specific LLR is more difficult than approximating user-independent LLR since
few user-specific data points are available, especially the client scores (less serious for the impostor
scores). We tackle this problem using the following rules-of-thumb: 1) using simple classifier model
(with low degree of freedom); 2) using robust parameter estimation; and 3) relying on some prior
knowledge such as user-independent distribution.

Because of few user-specific data points, the best that one can do is to assume that each class of
user-specific scores is normally distributed. The first rule implies that using more than one Gaussian
components as in the user-dependent case will probably result in overfitting.

Let us denote the class-conditional mean and covariance as µ
k
j and Σk

j , respectively, for k = {C, I}

and for client j. The user-independent parameters, µ
k and Σk, are defined similarly. The estimation

of user-specific parameters µ
k
j and Σk

j are discussed in the Appendix. The third rule can be realized
via the following adaptation:

µ
k
adapt,j = µ

k
j γk

1 + µ
k(1 − γk

1 ) (11)

Similarly, the adapted covariance is defined as:

Σk
adapt,j = Σk

j γk
2 + Σk(1 − γk

2 ) (12)

Both parameters γk
1 and γk

2 (for the first and second moments) are within the range [0, 1]. These form
of adaptation is can be found in [15] and is called Maximum A Posteriori (MAP) adaptation by the
authors. They balance between the user-specific estimate and the user-independent estimate of the
two Gaussian parameters.

At first sight, having four free parameters γk
1 , γk

2 for k ∈ {C, I} are too many if one considers that
there are about a hundred user-specific impostor scores and about two user-specific client scores. In
this case, using the first rule-of-thumb, one can fix these values a priori, i.e., γI

1 = 1, γI
2 = 1 (putting

full confidence on the user-specific impostor estimates), γC
1 = 1 and γC

2 = 0 (putting zero confidence
on the user-specific client covariance estimate since it is non-informative; see the Appendix). Hence,
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one is left with a single parameter γC
1 ∈ [0, 1] to tune. The issue to tuning or not γC

1 will be discussed
after observing the real data by experimentation (see Section 4.2).

One can immediately recognize that this class of solution is called Quadratic Discriminant Analysis
(QDA) when µ

C
adapt,j 6= µ

I
adapt,j and Linear Discriminant Analysis (LDA) when ΣC

adapt,j = ΣI
adapt,j .

Again, considering few user-specific client scores, we can derive the LDA solution from the QDA
solution by enforcing the common covariance matrix to be that of impostor only (since the user-
specific client covariance is not informative).

The formulations in Eqns. (11 and 12) are very similar to what is called “the relevance factor”
mentioned in [11] or [32], whereby the parameter γk

i for all i ∈ {1, 2} and k ∈ {C, I} is defined to be:

γk
i ≡

Nk(j)

Nk(j) + r
, (13)

where Nk(j) is the number of user-specific training example (of client j) belonging to class k. The
parameter r is the so-called relevance factor and it takes only positive values. In biometric authentica-
tion, where N I(j) >> NC(j), r will give more weight to user-specific impostor information (or more
precisely the two Gaussian parameters) whereas less weight to the user-specific client information. It
should be recognized that relevance factor is also a form of constraint. Otherwise, a different r for
each k or for each i would have meant that one has to still to tune the four parameters. In our case,
we fixed these parameters a priori to further constrain the model fitting. Hence, these two forms
are just some possible constraints and relevance factor is found to be particularly useful in speaker
verification [32] in the context of mixture of Gaussians, instead of the single-component case as done
here.

2.6 User-Specific Score Normalization

Using the formulation shown in Figure 2(a) of Section 2.3, we will describe here a particular imple-
mentation of user-specific score normalization. This implementation happens to be the well-known
user-specific Z normalization.

Suppose that p(y|kj) is Gaussian distributed with mean µk and standard deviation σk
j for each

class label k ∈ {C, I}. Let us further assume that both the conditional score distributions share the
same standard deviation σI

j because the standard deviation of the user-specific client distribution
is not reliable (due to few samples). The user-specific LLR, as in the first right-hand side term of
Eqn. (7), can then be written as:

LLRj ≡ log
p(y|Cj)

p(y|Ij)

= −
1

2(σI
j )2

(
(y − µC

j )2 − (y − µI
j )

2
)

− log

√

2π(σI
j )2

√

2π(σI
j )2

=

(

µC
j − µI

j

(σI
j )2

)(

y −
µC

j + µI
j

2

)

, (14)

after rearrangement. If one further assumes that µC
j = y because µC

j is unknown, then Eqn. (14) can
further be written as:

LLRj =
(y − µI

j )
2

2(σI
j )2



IDIAP–RR 05-44 13

This form of equation is known as Z normalization. In practice, the following form is used:

fz
j (y) =

y − µI
j

σI
j

(15)

Both forms are equivalent since fz
j (y) ∝ LLRj . In this way, it can be seen that Z-norm can be readily

used to implement the user-specific score normalization. It should be noted that Z-norm is impostor
centric due to the fact that the user-specific client distributions, as represented by µC

j and σC
j are

not used at all. A more detailed discussion on this form of normalization is found in [19]. Another
user-specific score normalization that is client-impostor centric can be found in [31].

2.7 Limitation and Solution to Gaussian Assumption

It should be warned that the user-specific adaptation mentioned in Sections 2.5–2.6 is founded on the
assumption that scores can be modeled by a (multi-variate) Gaussian. Consider the case where the
base-classifier output is an MLP which outputs posterior probability (within the range [0, 1]) typically
due to using a logistic activation function or outputs scores within the range [−1, 1] typically due to
using hyperbolic tangent activation function. Then, one knows that the scores cannot be adequately
modeled using Gaussian distributions because simply they are indeed not normally distributed. Using
1186 experiments, an empirical study in [29], for instance showed that the divergence from the Gaussian
assumption of MLP outputs, when trained using the above activation functions, is much larger than
that of GMM and SVM. Hence, ideally, one should always use the output just before applying any
one of the two squashing functions mentioned. However, when this is not possible, (for instance, due
to using a commercial-off-the-shelf product), reversing this process is possible, to a certain extent.
The usual definition of sigmoid and tangent hyperbolic are:

sigmoid(z) =
1

1 + exp (−z)
,

tanh(z) =
sinh(z)

cosh(z)
,

respectively. If y is an output of a sigmoid or a hyperbolic tangent function, its inverse is:

sigmoid−1(y) = − log

(
1

y
− 1

)

,

tanh−1(y) =
1

2
log

(
1 + y

1 − y

)

,

respectively. The above transformations are linear around the mid-range and non-linear towards the
range limit. As a result, when y is near the range limits, its inversion will be limited to the machine
precision represented by the value y. Hence, such remedial procedure cannot “reverse” perfectly the
process. Fortunately, we now know that data points near the range limits cannot influence the decision
function. On the other hand, only those data points near the decision boundary can influence the
decision function [36]. This is because these data points are the ones found within the “margin”
described in [36].

3 Database and Evaluation

3.1 XM2VTS Database and Its Fusion Benchmark

The XM2VTS database [27] contains synchronized video and speech data from 295 subjects, recorded
during four sessions taken at one month intervals. On each session, two recordings were made, each
consisting of a speech shot and a head shot. The speech shot consisted of frontal face and speech



14 IDIAP–RR 05-44

Table 1: The Lausanne Protocols as well as the fusion protocol of XM2VTS database.

Data sets Number of accesses Fusion
LP1 LP2 Protocols

LP Train client 3 4 NIL
LP Eval client 600 (3 × 200) 400 (2 × 200) Fusion dev
LP Eval impostor 40,000 (25 × 8 × 200) Fusion dev
LP Test client 400 (2 × 200) Fusion eva
LP Test impostor 112,000† (70 × 8 × 200) Fusion eva

†: Due to one corrupted speech file of one of the 70 impostors in this set, this file was deleted, resulting
in 200 less of impostor scores, or a total of 111,800 impostor scores.

recordings of each subject during the recital of a sentence. The database is divided into three sets:
a training set, an evaluation set and a test set. The training set (LP Train) was used to build client
models, while the evaluation set (LP Eval) was used to compute the decision thresholds (as well as
other hyper-parameters) used by classifiers. Finally, the test set (LP Test) was used to estimate the
performance.

The 295 subjects were divided into a set of 200 clients, 25 evaluation impostors and 70 test
impostors. There exists two configurations or two different partitioning approaches of the training
and evaluation sets. They are called Lausanne Protocol I and II, denoted as LP1 and LP2 in this
paper. In both configurations, the test set remains the same. Their difference is that there are three
training shots per client for LP1 and four training shots per client for LP2. Table 1 is the summary
of the data. More details can be found in [24]. The first column shows the data set, divided into
training, evaluation and test sets. Columns two and three show the the partition of the data according
to LP1 and LP2 whereas column four shows the partition of data for the fusion protocols that are
consistent with the Lausanne Protocols. As far as fusion is concerned, there are only two data sets,
labeled as “Fusion dev” (for development) and “Fusion eva” (for evaluation), since the data used in
LP training sets are reserved to construct the base systems. Note that the fusion development set
is used to calculate the parameters of fusion classifier as well as the optimal global threshold. They
are then applied to the fusion evaluation set. Since the threshold is calculated from the development
set, the reported performance obtained from the evaluation set is thus called an a priori performance.
The performance measure is described in the next section.

3.2 Evaluation Using Pooled EPC Curve

Perhaps the most commonly used performance visualizing tool in the literature is the Decision Error
Trade-off (DET) curve [26]. It has been pointed out [4] that two DET curves resulted from two
systems are not comparable because such comparison does not take into account how the thresholds
are selected. It was argued [4] that such threshold should be chosen a priori as well, based on a given
criterion. This is because when a biometric system is operational, the threshold parameter has to be
fixed a priori. As a result, the Expected Performance Curve (EPC) [4] was proposed. We will adopt
this evaluation method, which is also in coherence with the original Lausanne Protocols defined for
the XM2VTS database. The criterion to choose an optimal threshold is called weighted error rate
(WER), defined as follows:

WER(α, ∆) = αFAR(∆) + (1 − α) FRR(∆), (16)

where FAR and FRR are False Acceptance Rate and False Rejection Rate, respectively. Note that
WER is optimized for a given α ∈ [0, 1]. Let ∆∗

α be the threshold that minimizes WER on a
development set for a given α. The performance measured on an evaluation set at a given ∆∗

α is called
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Half Total Error Rate (HTER), which is defined as:

HTER(α) =
FAR(∆∗

α) + FRR(∆∗
α)

2
. (17)

The EPC curve simply plots HTER versus α, since different values of α give rise to different values
of HTER. The EPC curve can be interpreted in the same manner as the DET curve, i.e., the lower
the curve is, the better the performance but for the EPC curve, the comparison is done at a given
cost (controlled by α). One advantage of EPC curve is that it can plot a pooled curve from several
experiments. For instance, to compare two methods over M experiments, only one pooled curve is
necessary. This is done by calculating HTER at a given α point by taking into account all the false
acceptance and false rejection accesses over all M experiments. The pooled FAR and FRR across
j = 1, . . . , M experiments for a given α ∈ [0, 1] is defined as follow:

FARpooled(α) =

∑M

j=1 FA(∆∗
α(j))

NI × M
, (18)

and

FRRpooled(α) =

∑M
j=1 FR(∆∗

α(j))

NC × M
, (19)

where ∆∗
α(j) is the optimized threshold at a given α, NI is the number of impostor accesses and NC

is the number of client accesses. FA and FR count the number of false acceptance and the number of
false rejection at a given threshold ∆∗

α(j). The pooled HTER is defined similarly as in Eqn. (17).

4 Experiments

4.1 Preliminary Experiments on User-Independence Assumption

The aim of this experiment is to answer the question: “Is user-independent LLR really independent
of the LLR of any specific client?”. In other words, we would like to verify Eqn. (4). This is clearly
not true because the user-independent conditional likelihood is functionally dependent on the user-
dependent conditional likelihood. Figure 3 illustrates that the number of Gaussian components in
P (y|k) when estimated using a GMM model, does not need to be equivalent to the number of clients.
In fact, much less number of components are needed, e.g., in this case, 200 clients versus 12 impostor
components and 6 client components.

4.2 Preliminary Experiment on Tuning Parameter γ
C
1

This experiment verifies the so-called “prior knowledge” mentioned in Section 2.5, that constrains
the parameters γk

i for i = {1, 2} and k = {C, I}, as discussed in Section 2.5. By the nature of the
problem, we fix γI

i = 1 for i = {1, 2}, hence making full confidence on user-specific impostor Gaussian
parameters. We fix γC

2 = 1 because the user-specific covariance is likely to be non-informative. Hence,
this left us with one tunable parameter, γC

1 .
As a preliminary experiment, we used two settings: 1) γC

1 = 1 and γC
2 = 1, and 2) γC

1 = 1 and
γC
2 = 0. For both settings, the impostor γI

i |∀i’s are set to one. These two settings are applied to one of
the 21 fusion tasks mentioned in Section 3.1. The results for setting 1 are shown in Figure 4. The pair
of user-independent and user-specific LLRs representing an access, (LLR and LLRj), are plotted in
Figure 4(a) for the development (training) and in Figure 4(b) for the evaluation (test) set. As can be
observed, with γC

2 = 1, the user-specific LLR overfits the training set – the separation between client
and impostor accesses are perfect but when applied to the test set, the user-specific LLR performs
much worse. If this setting was to be used, the second adaptation classifier (fadapt in Figure 2) would
never generalize.
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Figure 3: (a) User-dependent and (b) user-independent Gaussian fits, whose centers are represented
by a big plus sign. For both figures, the X- and Y-axes are the output score-space of a face and speech
experts, respectively. The upper right clusters are client accesses whereas the lower left clusters are
impostor accesses. In (a), only 20 class-conditional Gaussian components are fitted on each of class of
scores belonging to each of 20 client models. In (b), the client and impostor accesses of all 200 clients
are plotted directly on the mixture of Gaussian components. Plotting all 200 clients in (a) will be
too cluttered. Obviously, in (b), less Gaussian components are needed. In this case, only 12 Gaussian
components are needed to represent the (user-independent) impostor accesses and 6 are needed for
the client accesses, despite the fact that these accesses are from 200 clients and their corresponding
impostor accesses. The number of Gaussian components are optimized using standard Expectation
Maximization algorithm such that the conditional likelihood of the corresponding validation set is
maximized.

This indicates that using an unreliable user-specific covariance for the client accesses can result
in overfitting. For this experiments, there are actually three user-specific client accesses and two
multimodal experts: one is a face and the other is a speech expert. In the second setting where
γ2 = 0, both the scatter plot of development and evaluation data sets are similar to Figure 4(b),
implying no overfitting. Hence, γ2 = 0 will be used through out the experiments, whereas γ1 will be
tuned by cross-validation.

4.3 Pooled Fusion Experiments

In the previous sections, preliminary experiments are conducted in order to understand the charac-
teristics of the problems at hand. In this and the next section, generalization performance will be
objectively measured in terms of HTER. The experimental results of user-specific fusion procedure
are reported here whereas those of user-specific normalization procedure are reported in Section 4.4.
The fusion experiments are further divided into three categories: multimodal fusion (21 experiments),
face intramodal fusion (7 experiments) and speech intramodal fusion (4 experiments). They are shown
in Figure 5.

Having run all the experiments, we checked the tuned γC
1 values and found that most values are

exactly 1 and the smallest value is 0.7.. As a control, we indeed repeated the same set of experiments
but fixing γC

1 = 1. Similar results are obtained as in Figure 5. The probabilistic inversion procedure
as discussed in Section 2.7 was employed to estimate the user-specific fusion function using QDA
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Figure 4: User-dependent LLR versus user-independent LLR using (a) a development set and (b)
an evaluation set. The client accesses are plotted with plus signs whereas the impostor accesses are
plotted with dots. As can be seen, there is a clear sign of overfitting for the user-dependent LLR when
γ2 = 1 and γ1 is optimized on the data set by validation. For most experiments, it was found that γ1

is always close to 1.

whenever the output of an expert is an MLP using either of the activation functions as the final
output layer. As another set of control experiments, we also used carried out the same experiments,
but this time, not using the probabilistic inversion procedure (not shown here). The results are
that for the multimodal and speech intramodal settings, the improvement was reduced. As for the
face intramodal experiments, no improvement was observed. Therefore, we can conclude that the
probabilistic inversion procedure is an important factor to guarantee the successful use of QDA-based
user-specific fusion.

4.4 Pooled User-Specific Score Normalization Experiments

In this section all the 7 face and 6 speech baseline systems are used to test the user-adapted normaliza-
tion procedure proposed in Section 2.3 and shown in Figure 2(a). The results are shown in Figure 6.
As can be seen from the face experiments, directly applying user-specific Z-norm will only worsen the
generalization performance. However, the proposed user-adapted normalization procedure does not
suffer from this drawback because it relies on both sources of information. On the other hand, for
the speech systems, user-specific Z-norm improves the performance significantly. Furthermore, the
user-adapted normalization procedure even boosts the generalization performance further. Based on
these 13 experiments, we can conclude that the user-adapted score-normalization procedure takes the
best of both user-specific and user-independent information.

5 Conclusions

In this study, we proposed to categorize different approaches to using user-specific information in a
general biometric authentication framework. Although the review in this domain is not exhaustive,
we believe that it represents the state-of-the-art as long as the use of user-specific information in
this application is concerned. In particular, this study generalizes the paradigm proposed by [35],
whereby two user-specific techniques are combined: user-specific fusion and user-specific threshold.
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Figure 5: Fusion experiments: Comparison of fusion using user-independent information (denoted as
“global”, implemented by using a GMM), user-specific information (denoted as “local”, implemented
using user-specific QDA), and both information sources (denoted as “mix”), also called adapted strat-
egy. The adapted strategy was implemented using two methods: mean and SVM, applied to multi-
modal datasets (a) and (b) (evaluated over 21 experiments), intramodal face datasets (c) and (d) (over
7 experiments) and intramodal speech datasets (e) and (f) (over 4 experiments), each pair depicting
EPC and DET curves, respectively. The γ1 of each experiment was tuned on a validation set. A
similar set of experiments are repeated but using γ1 = 1 gives the similar results as in (a)–(f) and
thus not shown here.

Although the idea of compensating user-specific information with user-independent information is not
new [10, 11, 32], we proposed a novel way to combining both information sources, founded on our
interpretation of the Bayesian framework. We showed that user-specific information can be used at
the fusion level (resulting in a user-adapted fusion strategy) and at the score level (resulting in a
user-adapted normalization procedure). The challenge to devising a useful user-specific/user-adapted
procedure is to make use of the extremely few user-specific client features/scores for training. One
major conclusion from both experiments is that not only that balancing both sources of information
does not deteriorate the performance (especially when relying solely on user-specific information can
deteriorate the performance), it can also improve the generalization performance compared to using
either one information source. Finally, in view of limited user-specific client scores, prior knowledge
is definitely important in order to build a user-specific fusion classifier. Empirical results show that
indeed the free parameters involved could be and should be fixed a priori for best generalization per-
formance. In our case, the proposed user-specific fusion classifier can be trained without fixing any
free parameter (the four γk

i parameters, for i ∈ {1, 2} and k ∈ {C, I}). Furthermore, the adaptation
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Figure 6: Score normalization experiments: Comparison of user-specific Z-norm, user-independent
score (no normalization) and mixing both information sources using mean and SVM, applied to each
of the face datasets (a) and (b), and speech data sets (c) and (d). The EPC and DET curves are
pooled over 7 face experiments and 6 speech experiments.

classifier that combines both the user-specific (approximated) LLR and user-independent (approxi-
mated) LLR can be trained (as in the case of using SVM) or without training (as is the case of using
the mean operator) without the risk of overfitting. In comparison to the previous works [10, 11],
this is an important advantage. This is because due to few user-specific samples, cross validation
can be very unreliable. This advantage compares favorably with the work proposed in [35] whereby
due to the same problem, noise is injected to increase the number of user-specific client scores. Our
proposed approach handles this via the standard Bayesian framework that includes such uncertainty
in a natural way.
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