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SUMMARY: This poster presents results obtained
from experiments of driving a brain-actuated simulated
wheelchair that incorporates the shared-control
intelligence method. The simulated wheelchair is
controlled offline using band power features. The task is
to drive the wheelchair along a corridor avoiding two
obstacles. We have analyzed data from 4 naive subjects
during 25 sessions carried out in two days. To measure
the performance of the brain-actuated wheelchair we
have compared the final position of the wheelchair with
the end point of the desired trajectory. The experiments
show that the incorporation of a higher intelligence
level in the control device significantly helps the subject
to drive the robot device.

INTRODUCTION

Recent experiments have shown the possibility of using
the brain electrical activity to directly control the
movement of robots or prosthetic devices in real time
[1]. In order to provide a more practical environment for
the subject to use the BCI for control, there is a need to
have an adaptive shared autonomy between two
intelligent agents—the human user and the robot—so
that the user only conveys intents that the robot
performs autonomously [2]. Although the initial brain-
actuated robot had already some form of cooperative
control, shared autonomy is a more principled and
flexible framework.

METHODS

In this paper, the experiment protocol is similar to that
described in [3]. In order to control the simulated
wheelchair, the classifier embedded in the BCI is fed
with the power of the frequency band 8-14 Hz from 10
scalp EEG electrodes and it sent its output every 0.5 s to
the robot. The simulated wheelchair has two levels of
intelligence, namely AO (it allows the wheelchair to
detect obstacles and stop before colliding) and Al (it
detects obstacles and avoids them).

The task is to drive the wheelchair along a corridor
avoiding two obstacles (Figure 1). We have analyzed
data from 4 naive subjects during 25 sessions carried
out in two days. The classifier embedded in the BCI was

trained with data from 5 consecutive sessions and tested
over the next 5 consecutive sessions. To measure the
performance of the brain-actuated wheelchair we have
compared the final position of the wheelchair with the
end point of the desired trajectory.
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Figure 1: Example of trajectories in the simulated
environment. The starting point for the wheelchair is at
the bottom left in front of the obstacle. The axes give
the coordinates of the simulated environment in cm.

RESULTS

Figure 1 shows a few trajectories obtained from the
experiments. Using intelligence level A0, most of the
time, the wheelchair stops moving whenever it comes
across any obstacles, causing it to stay near the starting
point as in the dashed line path (labeled 1) in Figure 1.
The solid line (labeled 4) is the desired trajectory and
the end point of this trajectory is used as a reference for
comparison with other end points reached by the brain-
actuated wheelchair for each session and subject. The
dotted line (labeled 3) is an example of a trajectory
reaching the target. Distance from starting point to the
target is 1262 cm. The dotted-dash line (labeled 2)
shows the wheelchair turning to the opposite direction
further away from the starting point. If the simulated
wheelchair ends within 50 cm from the target, it is
considered the task has been achieved.

Results for the 4 subjects are tested with the simulator
using intelligence level Al as shown in the graphs of



Figure 2 to 5. In these figures, distances of more than
1262 cm correspond to trajectories where the subject
sent a series of wrong mental commands at the
beginning and the wheelchair turned away from the
target as in the case of trajectory 2 in Figure 1.

Figure 6 shows the comparison between trajectories
generated with online learning [4] and without online
learning for Subject 1.
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Figure 2: Subject 1 hits the target in 16 out of 25
sessions with an average distance to target of 355 cm.

Subject 2
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'Figure 3: Subject 2 hits the target in 9 out of 25 sessions
with an average distance to target of 769 cm.
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Figure 4: Subject 3 hits the target in 10 out of 25
sessions with an average distance to target of 740 cm.
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Figure 5: Subject 4 hits the target in 11 out of 25
sessions with an average distance to target of 573 cm.

Comparison with Online Learning
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Figure 6: Comparison of online learning results with
data without online learning for Subject 1. Average
distance to target for online learning is 344 cm.

DISCUSSION

Despite the fact that the subjects’ performance are quite
far from optimal—because among other reason, they are
novel— the results show that the incorporation of
shared autonomy with Al intelligence level allows
subjects to achieve the task a considerable number of
times. This is not the case when the simulated
wheelchair has only AO intelligence level, when the
target is never reached. It is also worth noting that the
performance of Subject 1 and Subject 4 increased at the
last few sessions while Subject 3 performs best in the
beginning of the sessions and Subject 2 is able to reach
the target more frequent in the middle of the sessions.
Finally, as expected, the incorporation of online
learning [4], improves the performance.

CONCLUSION

This paper shows the importance of having a higher
intelligence level in the wheelchair (or control device)
to help the subject achieve the task with a high
probability from the wvery first trial, although
performance between subjects varies across sessions.
For future work, we plan to estimate the subject’s
intention using a probabilistic framework, as in [2], and
to incorporate learning capabilities in the robot
controller to improve the entire brain-actuated device.
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