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Abstract. This work presents a neural network for the retrieval of images from text queries.

The proposed network is composed of two main modules: the first one extracts a global picture

representation from local block descriptors while the second one aims at solving the retrieval

problem from the extracted representation. Both modules are trained jointly to minimize a loss

related to the retrieval performance. This approach is shown to be advantageous when compared

to previous models relying on unsupervised feature extraction: average precision over Corel queries

reaches 26.2% for our model, which should be compared to 21.6% for PAMIR, the best alternative.
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1 Introduction

A system for the retrieval of images from text queries is essential to take full benefit from large
picture databases such as stock photography catalogs, newspaper archives or website images. A
widely used solution to this problem is to manually annotate each image in the targeted database and
then use a text search engine over the annotations. However, this approach is time-consuming and
hence costly, moreover it often results in incomplete and biased annotations which degrades retrieval
performance. Therefore, several approaches to avoid this manual step have been proposed in the
literature [1, 2, 3, 4]. These approaches are either generative auto-captioning models or discriminative
retrieval models. Generative auto-captioning models aims at inferring textual captions from pictures
that can then be searched with a text retrieval system [1, 3, 4], while discriminative retrieval models do
not introduce an intermediate captioning step and are directly trained to optimize a criterion related
to retrieval performance [2].

In this work, a discriminative approach is proposed. This approach relies on a neural network
composed of two main modules: the first module extracts global image features from a set of block
descriptors, while the second module aims at solving the retrieval task from the extracted features.
The training of both modules is performed simultaneously through gradient descent, meaning that
image feature extraction and global decision parameters are inferred to optimize a retrieval criterion.
This block-based neural network (BBNN) contrasts with previous discriminative models, such as [2],
in which the extraction of image representation is chosen prior to training. This difference is shown to
yield significant improvement in practice and BBNN is reported to outperform both generative and
discriminative alternatives over the benchmark Corel dataset [5] (e.g. BBNN reaches 26.2% average
precision over evaluation queries which should be compared to 21.6% for PAMIR, the best alternative,
see Section 5).

The remainder of this paper is organized as follows: Section 2 briefly describes the related work,
Section 3 introduces the proposed approach, Section 4 describes the text and visual features used to
represent queries and images. Next, Section 5 presents the experiments performed over the benchmark
Corel dataset. Finally, Section 6 draws some conclusions.

2 Related Work

As mentioned in introduction, most of the work in image retrieval from text queries focussed on
generative models that attempt to solve the image auto-annotation task. These models include Cross-
Media Relevance Models (CMRM) [3], Probabilistic Latent Semantic Analysis (PLSA) [4] and Latent
Dirichlet Annotation (LDA) [1]. In general, these models introduce different conditional independence
assumptions between the observation of text and visual features in an image and the parameters of
the model, θ, are selected to maximize the (log) likelihood of some annotated training images, i.e.

θ∗ = argmax
N∑

i=1

log P (pi, ci|θ),

where (p1, . . . , pN ) and (c1, . . . , cN ) correspond to the N available training pictures and their captions.
The trained models are then applied to associate a caption (or a distribution over text terms) to each
of the unannotated test images and a text retrieval system is then applied over these textual outputs.

The training process of these models hence aims at maximizing the training data likelihood, which
is not directly related to the targeted retrieval task, i.e. ranking a set of pictures P with respect to
a query q such that the picture relevant to q appear above the others. Better performance can be
achieved with a more suitable criterion, as recently shown by the discriminative model PAMIR [2].
To the best of our knowledge, the PAMIR approach is the first attempt to train a model to retrieve
images from text queries through the optimization of a ranking criterion over a set of training queries.
Previous discriminative models have only focussed on categorization ranking problems (e.g. [6, 7]),
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i.e. the task of ranking unseen images with respect to queries known at training time, which is not a
true retrieval task in which an unseen query can be submitted.

In this work, we propose to train a neural network with a criterion similar to the one introduced
in [2]. This neural network consists of two modules, the first one extracts an image representation
from a set of local descriptors and the second one relies on the inferred representation to solve the
retrieval problem. The training of both layers is performed jointly through gradient descent (see
Section 3). This approach is inspired from convolutional neural networks (CNN) [8] which have been
successfully applied to various classification/detection tasks [8, 9]: these models also formulate the
identification of a suitable image representation and the classification from this representation as a
joint problem. The proposed neural network hence contrasts with the PAMIR model for which the
image representation is a-priori chosen. Our experiments over the benchmark Corel corpus show that
this difference actually yields a significant improvement, e.g. P10 reaches 10.2% for BBNN compared
to 8.8% for PAMIR (see Section 5).

3 A Neural Network for Image Retrieval

This section presents the loss function L adopted to discriminatively train an image retrieval model.
It then describes the neural network proposed for image retrieval and its training procedure.

3.1 Discriminative Training for Image Retrieval

Before introducing a loss suitable for image retrieval, we should first recall the objective of a retrieval
model: given a query q and a set of pictures P , a retrieval model M should ideally rank the pictures
of P such that the pictures relevant to q appear above the others, i.e.

∀q,∀p+ ∈ R(q),∀p− /∈ R(q), rkM (q, p+) < rkM (q, p−), (1)

where R(q) is the set of queries relevant to q and rkM (q, p) is the rank of picture p in the ranking
outputted by M for query q.

In order to achieve such an objective, retrieval models generally introduce a scoring function F
that assigns a real value F (q, p) to any query/picture pair (q, p). Given a query q, this function is used
to rank the pictures of P by decreasing scores. In this case, the ideal property (1) hence translates to:

∀q,∀p+ ∈ R(q),∀p− /∈ R(q), F (q, p+) > F (q, p−). (2)

In order to identify an appropriate function F from a set of training data, the following loss has been
introduced [10],

L(F ;Dtrain) =

N∑

k=1

l(F ; qk, p+

k , p−k )

=

N∑

k=1

max(0, ǫk − F (qk, p+

k ) + F (qk, p−k )) (3)

where ∀k, ǫk > 0 and Dtrain is a set of N triplets {(qk, p+

k , p−k ),∀k = 1, . . . , N} in which qk is a text
query, p+

k is a picture relevant to q and p−k is a picture non-relevant to q. This loss L can be referred to
as a margin loss since it penalizes the functions F for which there exists training examples (qk, p+

k , p−k )
for which the score F (qk, p+

k ) is not greater than F (qk, p−k ) by at least a margin of ǫk. This loss has
already been successfully applied to text retrieval problems [10, 11] and to image retrieval problems [2].

Regarding the choice of the margin value ǫk, two alternatives have been proposed previously [2].
A first option, constant-ǫ, is to set ǫk to be the same for all examples, e.g. ∀k, ǫk = 1 (the value 1 is
chosen arbitrarily here, any positive value would lead to the same optimization problem). Another
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Figure 1: The 4 successive layers of BBNN: local feature extraction (L1), spacial averaging (A2), text
mapping (T3) and text matching (M4).

option, text-ǫ, which can be applied only if the training pictures are annotated with textual captions,
is to set ǫk to be greater than the difference of scores outputted by a text retrieval system F text, i.e.

ǫk = max(ǫ, F text(qk, c+

k )− F text(qk, c−k )), (4)

where c+

k , c−k are the captions of the pictures p+

k , p−k and ǫ > 0. This second option has previously
shown to be more effective [2] and will hence be used in the following.

3.2 Block-Based Neural Network Architecture

As explained above, our goal is to identify a scoring function q, p→ F (q, p) that minimizes L(F ;Dtrain).
For that purpose, we first introduce the block-based neural network (BBNN), q, p → Fw(q, p), and
we then explain how the parameters w∗ that minimize w → L(Fw;Dtrain) are identified through
stochastic gradient descent.

The proposed neural network is composed of 4 layers (see Figure 1): the local feature extraction
layer L1, the averaging layer A2, the text mapping layer T3 and the query matching layer M4. The
first layer L1 extracts local feature descriptors from different positions of the input picture p. The
second layer A2 computes the average of the local feature vectors extracted by L1. The text mapping
layer T3 then projects the output of A2 into the text space. The layer M4 finally compares the
obtained textual vector with the input query q leading to the output F (q, p). The layers are detailed
as follows:

L1: Local Feature Extraction This layer extracts the same type of features at different positions
of the input picture p through the following process: first, p is divided into B (possibly overlap-
ping) blocks of the same size, {b1, . . . , bB}, and each block is assigned a vector representation,
i.e. bi ∈ R

N0 (see Section 4). The same parametric function is then applied over each block
vector,

∀i, fi = tanh(W1bi + B1),

where tanh is the component-wise hyperbolic tangent function, W1 ∈ R
N1×N0 and B1 ∈ N1 are

the model parameters. The output dimension N1 is a hyperparameter of the model.

A2: Spacial Averaging This layer summarizes the B output vectors of L1 into a single N1-dimensional
vector through averaging:

f =
1

B

B∑

i=1

fi.

The succession of L1 and A2 is inspired from the bag-of-visterms (BOV) representation which
has been widely used in computer vision in the recent years, e.g. [1, 12]. In this case, a first
quantization layer maps each vector bi to a single discrete value among Nv, which is equivalent
to map bi to a Nv dimensional binary vector in which only one component is 1. In a second
step, the input image is represented by a histogram through the averaging of its binary vectors.
Here, we replace the quantization step by L1, which has two main advantages: first, the vectors



IDIAP–RR 06-33 5

fi are continuous non-sparse vectors which allows to better model correlation between blocks.
Second, the parameters of L1 are inferred jointly with the next layer parameters to solve the
retrieval problem. This contrasts with the BOV approach in which the quantization parameters
are generally inferred through generative learning (e.g. k-means clustering).

T3 : Text Mapping This layer takes as input the representation f of picture p as outputted by A2.
It then outputs a bag-of-words (BOW) vector t, i.e. a vocabulary-sized vector in which each
component i represents the weight of term i in picture p (see Section 4 for further description on
the BOW representation). This mapping from f to t is performed according to the parametric
function:

t = W3 tanh(W2f + B2) + B3

where W2 ∈ R
N2×N1 , B2 ∈ R

N2 , W3 ∈ R
V ×N2 and B3 ∈ R

V are the parameters of layer T3, V
is the vocabulary size and N3 is a hyperparameter to tune the capacity of T3.

M4: Query Matching This layer takes two BOW vectors as input: t, the output of T3 that rep-
resents the input picture p, and q, the input query. It then outputs a real-valued score s. This
score is the inner product of t and q,

s =
V∑

i=1

ti · qi.

This matching layer is inspired from the text retrieval literature in which text documents and text
queries are commonly compared according to the inner product of their BOW representation [13].

This neural network approach is inspired from CNN classification models [8] for its first layers (L1,
A2, T3) and from text retrieval systems for its last layer (i.e. BOW inner product). Like CNN
for classification, our model formulates the problem of image representation and retrieval in a single
integrated framework. Moreover like CNN, our parameterization assumes that the final task can be
performed through the application of the same local feature extractor at different locations in the
image. Our BBNN approach is however not a CNN strictly speaking: the local block descriptors bi to
which the first layer is applied do not simply consist of the gray level of the block pixels like in a CNN.
In our case, we extract a N0 dimensional feature vector summarizing color and texture statistics of the
block, as explained in Section 4. This difference is motivated by two main aspects of our task: color
information is helpful for image retrieval (see previous works such as [2]) and, moreover, the limited
amount of training data prevents us from using a purely data-driven feature extraction technique (see
Section 5 which depicts the small number of relevant pictures available for each query).

3.3 Stochastic Gradient Training Procedure

Stochastic gradient descent is the most widely used training technique for neural networks applied
to large corpora. Its main advantages are its robustness with respect to local minima, and its fast
convergence. We therefore decided to apply this optimization technique to identify the weight vector
w = [W1;W2;W3;B1;B2;B3] that minimizes the loss w → L(Fw;Dtrain), which yields the following
algorithm:

Initialize w.
Repeat

Pick (q, p+, p−) ∈ Dtrain randomly with replacement.
Compute the gradient ∂l

∂w
(Fw; q, p+, p−).

Update weights w ← w − λ ∂l
∂w

(Fw; q, p+, p−).
Until termination criterion.

It should be noted that this version of stochastic gradient training differs from the most used imple-
mentation in its sampling process [14]: we choose to sample a training triplet with replacement at
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each iteration rather than processing the samples sequentially in a shuffled version of the training set.
While having no impact on the distribution of the examples seen during training, this difference avoids
the costly shuffle for large triplet sets (e.g. there are ∼ 108 triplets for the Corel dataset presented
in Section 5).

The other aspects of the training process are more classical: the weight initialization is per-
formed according to the methodology defined in [14] and early stopping is used as the termination
criterion [14], i.e. training is stopped when performance over a held-out validation set Dvalid stops
improving. The learning rate λ is selected through cross-validation, as are the other hyperparameters
of the model (i.e. N1, N2).

4 Text and Visual Features

In this section, we describe the bag-of-words representation used to represent text queries and the
edge and color statistics used to represent image blocks.

4.1 Text Features

The text queries are assigned a bag-of-words representation [13]. This representation assigns a vector
to each query q, i.e. q = (q1, . . . , qV ) where V is the vocabulary size and qi is the weight of term i in
query q. In our case, this weight is assigned according to the well known normalized tf idf weighting,
i.e.

qi = tfq,i · idfi,

where the term frequency tfq,i is the number of occurrences of i in q and the inverse document
frequency idfi is defined as idfi = −log(ri), ri referring to the fraction of training picture captions
containing term i. It should be noted that this definition of idf hypothesizes that each training picture
is labeled with a caption. This is the case for the Corel data used in our experiments (see Section 5).
However, were such captions to be unavailable, it would still be possible to compute idf over another
textual corpus, such as an encyclopedia.

4.2 Image Block Features

The image block descriptors bi, on which the first layer of our model relies (see Section 3), summarizes
edges and color statistics in the following manner.

Color information is represented through a NC-bin histogram. This histogram relies on a codebook
inferred from k-means clustering of the RGB pixels of the training pictures.

Edge information is represented through uniform Local Binary Pattern (uLBP) histograms. These
histograms summarize texture information through the binary comparison of pixel intensities
between each pixel and its eight neighbors. These features have shown to be effective over
various computer vision tasks, including retrieval [15].

Color and edge histograms are then concatenated into a single block vector. Furthermore, a log-scale
is adopted in the histograms, i.e. each pixels count c is replaced by log(1 + c), since such non-linear
scalings have already shown to be advantageous in previous work [16, 13].

5 Experiments and Results

This section first describes the experimental setup and then discusses the results.
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Table 1: Query Set Statistics.

Qtrain Qvalid Qtest

Number of queries 7,221 1,962 2,241

Avg. # of rel. pic. per q. 5.33 2.44 2.37

Vocabulary size 179

Avg. # of words per query 2.78 2.51 2.51

5.1 Experimental Setup

The experiments presented in this section have been performed over the Corel dataset according to
the setup defined in [5]. This setup has been widely used in the image retrieval community [3, 2, 4]
and has become a kind of benchmark protocol for image retrieval. The data used consist of 4, 500
development pictures and 500 test pictures. The size of each picture is either 384× 256 or 256× 384.
We further split the development set into a 4, 000-picture training set and a 500-picture validation
set. This hence leads to three picture sets, Ptrain, Pvalid and Ptest. Each picture is further labeled
with a caption relying on a 179-word vocabulary. These captions have been used for two purposes:
for the definition of relevance assessments (i.e. we considered a picture to be relevant to a query q if
its caption contained all query terms as explained in [2]) and for text − ǫ training (in this case, we
used inner product of BOW vector as F text function, see equation (4)).

The queries, Qtrain, Qvalid and Qtest, used for training, validation and evaluation correspond to
all subsets of the 179 vocabulary words for which there is at least one relevant picture within the
training, validation or test pictures respectively. Table 1 summarizes query set statistics. The three
query/picture datasets (Qtrain, Ptrain), (Qvalid, Pvalid) and (Qtest, Ptest) have been respectively used
to train the model (i.e. select the parameters that minimize the loss L), to select the model hyperpa-
rameters (i.e. the learning rate λ and the number of hidden units N1, N2) and to perform evaluation.
For this evaluation, BBNN performance is measured with precision at top 10 (P10) and average pre-
cision (AvgP), the standard measures for information retrieval benchmarks [13]. These measures are
complementary and evaluate different retrieval scenarios: P10 focuses on the first positions of the
ranking, as the user of a web search engine would do, while AvgP focuses on the whole ranking, as an
illustrator requiring all pictures about a specific theme would do. For any query, P10 measures the
precision within top 10 positions (i.e. the percentage of relevant pictures within the 10 top-ranked
pictures), while AvgP corresponds to the average of precision measured at each position where a rel-
evant picture appears. Both measures have been averaged over the whole query set. BBNN has then
been compared with the alternative models CMRM, PLSA and PAMIR which have been evaluated
according to the same setup, as explained in [2].

Regarding picture preprocessing, 64 × 64 square blocks have been extracted every 32 pixels hor-
izontally and vertically, leading to 77 blocks per picture. The size has been chosen as a trade-off
between obtaining rich block statistics (i.e. having large blocks with many pixels) and extracting local
patterns from the image (i.e. having many small blocks). The overlap of 32 pixels has been selected
such that all pixels belong to the same number of blocks, which avoids the predominance of pixels
located at the block borders. Concerning the color codebook size, we defined NC = 50 which allows a
perceptually good picture reconstruction while keeping the block histogram size reasonable. Although
it would be more appropriate to select all these parameters through cross-validation, these a-priori
choices already led to promising results, as reported in the next section.

5.2 Results

Table 2 reports the results obtained over the test queries. BBNN outperforms all other evaluated
techniques for both measures. For AvgP, the relative improvement over CMRM, PLSA and PAMIR
is respectively +78%, +57% and +21%. For P10, BBNN reaches 10.2%, which means that, on
average, ∼ 1 relevant picture appears within the top 10 positions. This number corresponds to good
performance considering the low number of relevant pictures per query (2.37 on average, see Table
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Table 2: P10 and mean average precision (%) over test queries.

CMRM PLSA PAMIR BBNN

P10 5.8 7.1 8.8 10.2

AvgP 14.7 16.7 21.6 26.2

Table 3: P10 and mean average precision (%) over single-word test queries.

CMRM PLSA PAMIR BBNN

P10 17.8 21.3 25.3 28.5

AvgP 19.2 24.5 30.7 35.0

1). It fact, P10 cannot exceed 20.2% over Corel evaluation queries. In order to check whether the
improvements observed for P10 and AvgP on the whole query set could be due to a few queries, we
further compared BBNN results to those of the other models according to the Wilcoxon signed rank
test [17]. The test rejected this hypothesis with 95% confidence for all models and both measures,
which is indicated by bold numbers in the table. This means that BBNN consistently outperforms
the alternative approaches on the test query set.

The results reported in Table 2 outline the effectiveness of discriminative approaches (PAMIR
and BBNN) which both outperform the generative alternative (CMRM and PLSA). This shows the
appropriateness of the selected loss function (3) for image retrieval problems. This outcome is in
agreement with the text retrieval literature that recently reported good results with models relying
on similar criteria [10, 16, 11].

As mentioned above, a difference in performance is also observed between the two discriminative
models: BBNN is reported to outperform PAMIR (26.2% vs 21.6% AvgP). Since both models rely
on the optimization of the same loss function, the observed difference is certainly due to the param-
eterization of the models. On one hand, PAMIR takes as input a bag-of-visterms representation of
images, this representation being inferred from local descriptor through unsupervised clustering [2].
On the other hand, BBNN formulates the problem of representing images from local descriptors and
the image retrieval task in a single integrated framework (see Section 3). This joint formulation al-
lows the identification of a problem-specific image representation, which seems more effective than the
bag-of-visterms representation.

Since several studies report results only for single word queries (e.g. [4, 5]), we also trained and
evaluated the model over the subset of our train and test queries containing only 1 word. The results
of this experiments are reported in Table 3. This evaluation further confirms the advantage of BBNN
which yields a significant improvement is this case also. It should be noted that the difference observed
between Table 2 and Table 3 does not mean that the retrieval models are more adapted to single-word
queries: it only reflects the fact that single-word queries correspond to an easier retrieval problem
(the average number of relevant documents per query is 2.4 for the whole Qtest set and 9.4 for its
single-word query subset).

Overall, the results of both retrieval experiments confirm the advantage of supervised feature
extraction that has already been observed with CNN over other tasks, such as classification or detec-
tion [8, 9].

6 Conclusions

We have introduced a discriminative model for the retrieval of images from text queries. This model
relies on a neural network architecture inspired from convolutional neural networks [8]. The proposed
network, Block-Based Neural Network (BBNN), formulates the identification of global image features
from local block descriptors and the retrieval of images from such features as a joint problem. This
approach is shown to be effective over the benchmark Corel dataset [5]. In particular, BBNN is
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reported to outperform both generative and discriminative state-of-the-art alternatives. For instance,
the mean average precision over Corel test queries has been improved by 21% relative compared to
the second best model PAMIR [2] (26.2% vs 21.6%). These results are promising and need to be
confirmed over other datasets. It could also be interesting to extend the BBNN approach such that
it could be applied to other retrieval problems, such as video retrieval.
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