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Abstract. We describe a new method for phoneme sequence recognition given a speech ut-
terance. In contrast to HMM-based approaches, our method uses a kernel-based discriminative
training procedure in which the learning process is tailored to the goal of minimizing the Leven-
shtein distance between the predicted phoneme sequence and the correct sequence. The phoneme
sequence predictor is devised by mapping the speech utterance along with a proposed phoneme
sequence to a vector-space endowed with an inner-product that is realized by a Mercer kernel.
Building on large margin techniques for predicting whole sequences, we are able to devise a learn-
ing algorithm which distills to separating the correct phoneme sequence from all other sequences.
We describe an iterative algorithm for learning the phoneme sequence recognizer and further de-
scribe an efficient implementation of it. We present initial encouraging experimental results with
the TIMIT and compare the proposed method to an HMM-based approach.
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1 Introduction

Most previous work on phoneme sequence recognition has focused on Hidden Markov Models (HMM).
See for example [10, 7, 2] and the references therein. Despite their popularity, HMM-based approaches
have several drawbacks such as convergence of the EM procedure to local maximum and overfitting
effects due to the large number of parameters. Moreover, HMMs do not faithfully reflect the underlying
structure of speech signals as they assume conditional independence of observations given the state
sequence [11] and often require uncorrelated acoustic features [18]. Another problem with HMMs is
that they do not directly address discriminative tasks. In particular, for the task of phoneme sequence
prediction, HMMs as well as other generative models, are not trained to minimize the Levenshtein
distance between the model-based predicted phoneme sequence and the correct one.

In this report we propose an alternative approach for phoneme sequence recognition that builds
upon recent work on discriminative supervised learning and overcome the inherent problems of the
HMM approaches. The advantage of discriminative learning algorithms stems from the fact that the
objective function used during the learning phase is tightly coupled with the decision task one needs
to perform. In addition, there is both theoretical and empirical evidence that discriminative learning
algorithms are likely to outperform generative models for the same task (see for instance [17, 5]). One
of the main goals of this work is to extend the notion of discriminative learning to the complex task
of phoneme sequence prediction.

Our proposed method is based on recent advances in kernel machines and large margin classifiers
for sequences [15, 14], which in turn build on the pioneering work of Vapnik and colleagues [17, 5].
The phoneme sequence recognizer we devise is based on mapping the speech signal along with the
target phoneme sequence into a vector-space endowed with an inner-product that is defined by a
kernel operator. One of the well-known discriminative learning algorithms is the support vector
machine (SVM), which has already been successfully applied in speech applications [8, 13]. Building
on techniques used for learning SVMs, our phoneme sequence recognizer distills to a classifier in this
vector-space which is aimed at separating correct phoneme sequences from incorrect ones. The classical
SVM algorithm is designed for simple decision tasks such as binary classification and regression.
Hence, its exploitation in speech systems so far has also been restricted to simple decision tasks such
as phoneme classification. The phoneme sequence recognition problem is more complex, since we
need to predict a whole sequence rather than a single number. Previous kernel machine methods for
sequence prediction [15, 16] introduce optimization problems which require long run-time and high
memory resources, and are thus problematic for the large datasets that are typically encountered in
speech processing. We propose an alternative approach which uses an efficient iterative algorithm for
learning a discriminative phoneme sequence predictor by traversing the training set a single time.

This report is organized as follows. In Sec. 2 we formally introduce the phoneme sequence recog-
nition problem. Next, our specific learning method is described in Sec. 3. Our method is based on
non-linear phoneme recognition function using Mercer kernels. A specific kernel for our task is pre-
sented in Sec. 4. We present preliminary experimental results in Sec. 5 and conclude with a discussion
in Sec. 6.

2 Problem Setting

In the problem of phoneme sequence recognition, we are given a speech utterance and our goal is
to predict the phoneme sequence corresponding to it. We represent a speech signal as a sequence of
acoustic feature-vectors X = (xy,...,Xr), where x; € R? for all 1 <t <T. We denote the domain
of the acoustic feature-vectors by X ¢ R?. Each utterance corresponds to a sequence of phoneme
symbols. Formally, we denote each phoneme symbol by p € P, where P is a set of phoneme symbols,
and we denote the sequence of phoneme symbols by p = (p1,...,px). Furthermore, we denote by
sk € N the start time of phoneme py, (in frame units) and we denote by § = (s1, ..., sk ) the sequence of
all phoneme start-times. Naturally, the length of the speech signal and hence the number of phonemes
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varies from one utterance to another and thus 7" and K are not fixed. We denote by P* (and similarly
X* and N*) the set of all finite-length sequences over P. Our goal is to learn a function f that predicts
the correct phoneme sequence given an acoustic sequence. That is, f is a function from A™* to the set
of finite-length sequences over the domain of phoneme symbols, P*. We also refer to f as a phoneme
sequence recognizer or predictor.

Previous work typically employed HMMs for phoneme recognition. In HMMs, we assume that the
speech signal X is generated from a phoneme sequence p aligned by a start time sequence s according to
probability density function Pr(x,p, $) = Pr(x|p, §) Pr(5|p) Pr(p). The maximum a posteriori (MAP)
prediction of the phoneme sequence is

P =arg max max |log Pr(x|p, 5) +log Pr(5|p) +log Pr(p)|. (1)
P S

The likelihood value Pr(X|p, 5) is often referred to as the acoustic model, Pr(3|p) is referred to as the
phoneme duration model, and Pr(p) is termed the language model. To facilitate efficient calculation
of 7/, practical generative models assume that the probability functions may be further decomposed
into basic probability functions. It is often assumed that p and s generate a sequence of hidden states
d = (q1,--.,97), where each ¢; is in a predefined set of hidden states, Q, and the likelihood of the
speech utterance given ¢ is

T T
log Pr(|g) = > logPr(xi|q:) + »_ log Pr(qilge—1) - (2)

t=1 t=2

These simplifying assumptions lead to a model which is quite inadequate for the purpose of generating
natural speech utterances. Nonetheless, the likelihood value Pr(X|7) is used as an assessment for the
quality of the phoneme sequence, p. The learning phase of the HMM aims at determining the basic
probability functions from a training set of examples. The learning objective is to estimate the
functions Pr(x:|q:) and Pr(g:|q:—1) so as to maximize the likelihood of the training set. Given these
functions, the prediction p’ is calculated in the so-called inference phase which can be performed
efficiently using dynamic programming.

The ultimate goal of the phoneme sequence prediction is usually to minimize the Levenshtein
distance between the predicted sequence and the correct one. The HMM, however, tries to maximize
the likelihood of the parameters and there is no clear connection between the parameters’ likelihood
and the Levenshtein distance goal. Throughout this report, we denote by ~(p,p’) the Levenshtein
distance between the predicted phoneme sequence p’ and the true phoneme sequence p. In the next
section we present an algorithm which directly aims at minimizing the Levenshtein distance between
the predicted phoneme sequence and the correct phoneme sequence.

3 The Learning Algorithm

In this section we describe a discriminative supervised learning algorithm for learning a phoneme
sequence recognizer f from a training set of examples. Each example in the training set is composed
of an acoustic signal X, a sequence of phonemes, p, and a sequence of phoneme start-times, §.

Our construction is based on a predefined set of feature functions {¢, };?:1, each of which takes
the form ¢; : X* x (P x N)* — R. Thus, the input of each function is an acoustic representation, X,
together with a candidate phoneme symbol sequence p and a candidate phoneme start time sequence
5. Each feature function returns a scalar which, intuitively, represents the confidence in the suggested
phoneme sequence. Similarly to HMMs, each feature function captures a local matching between
the speech utterance and the suggested phoneme sequence. For example, one feature function can
sum the number of times phoneme p comes after phoneme p’, while other feature functions may
extract properties of each acoustic feature vector x; provided that phoneme p pronounced at time t¢.
Those feature functions are reminiscent of the local probabilistic models appearing in Eq. (2). The
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description of the concrete form of each feature function is differed to Sec. 4. For brevity, we denote
by ¢(X,p,5) the vector whose jth element is ¢;(X,p, 5).

Recall that our goal is to learn a phoneme sequence recognizer f, which takes as input a sequence
of acoustic features x and returns a sequence of phoneme symbols p. The form of the function f we
use is

f(%) = argmax max w-@(X,p,5) , (3)

where w € R" is a vector of importance weights that should be learned. In words, f returns a
suggestion for a phoneme sequence by maximizing a weighted sum of the scores returned by the
feature functions {¢;}. Learning the weight vector w is analogous to the estimation of the parameters
of the local probability functions in HMMs (Eq. (2)). Our approach, however, does not require w
to take a probabilistic form. The maximization defined by Eq. (3) is over an exponentially large
number of all possible phoneme sequences. Nevertheless, as in HMMs, if each feature function, ¢;, is
decomposable, the optimization in Eq. (3) can be efficiently calculated using a dynamic programming
procedure.

We now describe a simple iterative algorithm for learning the weight vector w. The algorithm
receives as input a training set S = {(X1,P1,51),- .-, (Xm,Pm, m)} of examples. Initially we set
w = 0. At each iteration the algorithm updates w according to the ith example in S as we now
describe. Denote by w;_1 the value of the weight vector before the ith iteration. Let (p}, 5;) be the
predicted phoneme sequence for the ith example according to w;_1,

(7, 5) = argmax Wi-1 - $(%i,p,5) - (4)
We now observe the Levenshtein distance, v(p;, p;), between the predicted phoneme sequence p); and
the correct phoneme sequence p;. If y(p;, p;) is smaller than a predefined constant, 7y, then we refer to
our prediction as a correct prediction and thus keep the weight vector intact, w; = w;_;. Otherwise,
we would like to update the weight vector w so that the weighted score of the correct phoneme
sequence, w - ¢(X;, Pi, 8;), increases while the weighted score of the (incorrectly) predicted phoneme
sequence, w - ¢(X;, P, 8), decreases. This requirement is met by using the following update rule

Wi =W;—1 + a;Ag; , (5)

where A, = ¢(Xq,Pi,8:) — (X4, D}, 5;). The value of the scalar «; is based on the Levenshtein
distance (p;, p;), the different scores that p; and p} received according to w;_1, and a parameter C.
Formally,

oo, D) s 8,01} o

[aAl

The parameter C' serves as a complexity-accuracy trade-off parameter as in the SVM algorithm
(see [5]).

The specific definition of a; that we employ is based on an ongoing work on online learning
algorithms appearing in [4, 14, 9]. These papers demonstrated that, under some mild technical
conditions, the cumulative Levenshtein distance of the iterative procedure, >\, v(p;, p}), is likely to
be small. Moreover, it can be shown [1] that if the cumulative Levenshtein distance of the iterative
procedure is small, there exists at least one weight vector among the vectors {wi,...,w,,} which
attains small averaged Levenshtein distance on unseen examples as well. To find this weight vector
we simply calculate the averaged Levenshtein distance attained by each of the weight vectors on a
validation set. A pseudo-code of our algorithm is given in Fig. 1.

To conclude this section, we extend the family of linear phoneme sequence recognizers given in
Eq. (3) to non-linear recognition functions. This extension is based on Mercer kernels often used in
SVM algorithms [17]. Recall that the update rule of the algorithm is w; = w;_1 + @;A¢,; and that
the initial weight vector is wg = 0. Thus, w; can be rewritten as, w; = Z;Zl ajA¢; and f can be
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Input: training set S = {(X;, pi,5:)}i~1 ; validation set Svai = {(Xi, Ps, 5) }i? 5
parameter C'

Initialize: wo =0
Fori=1,....m
Predict: (p},5;) = arg n%agx w1 d(Xs, D, 5)
Set: Ag; = ¢(%i, pi, 5:) — d(Xi, Pi, 57)
Set: {(Wi—1;Xi, Pi, 5:) = max{y(p;, ;) — Wi—1 - A¢p;, 0}
If 6(Wi—1;%4,D4,5:) >0

. L(Wi—1;%4, Di Ez)}
Set: o; = mm{C , —— s
A, [I?

Update: w; =w;_1+a;-Ag,

Output: The weight vector w* which achieves best performance on a validation

set Syal:
Mvyal
w* = arg o min , Z 'Y(ﬁj?f(ij))
wWE{W1,..., Wi N
j=1

Figure 1: An iterative algorithm.

rewritten as

fx) = aIgMax max Za] (Ad) - P(x,p,§ )) . (7)

j=1

By replacing the inner-product in Eq. (7) with a general kernel operator K(,-) that satisfies Mercer’s
conditions [17], we obtain a non-linear phoneme recognition function. It is easy to verify that the
definition of «; given in Eq. (6) can also be rewritten using the kernel operator.

4 Non-Linear Feature Functions

In this section we describe a specific set of feature functions {¢,}. As mentioned in the previous section,
we aim at designing non-linear phoneme sequence recognizers using Mercer kernels. Therefore, rather
than describing the feature functions ¢; we describe a kernel operator which calculates implicitly the
inner-product ¢(X,p, 5) - (X', 7', ). To simplify our notation we denote by z the triplet (X,p, 5) and
similarly z’ denotes (X',p’,5"). The kernel operators K(z,z') we devise can be written as a weighted
sum of three kernel operators K(z,z') = Z?:1 B:K;(z,2"), where (; are positive parameters. In the
following we describe the three kernel operators we use.

The first kernel operator, K1, is reminiscent of the acoustic model appears in HMMs. First, for
each phoneme p € P, let T,,(z) be the set of all frame times in which the phoneme p is uttered. That
is, Tp(z) = {t : 3k, pr =p A sp <t < sp41}. Using this definition, the first kernel operator is

defined to be
T TS ()
2 )

PEP teT,(z) TET,(

where o is a predefined constant.

Recall that the inner—product of Aqb with ¢(X,p,3) in Eq. (7) is replaced by K(z;,z) — K(z}, z),
where z; = (X;,p:,5) and z, = (X},p,,5,). Since K is the sum of Ky,Kq, and K3 we get that,
K(zi,z) — K(z},2z) = Z?:l B; (IC (zi,2) — IC;(2},2)). We would like to note in passing that the term
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K1(z;,2z) — K1(2},2z) can be rewritten in the following more compact form,

%]
S5 Y sty e (X

PEP 1ET, (2) t=1

where
1 teTy(z;) N téTy(z))
Y(t;ziz;) = § —1 t¢T,(z:) N teTy(z)
0 otherwise

In particular, for all frames x;. such that z; and z; agree on the uttered phoneme, the value of
¥ (t;2;,2}) is zero, which means that frame x; ; does not effect the prediction.

The second kernel operator Ky is reminiscent of a phoneme duration model and is thus oblivious
to the speech signal itself and merely examines the duration of each phoneme. Let D denote a set of
predefined thresholds. For each p € P and d € D let N, 4(z) denote the number of times the phoneme
p appeared in p while its duration was at least d, that is, Np, q(z) = {k : pr =p A (Sk+1 — sk) > d}|.
Using this notation, Ky is defined to be

> Npa(z) Nya(#)

pEP deD

The last kernel operator K3 is reminiscent of a phoneme transition model. Let A(p’,p) be an
estimated transition probability matrix from phoneme p’ to phoneme p. Additionally, let © be a set
of threshold values. For each 8 € © let Ny(z) be the number of times we switch from phoneme pg_;
to phoneme py, such that A(pg_1,px) is at least 6, that is, Ny(z) = [{k : A(px—1,pr) > 0}|. Using this
notation, K3 is defined to be

Z No(z) No(z')

0c©

We conclude this section with a brief discussion on the practical evaluation of the
function f.  Recall that calculating f requires solving the optimization problem f(x) =
arg maxp maxs Z L, (K(z,2) — K(z],2)). A direct search for the maximizer is not feasible since
the number of posmble phoneme sequences is exponential in the length of the sequence. Fortunately,
the kernel operator we have presented is decomposable and thus the best phoneme sequence can
be found in polynomial time using dynamic programming (similarly to the Viterbi procedure often
implemented in HMMs [12]).

5 Experimental Results

To validate the effectiveness of the proposed approach we performed experiments with the TIMIT cor-
pus. All the experiments described here have followed the same methodology. We divided the training
portion of TIMIT (excluding the SA1 and SA2 utterances) into two disjoint parts containing 3600 and
96 utterances. The first part is used as a training set and the second part is used as a validation set.
Mel-frequency cepstrum coefficients (MFCC) along with their first and the second derivatives were
extracted from the speech waveform in a standard way along with cepstral mean subtraction (CMS).
Leading and trailing silences from each utterance were removed. The TIMIT original phoneme set
of 61 phonemes was mapped to a 39 phoneme set as proposed by [10]. Performance was evaluated
over the TIMIT core test set by calculating the Levenshtein distance between the predicted phoneme
sequence and the correct one.

We applied our method as discussed in Sec. 3 and Sec. 4 where 02 = 6, C = 80, 3 = {1,0.02,0.02},
D = {5,10,15,...,40} and © = {0.1,0.2,...,0.9}. We compared the results of our method to the
HMM approach, where each phoneme was represented by a simple left-to-right HMM of 5 emitting
states with 40 diagonal Gaussians. These models were enrolled as follows: first the HMMs were
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Correct Accuracy Ins. Del. Sub.
Kernel-based 62.6 41.8 20.8 3.7 33.7
HMM 62.7 59.1 3.6 10.5 26.8

Table 1: Phoneme recognition results comparing our kernel-based discriminative algorithm versus
HMM.

initialized using K-means, and then enrolled independently using EM. The second step, often called
embedded training, re-enrolls all the models by relaxing the segmentation constraints using a forced
alignment. Minimum values of the variances for each Gaussian were set to 20% of the global variance
of the data. All HMM experiments were done using the Torch package [3]. All hyper-parameters
including number of states, number of Gaussians per state, variance flooring factor, were tuned us-
ing the validation set. The overall results are given in Table 1. We report the number of insertions
(Ins.), deletions (Del.) and substitutions (Sub.), as calculated by the Levenshtein distance. The Lev-
enshtein distance is defined as the sum of insertions, deletions, and substitutions. Accuracy stands
for 100% minus the Levenshtein distance and Correct stands for Accuracy plus insertions. As can
be seen, the HMM method outperforms our method in terms of accuracy, mainly due to the high
level of insertions of our method, suggesting that a better duration model should be explored. Nev-
ertheless, we believe that the potential of our method is larger than the results reported and we
discuss some possible improvements in the next section. Source code of our method can be found in
http://www.cs.huji.ac.il/" jkeshet/.

6 Discussion

To date, the most successful phoneme sequence recognizers have been based on HMMs. In this report,
we propose an alternative learning scheme for phoneme recognition which is based on discriminative
supervised learning and Mercer kernels. The work presented in this report is part of an ongoing
research trying to apply discriminative kernel methods to speech processing problems [8, 6, 9]. So
far, the experimental results we obtained with our method for the task of phoneme recognition are
still inferior to state-of-the-art results obtained by HMMs. However, while there has been extensive
continuous effort on using HMMs for phoneme sequence recognition, our method is rather innovative
and the choice of features and kernel operators is by no means comprehensive. We intend to utilize
the full power of kernel methods for phoneme recognition by experimenting with additional features
and kernels for our task.
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