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Abstract. Multiparty face-to-face conversations in professional and social gsttiepresent an emerging
research domain for which automatic activity-based analysis is relémastientific and practical reasons.
The activity patterns emerging from groups engaged in conversatieriatensically multimodal and thus

constitute interesting target problems for multistream and multisensor ftesatmiques. In this paper, a
summarized review of the literature on automatic analysis of group actiuitifece-to-face conversational

settings is presented. A basic categorization of group activities is prof@sed on their typical temporal
scale, and existing works are then discussed for various types oitiastand trends including addressing,
turn taking, interest, and dominance.
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1 Introduction

Devising computational frameworks to automatically infierman activities from sensor data constitutes an
open problem in many domains, including signal processiamputer vision, sensor fusion, human-computer
interaction, and ubiquitous computing. Moving beyond thaividual-centered paradigm [47], an emerging
body of research has started to explore multiperson sa@mavhere group interactions and activities - and not
only activities performed by single people - are relevait [29, 6, 35].

In this context, face-to-face conversations represeninddmental case whose automatic activity-based
analysis has value on their own for several social scienge8€], and that would open doors to a number
of relevant applications. In the workplace, examples o&faeface settings include casual "stop-by" peer
conversations, regular group discussions, formal megtiagd presentations [50, 38, 11]. In the personal
sphere, face-to-face interactions are ubiquitous, andtitote by far - despite the increased use of computed-
mediated communication - the most natural, enjoyable, #fiedtve way to experience and fulfill our social
needs [42]. Needless to say, the automatic analysis oftéatace multiparty conversations poses a diversity
of technical challenges, given the intrinsic complexityte# patterns emerging in real communication, and the
difficulty to represent and infer the activities of multipheeracting people from multisensor data with tractable
yet accurate computational models.

This paper represents an attempt to draw a map of the existngin this field. The goal of the paper is
to gather and briefly discuss works which, given the inteigigary nature of the domain, have appeared in
the literature spread over a number of communities, inolyidignal processing, computer vision, multimodal
processing, machine learning, human-computer intemacdiod ubiquitous computing. Given the rapid devel-
opments in the domain, the author does not claim to have hdlgrekhaustive in the review, but rather aims at
introducing, in a comparative fashion, a number of worksirdgd as representative either by the addressed re-
search problem or by the proposed solution, while providipgo-date pointers to the literature to a non-expert
reader. The emphasis of the review is on (1) conversati@tthgs, thus not including many other multiperson
activity scenarios (e.g. surveillance); (2) face-to-faoenmunication, rather than remote, computer-mediated
one; (3) multiparty conversations, i.e., cases involvirggerthan two people; and (4) the use of multimodal per-
ceptual data, rather than only speech. Whenever availabieteps to the social psychology literature, which
can be seen both as a motivating factor for some of the rdseascribed here and as a source of knowledge
to support the design of computational models, will be mtedi

The paper is organized as follows. Section 2 discusses gariation of groups and conversational group
activities. Sections 3, 4, 5, and 6 describe the four majtivigccategories considered in the paper, namely
addressing, turn taking, interest, and dominance. Seg¢tmovides some concluding remarks.

2 Categorizing conversational group activities

As documented by a significant amount of work in social psiadw for over 50 years [5, 36], groups in
conversations, both in professional or social settings,beaseen as proceeding through diverse communica-
tion phases in the course of their interaction, sharingrmédion, engaging in discussions, making decisions,
dominating outcomes, etc. Group activities involve migtiparticipants effectively constrained by each other
through complex social rules. Group interaction is alsotimadal [33]. On one hand, speech is clearly
the principal modality in conversations. However, in nhatumeetings, speech is spontaneous and multiparty,
containing disfluencies, no clear sentence boundariessigndicant overlapping, phenomena that constitute
challenges for speech processing [46]. On the other haedg #xists a wealth of information in the visual
modality in the form of gaze, gestures, and expressions [8# to the fact that both individual and group
activities are often defined by the joint occurrence of dpeaudio and visual patterns. The same applies to
other types of sensor data (e.g. body signals) that can lokasseues for inferring activity.

For purposes of organization of the existing approachesmaple categorization of group activities in
conversations is presented here based on two axis, therfesepresenting the temporal scale spanned by the
activities, and the second one describing the group sizéhdffirst axis, group communication patterns vary
from the short term to the very long term, ranging freddressing (i.e., who speaks to whom at every time
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step), toturn taking patterns of longer temporal support (e.g. floor control, and disaussivs. monologues),
to group trends, likenterest level, which require longer intervals for their definition (e.gegments where a
group was highly engaged in a discussion), to trends thatgame a group from the regular interaction of its
members over time, likdominance. The temporal scale of the described group activities cas $pan single
or multiple conversations. In the second axis, conversat@an span dyadic cases, small, and large groups.
It is well known in social psychology that the size of a growgsta definite influence in the dynamics of a
conversation [23]. In the remainder of the paper, we willodié® existing work focusing on the four activity
categories listed above. Additionally, research on pasewonversations will be discussed if it relates to works
whose ultimate goal is the modeling of groups. Finally, itniportant to clarify that the review will discuss
techniques that rely on transcribed speech only briefly,nster there is a clear relation with multimodal
techniques.

3 Addressing

In a conversation, an addressee is the person at whom thehsisedirected [12]. In social psychology, it is
known that the addressing phenomenon occurs through @hliffeommunication channels, including speech,
gaze, and gesture, e.g. listeners manifest attention egtorg their gaze to speakers, who in turn use gaze to in-
dicate whom they address, and to ensure visual attentiomddzressees to hold the floor [25]. It is also known
that meeting participants, interacting and exchangingsrak speakers, addressees, and side participants, con-
tribute to the emergence of conversational events thaactenze the flow of a meeting (monologues, group
discussions, side conversations).

Although there is an increasing body of work on automatidysisof head pose (as a surrogate for gaze)
and visual focus of attention (VFOA) in multiparty interact [49, 3, 4], there are relatively few studies on
automatic identification of addressees in multiparty cose#ons. In brief, the goals of the existing works are
to identify what participant(s) in a conversation the cotigeaker is talking to, and to explore the connections
between addressee modeling and other conversationailiastiVike the ones described in Section 4. Katzen-
meier et al. [31] presented a study on identifying addresbeéwveen two people and a simulated robot, with
the further goal of discriminating person-person intécacfrom human-robot interaction. Three cases were
studied: audio-only using speech-derived features, \4sniy based on head pose, and audio-visual combining
the single modality cues. A Bayesian classification tealmmigyas used, in which neural networks were used
to learn head pose and audio representations. In this #yemet scenario, it was found that head pose is in-
deed a strong cue for addressee identification, and thaestgbrformance was obtained with the multimodal
approach, despite a relatively low performance obtaingld thie audio modality. In other work, Jovanovic et
al. [29] presented an initial scheme of verbal, non-veraiatl contextual features for addressee identification,
but no experiments were conducted to validate the propadeshe. In subsequent work, Jovanovic et al. [30]
collected and annotated a five-hour corpus recorded in asan#tor meeting room (cameras and microphones)
for studying addressee behavior, consisting of twelve &fiita real meetings. The corpus was annotated with
respect to discrete VFOA for each participant, addreseenation, and dialogue acts (DA: units that include
backchannels, floor grabbers, questions, and statemants)}o it is relevant for studying the problem using
a variety of cues. The annotation of addressees used diele@s basic units, assigning one of four possible
tags to each DA, to indicate whether the speaker addressegla person, a subgroup, the whole audience,
or if the addressee is unknown. The detailed discussiontdabeueliability of the manual annotation process
(inter-annotator agreement) in [30] indicates that theotation ranges in quality from acceptable to good for
those DAs whose boundaries are agreed upon by manual amnsothat the reliability is higher on those meet-
ing segments where the speaker addresses a single persotihaa@nnotators had problems distinguishing
between subgroup and group addressing. All these findirmddbe useful to assess the type of performance
that can be expected with automatic processing. In othatework, Otsuka et al. [41] recently presented
a Dynamic Bayesian Network (DBN) approach which jointlyeirsf the gaze pattern for multiple participants
and the conversational gaze regime responsible for gémgsgiecific speaking activity and gaze patterns (e.qg.
all participants converging onto one person, or two peapi&ihg at each other). The work relied on clean ob-
servations extracted from magnetic head trackers attaoheath participant and from a manual speaking-turn



4 IDIAP—-RR 06-63

segmentation. Overall, it can be said that the area of autom@dressee modeling is still emerging, and that
as of today, the performance of systems relying on fully anatiic features remains unknown.

4 Turn-taking patterns

Viewed as a whole, a group in a conversation proceeds thrdivghse communication phases in single meet-
ings as well as during the course of long-term collaboratieek. A model based on this observation would
then assume a discrete set of group activities and view ggronversation as a sequence of such activities. In
a formal meeting scenario, where people discuss aroundeadal use a whiteboard and a projector screen,
McCowan et al. [34, 35] first investigated this approach arddted the joint segmentation and recognition
of meetings into a number of group activities that corresptorocation-based turn-taking patterns, including
monologues, discussions, presentations, note-takieg, Bte approach relied on supervised learning tech-
niques, namely Hidden Markov Models (HMMSs) [44], and usedienher of simple audio and visual features
automatically derived from multiple cameras and micromsyrincluding close-talk and microphone arrays.
The problem was studied as a multistream system, where ttaetarss can correspond either to the features
extracted from each person or to each perceptual modalitli¢aor visual). A number of variations of HMM
models were tested, including multistream HMMs [17], cegpHMMs [8], and asynchronous HMMs [7].
Results, measured in terms of Action Error Rate (AER), waiearaging and showed the benefits of audio-
visual fusion. The approach, however, has two limitatidrisst, HMMs can be challenged by a large number
of parameters, and by the risk of overfitting when learnethflimited data [40]. This situation might occur in
the case of multimodal group activity recognition wherehia simplest case, large vectors of audio-visual fea-
tures from each participant are concatenated to define theredtion space. Second, the framework does not
explicitly model activities at different semantic leveiespite the known fact that models in social psychology
describe meetings as comprising both individual actiomsiateractions [36].

Zhang et al. [53, 57] addressed the above limitations wittvalayer HMM framework [40]. In the
first layer, individual actions performed by each persomthsaswriting and speaking, are recognized (i.e.,
estimating posterior probabilities of the individual act$) from raw audio-visual observations. Then, the
second layer recognizes the group activities using as itipuresults of the first-layer recognizers for all
meeting participants and a set of group features, direatisaeted from the raw streams and not associated
to any person. Compared with single-layer HMMs, layered HMhave several advantages, including the
use of much smaller observation spaces, the fact that thdalpsy HMMs can in practice be better estimated
as much more data (arising from multiple people) is avadatiie reduction in sensitivity for group activity
recognition as the observations for the high-layer areguimstbased features, and the possibility of exploring
different HMM options for each layer. The experiments in,[53] led to three findings. First, the two-layer
HMM approach outperformed the single-layer one. Secoredusie of audio-visual features outperformed the
use of single modalities for both single-layer and two-fayl®#Ms, supporting the hypothesis that the target
group activities are inherently multimodal. Third, the blesv-layer model was the asynchronous HMM (a
model that explicitly accounts for variations of alignmdstween two data streams), which suggested that
some asynchrony might exist for the group activities, amad $ich asynchrony was reasonably captured by the
model.

Other works have targeted the recognition of the same grotiyitees with hierarchical representations.
Dielmann et al. [15] proposed two approaches for meetingstring from audio-only features using multilevel
Dynamic Bayesian Networks (DBNs). The first DBN decomposerigroup activities as sequences of sub-
actions with no explicit meaning. The second DBN processatlfes of different nature independently, and
integrated them at a higher level. In this work, the subesathave no obvious interpretation, and their number
is a model parameter learned during training or set by hamithvmakes the structure of the models more
difficult to interpret. An initial comparison of various m@gnition models on the same task, including the
layered HMM, the multilevel DBN, and other approaches, wasented by Al-Hames et al. [1].

Two variations of the problem have been explored by Zhand.ef5d, 55]. These approaches look at
the problem from a practical perspective: the manual lagedif group activities for training purposes is both
difficult (in terms of the annotation agreement that mighbb&ined from multiple annotators) and expensive.
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The use of unsupervised or partially supervised approaahdd thus be attractive alternatives. The approach
in [54] proposed a two-layer framework where the low-layeidentical to the one presented in [53], and the
high-layer is a fully unsupervised HMM that discovers gragivity patterns using the output from the low-
layer as features. The method in [55] uses model adaptaamiques, where instead of directly training one
model for each group activity (as done in [53]), a generaVagtmodel is first estimated using unlabeled data,
and then adapted to each group activity model using its oweléa data using Bayesian adaptation. Both
methods define a tradeoff between performance and avéiadiillabeled data. In the author’s opinion, the
investigation of models that rely on unsupervised or ligstipervised approaches remains as a research area
of practical relevance, given the increasing availabityinlabeled data and the annotation costs required by
supervised methods.

In other related work, Chen et al. [9] described initial effdo combine gaze, gesture, and speech for floor
control modeling, using meeting data collected with midtipameras, microphones, and magnetic sensors.
As a conversation progresses, the active speaker holdsaibie While other conversants participate either
cooperating or competing to share the floor and advance tisveampleting the goals of a conversation. Floor
control is a phenomenon studied in psychology and lingessior many years [18] and has been observed
that multimodal cues (including gaze exchanges betweefidbeholder and the interlocutors, and discourse
markers) are related to floor control changes. The studytahewse of audio-visual cues for floor control has
been recently extended in [10]. The work includes the déimiof a scheme for floor control annotation, and
the use of a small labeled corpus to identify multimodal aarselated with floor changes. The analysis of the
corpus suggests that discourse markers occur frequertthe dteginning of a floor, that mutual gaze between
the current floor holder and the next one offer occurs durimgy firansitions, and that gestures related to floor
capturing also occur. No attempt to perform automatic pssicgy was reported

Finally, works related to recognition of speaker turn categs that rely on transcribed speech have also
appeared in the speech community. A number of existing woaikfocused on recognizing DAs automatically.
Examples include the approaches for joint DA segmentatiohctassification presented in [2, 28, 58].

5 Group interest

Group interest-level, i.e., the degree of engagement beatrtembers of a group collectively display during
their interaction, is an important trend to extract frormfiat meetings and other social settings [42]. Segments
of conversations where participants are highly engaged ifea discussion) are likely to be of interest to other
observers too. In this view, group interest-level helpsraeé form of relevance around which conversations
can be indexed or summarized.

Modeling interest-level and other related concepts is agrgimg problem in social computing that has been
explored in multiperson conversational settings [51, 52,19, 24, 42, 43]. However, with a few exceptions
which have explored the use of multimodal cues [24, 43], ®lteng work has only analyzed the relation
between interest and the speech modality. With speechanttes as the basic units, work by Wrede et al.
introduced the concept of hot-spots [51], defining themiimieof participants highly involved in a discussion,
and relating it to the concept of activation in emotion maugl[14]. The work in [51] studied the relation
between prosodic cues and human-annotated hot-spots.wbhiswas later extended to study the relation
between hot-spots and dialog acts [52], using both corgéfatures (such as speaker identity or type of the
meeting) and lexical features (such as utterance lengtiparglexity). In a related line of work, Kennedy et
al. defined emphasis for speech utterances [32], acknoimigdigat this concept and emotional involvement
might be acoustically and perceptually similar. Other vgoitk the speech community are also related to
detection of high-interest segments. For instance, Hilltral. [26] proposed to recognize a specific kind
of interaction pattern in meetings (agreement vs. disageed) that is related to high group interest. The work
used both word-based features (such as the total numberdéyand the number of “positive” and “negative”
keywords), as well as prosodic cues (such as pause, fregiaaedaduration), in a learning approach that made
use of unlabeled data.

A number of wearable computing systems have also dealt htlinterest-level problem, either introduc-
ing it manually as in the work by Eagle et al. [19], or estimgtit automatically from acoustic features as
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proposed by Pentland et al. [43]. In the latter case, audged features of activity, engagement, stress, and
mirroring, and body motion features from accelerometergweatomatically extracted. The conversational set-

tings varied from dyadic conversations (including sameesmversations with random topics and speed-dates)
to multiparty meetings (e.g. conference attendees whetigipants are likely to exchange business e-cards at
some point if they are interested in each other).

Gatica-Perez et al. [24] presented a preliminary invetgaof the performance of audio-visual cues
on discriminating high vs. neutral group interest-levejreents in multiparty meetings in a fully supervised
approach, simultaneously deriving a segmentation of aingeand the binary classification of the segments
into high or neutral interest-level classes. Two classicMikécognition strategies were investigated: early
integration, where all desired streams (audio, visual,uatiavisual) are synchronized and concatenated to
form the observation vectors, and multistream HMMs, usedafadio-visual fusion. The fully supervised
approach called for human annotation of group interesttlévhe investigated features included audio features
derived from microphone arrays and lapel microphones, @shi/features extracted from skin-color blobs
from each participant. Various combinations of models agatures (audio-only, video-only, audio-video)
were investigated. The analysis of the results suggestadil automatic detection of group interest-level
is promising, and that, while the audio modality turned aube dominant, audio-visual fusion improves
performance and is thus beneficial. The investigation Vifegtures better correlated with communicative
tasks (e.g. visual focus) remains as an open issue.

6 Dominance and Influence

Some people seem particularly capable of driving a contiersand often have the largest influence on a
meeting, shifting its focus when they speak. Dominance afildence are important research problems in
social psychology, and a solid body of knowledge about thiimodal nature of these phenomena exists [21].
However, the problem of automatically estimating them hag begun to be studied in the contexts of social
and wearable computing [6, 11, 45, 56]

The perception of dominance is a multimodal task, in whicual gaze and speaking activity are involved.
In social psychology, early research by Efran showed thgi-Btatus persons receive more visual attention
than low-status people [20], and work by Cook et al. showed prople who very rarely look at others
in conversations are perceived as weak [13]. Further stuti®e shown that the joint occurrence of visual
attention and speaking activity patterns are correlated dominance. For instance, Exline et al. showed
that high-power people exhibit a relatively high ratio obking-while-speaking to looking-while-listening
periods [22]. Importantly, Dovidio et al. showed that peophn systematically decode patterns of visual
dominance displayed by others [16], which provides supfmrboth the expectation of producing reliable
human annotations and the hope of designing methods fomatitoanalysis. This is in fact what the initial
work in this domain has suggested [45, 56].

Basu et al. [6] described an approach for automatic disgoe€influence in a lounge room equipped
with cameras and microphones where people played inteeadtibating games. The influence model, a DBN
which models the members of a group as a set of Markov chaétd, ef which influences the others’ state
transitions, was applied to automatically determine hovetminfluence a person has on each of the others
on a pair-wise basis. Although the influence model (and otblated models, e.g. [11]) is a tractable and
thus attractive alternative to model group interactionbas the limitation that it only models the interactions
between individual players on a pair-wise basis, i.e., tflaénce of one player on another player, and does not
explicitly model the group as such.

As an alterative, Zhang et al. recently proposed a two-lefilence model [56], which is a DBN with a
two-level structure: the player level and the team levele Player level represents the actions of individual
players. The team level represents group-level actione t€am state at the current time step influences
the players’ states at the next time step. In turn, the teate sit the current time step is also influenced by
all the players’ states at the current time step. The expiierarchy in the model allows for the estimation
of the influence of each of the players on the team state, andiitribution of player-to-team influence is
automatically learned from data in an unsupervised fashiRegarding features, audio and speech features
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were extracted from multiparty meetings from speaker twsmg close-talk microphones, microphone arrays,
and manual speech transcripts. Using ground truth obtaigeshanually annotating influence by multiple
annotators, the team-player influence model was found tpeoigrm a method that used each participant’s
speaking length (i.e., the proportion of time during whiccle participant speaks) as an estimate of their
overall influence in the meeting.

Rienks et al. [45] recently proposed a supervised learrpgaach to detect dominance in meetings. Their
method was based on the formulation of the problem as a ttlass-classification task in which, through
manually annotated data, meeting participants were ldbetehaving high, normal, or low dominance. A
number of features related to speaker-turns and their scbwiere extracted for each participant from speaker-
turn segmentations, speech transcriptions, and addgdsdials, all of which were manually produced. These
features included a person’s speaking time, her numbekehtaurns, the number of times the person grabbed
the floor, the number of times the person was privately addrbsetc. Using a small corpus of meetings and
a Support Vector Machine (SVM) classifier, the authors otadia performance of 75% correct classification
rate for the best feature combination (number of floorgraiosraumber of taken turns).

Overall, the automatic estimation of dominance and infledea@lso a research problem for which many
issues, both theoretical and empirical, remain open, dictuthe validation of cues from the social psychology
literature for automatic analysis, a clear understandirthebenefits of audio-visual fusion, the evaluation of
fully automatic features, and the design of models to esémariations of these trends over time.

7 Conclusions

This paper has presented a concise overview of some of thg faegts of research on automatic recognition
and discovery of group activities in conversational sgifrom multiple sensors, with the intention of pro-
viding links to recent literature on a number of relevant cmication tasks. As the discussion has tried to
highlight, the domain is very challenging and is still emiegy Research resources, including data, annotations,
and performance evaluation measures are emerging too. uggviteis expected that work in this domain will
soon address, at least initially, some of the many openss$ineling principled ways of integrating the diverse
knowledge brought by the various communities working is thomain.
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