

I

C
O

M
M

U
N

C
A

T
I

O
N

I
D

I
A

P

Rue du Simplon 4

IDIAP Research Institute
1920 Martigny − Switzerland

www.idiap.ch

Tel: +41 27 721 77 11 Email: info@idiap.ch
P.O. Box 592
Fax: +41 27 721 77 12

The Juicer LVCSR Decoder -

User Manual

for Juicer version 0.5.0

Darren Moore
a

IDIAP–Com 06-03

October 26, 2005

a IDIAP Research Institute and Ecole Polytechnique Federale de Lausanne (EPFL),
Martigny, Switzerland

Chapter 1

Introduction

1.1 Overview

Juicer is a decoder for HMM-based large vocabulary speech recognition that uses a weighted finite
state transducer (WFST) representation of the search space. The package consists of a number of
command line utilities: the Juicer decoder itself, along with a number of tools and scripts that are used
to combine the various ASR knowledge sources (language model, pronunciation dictionary, acoustic
models) into a single, optimised WFST that is input to the decoder. The Juicer package is distributed
under a BSD license (see Appendix C).

The major advantages of the WFST-based approach is the decoupling of the decoding network
from the decoding engine, as well as a common representation of the various ASR knowledge sources
allowing standardised techniques to be used for constructing a complete, optimised search space.
These characteristics allow straightforward incorporation of new capabilities, such as decoding with a
custom grammar or non-standard lexical constraints, without requiring modification of the decoding
engine.

An overview of Juicer is illustrated in Figure 1.1.
This document contains detailed instructions for use. Those wishing to attempt a “quick start”

can skip to Chapter 4 and examine the example systems and decoding configurations provided.

1.2 Current capabilities� Language Modelling

– simple word-loop with start/end silence

– word-pair grammar

– N -gram (arbitrary N , subject to memory limitations - see Chapter 5)� Acoustic Modelling

– monophones

– word-internal n-phones (tri/quin/...)

– cross-word triphones

– HTK MMF file format support� Dictionary

– multiple pronunciations of same word

1

2 IDIAP–Com 06-03

C

Construction

gramgen

Lexicon WFST
Construction

lexgen

Context Dep.
Phoneme WFST

Construction

cdgen

Decoding
Engine

juicer

Integrated
WFST Network

Sources
ASR Knowledge

Language Model
Dictionary
Acoustic Models
Phoneme lists

Input Speech Files
(Features/Posteriors)

L

build−wfst

Integrated WFST
Construction

(uses 3rd party
WFST utilities)

GGrammar WFST

Figure 1.1: High level architecture of the Juicer decoding package

IDIAP–Com 06-03 3

– pronunciation probabilities� Decoding Search

– Flexible WFST-based decoder (decoding network independent of decoding engine imple-
mentation)

– Viterbi search

– Beam-search pruning (global, model-end)

– Histogram pruning

– Lattice generation

– Word-level or model-level output� Other

– Hybrid HMM/ANN decoding supported (using LNA-format posterior files).

Chapter 2

Installation� Copy.

1. Create a directory, <dir>, for juicer (e.g. /home/moore/juicer)

2. cp /home/speech/moore/juicer rel/juicer-0.5.0.tar.gz <dir>� Extract files.

1. cd <dir>

2. tar -xzvf juicer-0.5.0.tar.gz� Build Juicer tools.

1. cd <dir>/code/tools

2. make

3. Try running tools as a test for build success (e.g. ./cdgen -h)� Build MIT FST toolkit.

1. cd <dir>/tools/mitfst-1.0.0/src/lib

2. make

3. cd ../tools

4. make

5. Try running tools as a test for build success (e.g. ../../bin/fst info)� Obtain AT&T FSM toolkit version 4.0.

1. Download from http://www.research.att.com/sw/tools/fsm/

2. Install in a directory, <fsmdir>, of your choice.� Configure juicer environment file.

1. edit <dir>/code/tools/juicer-env.csh

2. modify JUTOOLS path to be absolute path of <dir>/code/tools

3. modify ATTFSMDIR path to be absolute path of <fsmdir>/bin

4

Chapter 3

Instructions for use

Decoding with Juicer involves 3 main steps :

1. Generate 3 individual WFST’s (LM, lexicon, phoneme).

2. Build integrated WFST from individual WFST’s.

3. Run Juicer decoder.

3.1 WFST generation

This section describes the three tools: gramgen, lexgen, and cdgen that are used to transform the
ASR knowledge sources into weighted finite-state transducer representations. The output of each of
these tools is 3 files: an FSM format file [1] containing the WFST itself, along with input and output
symbols files that map from the numerical labels in the FSM file to the relevant string representations
(words, phoneme names, etc).

It is important to maintain consistency in the files and options that are passed to these tools, and
subsequently to the juicer decoder. For example, the lexgen and cdgen tools as well as the juicer

decoder all have a -monoListFName option. The same monophone list file must be passed to all these
tools for correct operation.

One rudimentary check that consistency has been preserved between the gramgen and lexgen tools
is to compare the output symbols file generated with gramgen to the input symbols file generated with
lexgen. These two symbols files should be identical. The same comparison can be done with the
output symbols file from lexgen and the input symbols file from cdgen.

3.1.1 Grammar WFST

The grammar WFST is generated using the gramgen executable, which can be found in the tools
directory after the source code has been successfully built. The purpose of the grammar WFST is to
ensure that sequences of recognised words conform to the grammar or language model.

The command-line help (obtained by executing gramgen -h) is displayed in Figure 3.1. Basically,
the user inputs a dictionary (defining the set of words to recognise), the type of grammar to use, and
depending on the grammar type, a file containing the grammar definition (e.g. an ARPA LM file
when the grammar type is ngram). The tool then outputs a WFST in AT&T FSM format, together
with input and output symbol files.

The tool is capable of producing grammar WFST’s of the following types:� Simple word loop, with sentence marker words at beginning and end.� Word-pair grammar.

5

6 IDIAP–Com 06-03

#
usage: gramgen [options]
#

Lexicon Options:
 −lexFName <string> −> the dictionary filename []
 −sentStartWord <string> −> the name of the dictionary word that will start every sentence []
 −sentEndWord <string> −> the name of the dictionary word that will end every sentence []

Language Model Options:
 −lmFName <string> −> the LM file (in ARPA LM format or BBN word−pair format) []
 −lmScaleFactor <real> −> the factor by which log LM probs are scaled during decoding [1]
 −wordInsPen <real> −> word insertion penalty [0]
 −unkWord <string> −> the name of the unknown word in the LM []

Transducer Options:
 −gramType <string> −> the type of grammar to generate (silwordloopsil,ngram,wordpair) []
 −fsmFName <string> −> the FSM output filename []
 −inSymsFName <string> −> the input symbols output filename []
 −outSymsFName <string> −> the output symbols output filename []
 −genTestSeqs −> generates some test sequences from the grammar transducer just constructed.

Figure 3.1: Command line help message for the gramgen tool.� N-gram language model.

The desired word insertion penalty and language model scaling factor are specified during grammar
WFST construction. These parameters cannot be specified when invoking the decoder.

The gramgen command line options are described in detail in Table 3.1.

Table 3.1: Detailed description of gramgen command line options.

Option Description
-lexFName string Required. The name of the text file containing the pro-

nunciation dictionary.
-sentStartWord string The word in the dictionary that begins every recognised

sentence (e.g. <s>). Note: this option is mandatory for
grammar types silwordloopsil and wordpair.

-sentEndWord string The word in the dictionary that ends every recognised sen-
tence (e.g. </s>). Note: this option is mandatory for gram-
mar types silwordloopsil and wordpair.

-lmFName string The file containing the original grammar specification for
grammar types of ngram and wordpair. N-gram LM files
are expected to be in standard ARPA-MIT format (see Sec-
tion 16.7.1 of [7]). Word pair grammar files are expected to
be in the BBN word pair grammar format as used in the
ARPA Navel Resource Management task. Note: the option
is mandatory for grammar types ngram and wordpair, and
is ignored otherwise.

-lmScaleFactor float All LM probabilities from the original grammar specifica-
tion are converted to natural log, and are then multiplied
by this value. The scaled values are used in the output
WFST. The purpose of this parameter is to bring LM
weights into line with acoustic model output likelihoods
(which are typically grossly under-estimated), and also to
control the importance of the acoustic models relative to
the language model. This option is ignored for grammar
type silwordloopsil. Default value if omitted is 1.0.

IDIAP–Com 06-03 7

Table 3.1: (continued)

Option Description
-wordInsPen float This is a natural log value that is added to each LM prob-

ability (after scaling). The general effect of varying this
parameter is to tradeoff between the insertion and deletion
rates in the final decoder output. Note that the LM scal-
ing factor also affects insertion and deletion rates. Default
value if omitted is 0.0.

-unkWord string This only applies when grammar type is ngram and specifies
the unknown word in the ARPA LM file (e.g. <unk>). All
dictionary words that are not present in the LM are mapped
to the unknown word for the purpose of determining LM
probabilities. Note that an error occurs if there are words
in the LM that are not in the dictionary.

-gramType string Required. This specifies the type of the grammar
that is to be output. Permissible grammar types are
silwordloopsil, ngram, and wordpair.

-fsmFName string Required. The filename of the output grammar WFST
file. This file is in AT&T FSM format [1].

-inSymsFName string Required. The filename of the input-symbols file that
corresponds to the output WFST file. The entries in this
file map from the numeric labels used in the FSM file to
actual word strings.

-outSymsFName string Required. The filename of the output-symbols file that
corresponds to the output WFST file. The entries in this
file map from the numeric labels used in the FSM file to
actual word strings. Note that for all grammar types cur-
rently implemented, the output-symbols file will be identi-
cal to the input-symbols file.

-genTestSeqs When specified, some debug sequences are output using the
WFST after it is constructed, which is useful to confirm its
correctness.

3.1.2 Lexicon transducer

The lexicon transducer is generated using the lexgen tool, which can be found in the tools directory
after the source code has been successfully built. The lexicon transducer maps sequences of mono-
phones (or more precisely, the sub-word units used in the pronunciation dictionary) to sequences of
words. Any weights present in the final WFST are due to probabilities assigned to pronunciations.

The command-line help (obtained by executing lexgen -h) is displayed in Figure 3.2. The lexgen
command line options are described in detail in Table 3.2.

8 IDIAP–Com 06-03

#
usage: lexgen [options]
#

Lexicon Options:
 −lexFName <string> −> the dictionary filename − monophone transcriptions []
 −sentStartWord <string> −> the name of the dictionary word that will start every sentence []
 −sentEndWord <string> −> the name of the dictionary word that will end every sentence []

Context−Independent Phone Options:
 −monoListFName <string> −> the file containing the list of monophones []
 −silMonophone <string> −> the name of the silence phoneme []
 −pauseMonophone <string> −> the name of the pause phoneme []
 −pauseTeeTransProb <real> −> the initial to final state transition probability of the pause model, if addPronu
nsWithEndPause is defined, then this prob becomes the pronun. prob for the base pronun (without pause at end), a
nd 1−(this value) becomes the pronun. prob for the pronun with pause at the end. [0]

Transducer Options:
 −fsmFName <string> −> the FSM output filename []
 −inSymsFName <string> −> the input symbols output filename []
 −outSymsFName <string> −> the output symbols output filename []
 −addPronunsWithEndSil −> indicates that an additional pronunciation with silence monophone at end is added
 for each word.
 −addPronunsWithEndPause −> indicates that an additional pronunciation with pause monophone at end is added f
or each word.

Figure 3.2: Command line help message for the lexgen tool.

Table 3.2: Detailed description of lexgen command line options.

Option Description
-lexFName string Required. The name of the text file containing the

pronunciation dictionary. Each line of this file is in
the standard dictionary format “word(prob) ph1 ph2 ...

phN” where the pronunciation probability, “(prob)”, is
optional. Do not specify multiple pronunciations of the
same word with silence or short-pause phones at the end,
as this is achieved with the -addPronunsWithEndSil and
-addPronunsWithEndPause options described below.

-sentStartWord string The word in the dictionary that begins every recognised
sentence (e.g. <s>). The sentence start word is im-
mune from the effects of the -addPronunsWithEndSil and
-addPronunsWithEndPause options (i.e. no additional pro-
nunciations are added).

-sentEndWord string The word in the dictionary that ends every recognised
sentence (e.g. </s>). The sentence end word is im-
mune from the effects of the -addPronunsWithEndSil and
-addPronunsWithEndPause options (i.e. no additional pro-
nunciations are added).

-monoListFName string Required. The name of a text file containing the complete
list of unique phonemes (one phoneme per line) that are
used in the dictionary, and elsewhere in the system (e.g. to
form context dependent phone names).

-silMonophone string The name of the silence phoneme, which must be
present in the monophone list file. Mandatory if
-addPronunsWithEndSil is specified, ignored otherwise.

-pauseMonophone string The name of the pause phoneme, which must be
present in the monophone list file. Mandatory if
-addPronunsWithEndPause is specified, ignored otherwise.

IDIAP–Com 06-03 9

Table 3.2: (continued)

Option Description
-pauseTeeTransProb float The (non-log) initial-to-final state transition probabil-

ity for the pause model. This is ignored unless
-addPronunsWithEndPause is specified. If a value > 0 is
defined then that value is used as the probability for the
“base” pronunciation (i.e. without silence or pause at the
end), and 1− the value is used as the probability of the
pronunciation with pause at the end. See Section 3.1.2 for
a more detailed discussion about this.

-fsmFName string Required. The filename of the output lexicon WFST file.
This file is in AT&T FSM format.

-inSymsFName string Required. The filename of the input-symbols file that
corresponds to the output WFST file. The entries in this
file map from the numeric labels used in the FSM file to
the names in the monophone list file.

-outSymsFName string Required. The filename of the output-symbols file that
corresponds to the output WFST file. The entries in this
file map from the numeric labels used in the FSM file to
the word strings in the dictionary.

-addPronunsWithEndSil Include an additional pronunciation for each word in the
dictionary with the silence phoneme (specified with the
-silMonophone option) added to the end. The sentence
start word and sentence end word are not affected.

-addPronunsWithEndPause Include an additional pronunciation for each word in the
dictionart with the pause phoneme (specified with the
-pauseMonophone option) added at the end. The sentence
start and sentence end word are not affected. Note that the
-pauseTeeTransProb option affects pronunciation proba-
bilities when this flag is defined.

Dictionary file format

The dictionary/lexicon file is a text file with one entry per line. The format of each line is:

word(prior) ph1 ph2 . . . phN

where (prior) is the optional pronunciation prior probability (non-log), and ph1 ph2 . . . phN are
the sub-word units that define the pronunciation of word. The sub-word units used in the dictionary
are the same sub-word units in the monophone list file that is input to lexgen and other tools. Any
amount of whitespace can be used to separate the fields.

Multiple (different) pronunciations of the same word are permitted. If pronunciation probabilities
are omitted, then a probability of 1.0 is assumed, even in the multiple pronunciation case.

Do not add multiple pronunciations in the dictionary for the same word with additional silence or
pause phones at the end, as this is achieved using the -addPronunsWithEndSil and -addPronunsWithEndPause

options described in Table 3.2.

There is no requirement for the dictionary to be correctly sorted.

10 IDIAP–Com 06-03

Silence handling

Silence at the start and end of utterances is accommodated by adding sentence start and end words
to the dictionary (e.g. <s> and </s>) that contain only the silence monophone in their pronunciation.
The sentence start and sentence end words should match any sentence markers that occur in the
language model. These words are then specified to both the WFST construction tools and to the
decoder using the -sentStartWord and -sentEndWord options. When using this configuration, silence
at the start and end of all utterances is assumed, and the decoder output for each utterance will always
begin with the sentence start word and finish with the sentence end word.

Between-word silence is allowed by defining two pronunciations for each dictionary entry. The first
pronunciation is the one defined in the lexicon file. The second pronunciation is the same as the first,
except with the silence monophone (as specified with the -silMonophone option) added to the end
of the entry. The second pronunciation is not explicitly defined in the lexicon file, but is included
automatically with the -addPronunsWithEndSil option. The sentence start and end words are not
affected by the -addPronunsWithEndSil option. This method assumes that silence occurs only at the
end of words. Appropriate part-words must be added to the dictionary if within-word silence is to be
handled during decoding.

Silence is always treated as context independent. This means that there must be a HMM defined
for the silence monophone. In a cross-word triphone system, the integrated transducer accepts input
sequences such as: sil sil-k+ae k-ae+t ae-t+sil sil 1. In the word-internal n-phone case, where
the “monophones” are in fact the context dependent phonemes used in the dictionary, the integrated
transducer accepts input sequences such as: sil k+ae k-ae+t ae-t sil.

Pause handling

Often it is desirable to model the presence of short pauses between words separately to the modelling of
more general silence conditions. Similar to the handling of silence above, the transducer construction
tools allow a pause monophone to be specified (using the -pauseMonophone option), and an additional
pronunciation with pause at the end can be added automatically for each dictionary entry using the
-addPronunsWithEndPause option with lexgen.

However, usually the HMM for pause (particularly when built using HTK) contains a transition
from the initial non-emitting state to the final non-emitting state (HTK refers to such HMM’s as tee
models). The addition of this pause model to the end of each pronunciation models the presence of
an optional short pause between words.

Juicer cannot decode with HMM’s that contain this initial-final state transition. How-
ever, the optional pause functionality is retained firstly through the addition of the pronunciation
with pause at the end as described above. The probability of the base pronunciation is then set to
be the probability of the initial-final state transition in the original pause model, and the probability
of the base+pause pronunciation is set to be one minus this value. Finally, when acoustic models are
loaded into memory prior to decoding, any initial-final state transition is detected and removed, and
the probabilities of the remaining transitions out of the initial state are renormalised.

Pause is always treated as context independent. If the pause monophone is defined, a corresponding
HMM must exist. In a cross-word triphone system, pause does not break the surrounding context.
This means, for example, that the integrated transducer will accept input sequences such as: “sil
sil-k+ae k-ae+t ae-t+s sp t-s+ae s-ae+t ae-t+sil sil” (corresponding to the word sequence
“<s> cat sat </s>” with a short pause between cat and sat).

1Note that in such cross-word systems where the only context independent phoneme models are silence and (perhaps)
short-pause, this implies that all utterances must begin and end with silence, which further implies that the first
monophone in the sentence start word pronunciation must be silence, and the final monophone in the sentence end word
pronunciation must be silence.

IDIAP–Com 06-03 11

3.1.3 Context-dependent phoneme transducer

The context-dependent phoneme (CD) transducer is generated using the cdgen tool, which can be
found in the tools directory after the source code has been successfully built. The CD transducer
maps sequences of context-dependent phonemes (i.e. sub-word units for which we have a HMM) to
sequences of monophones (the sub-word units used in the pronunciation dictionary).

Both GMM-based and ANN-based acoustic models are supported. The command-line help (ob-
tained by executing cdgen -h) is displayed in Figure 3.3.

GMM-based acoustic models

For GMM-based systems, acoustic models are required to be stored in a single HTK MMF (ascii)
formatted file (see Chapter 7 of [7] for MMF format specification). State-level and mixture-level tying
within the MMF file (using ~s and ~m macros) are both supported. Transition matrix tying (using ˜t
is also supported. Global options can be specified using the ˜o macro. Any ˜v macros will be ignored
(e.g. the ~v macro for the variance flooring vector, usually present in MMF files produced by HTK
tools, will be ignored). All other macros are not recognised by the parser, and will cause an error.
Decoder input files for each utterance are HTK-format feature files.

Model tying is achieved in the same way as HTK by using a tied HMM list file. The physical
model names in the tied list file must match the HMM definitions in the MMF file. The tied list file
must be specified even if no model tying is used (in which case it will contain a flat list of physical
model names).

Three variants of GMM-based acoustic models are supported, which impacts the way sub-word
units are used in the dictionary, and the way they are specified in the monophone and tied list files.

Monophones. In this case the sub-word units in the dictionary should be monophones. The mono-
phone list file contains a unique list of the monophones used in the dictionary (as well as the
silence and pause monophones if applicable). The tied list file contains a list of the (possibly
tied) monophone HMMs in the MMF file.

Word-internal (WI) n-phones. The sub-word units used in the dictionary should be WI n-phones
(triphones, quinphones, ...). The monophone list file contains a unique list of the WI n-phones
in the dictionary (as well as the silence and pause monophones if applicable). The tied list
file contains a list of the (possibly tied) WI n-phone HMMs in the MMF file. Because context
dependency does not extend across word boundaries, the WI n-phones can be treated as if they
were monophones.

Cross-word triphones. The sub-word units used in the dictionary should be monophones. The
monophone list file contains a unique list of the monophones in the dictionary (as well as the
silence and pause monophones if applicable). The tied list file contains the logical and physical
triphone model names. In this case the -cdSepChars option is required to define the characters
that separate monophones in each triphone name.

ANN-based acoustic models

For hybrid HMM/ANN-based systems, the file for each utterance input by the decoder is assumed
to be a LNA file containing pre-computed monophone posterior probabilities. In this case, the sub-
word units in the dictionary must be monophones. The monophone list file contains the complete
list of monophones, and the ordering of monophones in this file must match the ordering of the
posterior probabilities in each LNA input frame. A priors file, containing the prior probability of each
monophone, must also be specified and the ordering of priors must also match the ordering of the
LNA frame posteriors.

The HMM topology for each monophone model is synthesised. The number of states (including
non-emitting initial and final states) to be used in each monophone HMM is specified using the

12 IDIAP–Com 06-03

#
usage: cdgen [options]
#

Context−Independent Phone Options:
 −monoListFName <string> −> the file containing the list of monophones []
 −silMonophone <string> −> the name of the silence phoneme []
 −pauseMonophone <string> −> the name of the pause phoneme []

Context−Dependent Phone Options:
 −tiedListFName <string> −> the file containing the CD phone tied list []
 −htkModelsFName <string> −> the file containing the acoustic models in HTK MMF format []
 −cdSepChars <string> −> the characters that separate monophones in CD phone names (in order) []
 −cdType <string> −> the type of context−dependency for output WFST (mono,monoann,xwrdtri) [mono]

Hybrid HMM/ANN related options:
 −priorsFName <string> −> the file containing the phone priors []
 −statesPerModel <int> −> the number of states in each HMM used in the hybrid system [0]

Transducer Options:
 −fsmFName <string> −> the FSM output filename []
 −inSymsFName <string> −> the input symbols output filename []
 −outSymsFName <string> −> the output symbols output filename []
 −lexInSymsFName <string> −> the (pre−existing) input symbols filename for the lexicon transducer []
 −genTestSeqs −> generates some test sequences from the CD transducer just constructed.

Figure 3.3: Command line help message for the cdgen tool.

-statesPerModel option. A simple left-to-right HMM is then created for each monophone with 0.5
probability self-loop transitions on each emitting state. The output likelihoods at each frame for
all emitting states in the same monophone model are the same, that is the monophone posterior
probability obtained from the input LNA frame scaled by the corresponding prior.

Table 3.3: Detailed description of cdgen command line options.

Option Description
-monoListFName string Required. The name of a text file containing the complete

list of unique phonemes (one phoneme per line) that are
used in the dictionary, and elsewhere in the system (e.g. to
form context dependent phone names).

-silMonophone string The name of the silence phoneme, which must also be
present in the monophone list file, the tied list file model,
and a model must exist in the HTK MMF file if specified.

-pauseMonophone string The name of the pause phoneme, which must be present in
the monophone list file, the tied list file, and a model must
exist in the HTK MMF file if specified.

-tiedListFName string The name of the file containing the (possibly tied) list of
context-dependent phonemes. This list is in HTK HMM
list format (see sect. 7.4 and fig. 7.12 in [7]), and therefore
allows tying (sharing) of models between phonemes. This
option is mandatory when the CD type is mono or xwrdtri.

-htkModelsFName string The name of the HTK MMF (master macro file) containing
the HMM/GMM definitions. The model names in this file
must match the physical models specified in the tied list
file. This option is mandatory when the CD type is mono

or xwrdtri.

IDIAP–Com 06-03 13

Table 3.3: (continued)

Option Description
-cdSepChars string An ordered string containing the characters used to sep-

arate monophones when constructing context-dependent
phoneme names. For example, the value of this string
should be “-+” for triphones of the form “ax-d+ey”. This
option is mandatory when the CD type is xwrdtri and is
ignored otherwise.

-cdType string Required. The type of CD transducer to be constructed.
Valid types are mono, monoann, and xwrdtri. The mono

type is used for a GMM-based system where the model
names are the same as the sub-word units used in the
pronunciation dictionary (e.g. with monophone or word-
internal triphone models). The monoann type is used for a
hybrid HMM/ANN system, where again the model names
are the same as the sub-word units used in the pronuncia-
tion dictionary. The xwrdtri type is for GMM-based sys-
tems where the pronunciation dictionary is specified using
monophones, but the HMM set has models for triphones,
and the triphonic context dependency extends across word
boundaries.

-ndixt Enables generation of a cross-word triphone transducer that
has a non-deterministic inverse. This transducer will prob-
ably have a smaller number of arcs compared to the de-
fault deterministic inverse version, potentially resulting in
final integrated transducer with fewer arcs. However, the
composition of this transducer with L◦G often requires pro-
hibitive amounts of RAM. This option is ignored unless the
CD type is xwrdtri.

-priorsFName string The name of the file containing phone prior probabilities.
This is only used for when the CD type is monoann. The or-
dering of prior probabilities must match the order of mono-
phone names in the monophone list file. This option is
mandatory when the CD type is monoann, and is ignored
otherwise.

-statesPerModel integer The number of states (including non-emitting initial and fi-
nal states) in each HMM within a hybrid HMM/ANN sys-
tem. For hybrid decoding, left-to-right HMM’s for each
monophone are synthesised, with a 0.5 probability self-loop
transition on each emitting state. All emitting states within
the same model use identical output probability distribu-
tions.

-fsmFName string Required. The filename of the output CD WFST file.
This file is in AT&T FSM format.

-inSymsFName string Required. The filename of the input-symbols file that
corresponds to the output WFST file. The entries in this
file map from the numeric labels used in the FSM file to
the physical model names in the tied list file.

14 IDIAP–Com 06-03

Table 3.3: (continued)

Option Description
-outSymsFName string Required. The filename of the output-symbols file that

corresponds to the output WFST file. The entries in this
file map from the numeric labels used in the FSM file to
the monophone names in the monophone list file.

-lexInSymsFName string Required. The name of the lexicon WFST input symbols
file. This file contains auxiliary symbols that were added to
the lexicon WFST to disambiguate homophones, and these
also need to be added to the CD WFST.

-genTestSeqs When specified, some debug sequences are output using the
WFST after it is constructed, which is useful to confirm its
correctness.

3.2 Integrated WFST construction

The three transducers generated in the previous sections are combined using one of the build-wfst,
build-wfst-attmit or build-wfst-mit scripts located in the tools directory. Note that these scripts
all require the Juicer environment to be configured (i.e. the correctly configured juicer-env file needs
to have been previously source’d).

The build-wfst script calls numerous command-line utilities from AT&T’s FSM toolkit [3, 2] to
firstly optimse the three component transducers, and then to combine them into a deterministic and
minimal integrated transducer. The final integrated transducer maps sequences of context-dependent
phoneme models to sequences of words that satisfy the language model constraints, and is thus ready
for decoding using the Juicer decoder.

The build-wfst-attmit script uses the AT&T FSM toolkit for all WFST operations except
the composition of the lexicon with the grammar transducer. This composition is done using the
fst composelg utility, which is a custom extension of the FST toolkit distributed by MIT. The com-
position algorithm used in the fst composelg utility is slower than the AT&T FSM equivalent, but
is more memory efficient and the composition result is deterministic.

The build-wfst-mit script uses the MIT FST toolkit for all WFST operations, including the
custom fst composelg utility described above.

The command line usage for the build-wfst is (same for build-wfst-mit and built-wfst-attmit):

build-wfst [-of] <Grammar WFST> <Lexicon WFST> <CD phoneme WFST>

The -of option enables the optimisation of the final integrated WFST (i.e. determinisation and
minimisation). This optimisation is disabled by default because when the final WFST is large (e.g.
in systems that use N-gram LM’s), these operations often fail due to lack of RAM.

Each WFST filename must take the form prefix.fsm, where prefix includes the pathname of the
file. The script also expects that the input and output symbols files corresponding to each FSM file
have names prefix.insyms and prefix.outsyms respectively. All files are generated automatically
by the gramgen, lexgen, and cdgen tools, but care must be taken so that these tools output files with
names that satisfy the above requirements.

The build-wfst script outputs the integrated WFST to the final.fsm file in the same directory
as the input grammar WFST. The input and output symbols are output in the same directory to
final.insyms and final.outsyms respectively. Note that the input symbols file for the integrated
WFST is the same as the input symbols file for the context-dependent phone transducer, and the

IDIAP–Com 06-03 15

output symbols file for the integrated WFST is the same as the output symbols file for the grammar
transducer.

3.3 Decoding

The integrated WFST constructed in Section 3.2 is a phoneme-level (HMM-level) network that defines
the search space of the decoder. Each path through this network is guaranteed to be a correct sequence
of context dependent phonemes corresponding to a sequence of words that obeys constraints imposed
by the language model. The weights in the integrated transducer are a combination of language model
probabilities (scaled and offset by the LM scaling factor and word insertion penalty respectively), any
pronunciation probabilities defined in the lexicon, as well as the pronunciation weights applied to
implement optional short pause functionality.

The Juicer decoder dynamically expands the model-level transducer network into a state-level
network that is suitable for finding the best state-level path subject to both acoustic and language
model constraints. The decoding algorithm implemented within Juicer is a time-synchronous Viterbi
search. Three types of pruning are supported: standard beam-search pruning at both emitting state
and model-end levels, along with histogram pruning at the emitting state level. A more detailed
discussion of pruning, along with WER vs. speed analysis for different pruning configurations on a
20k Wall Street Journal system is included in Appendix A.

The command-line help (obtained by executing juicer -h) is displayed in Figure 3.4. A detailed
description of all juicer options is contained in Table 3.4.

Binary file creation

The HTK MMF file containing HMM definitions in a GMM-based system is often very large (e.g.
> 100MB). The MMF format is also based on a flexible, but relatively complex formal specification,
and juicer uses a grammar parser implemented with bison and flex to correctly parse the MMF
format ASCII files. This parsing (along with the dynamic allocation of (many) related data structures)
is a time-intensive task. The same situation applies to the FSM-format ASCII file containing the final
integrated WFST, which is often hundreds of megabytes in size and takes considerable time to read
from disk into appropriate data structures.

To alleviate this problem, juicer creates and uses binary versions of these two files, which are
serialised versions of the internal data structures. The binary files are much smaller than their ASCII
counterparts, and their serialised format eliminates the need for complicated parsing and large numbers
of dynamic memory allocations.

When juicer is invoked, if binary versions of the MMF file and WFST FSM file do not exist, then
their ASCII counterparts are read from disk, and binary versions are written to disk before decoding
proceeds. The filenames of the binary files are the concatenation of the original ASCII filename with
“.bin” (retaining any path information). If binary versions already exist then the ASCII versions are
ignored, and the MMF HMM definitions and the WFST decoding network are read directly from the
binary version.

The binary file functionality is hard-coded. This means that if the original ASCII versions
of either the MMF file or the transducer FSM file are changed then any existing binary versions of
these files must be removed manually, so that they are recreated at the next invocation of juicer.

Care also needs to be taken in a cluster computing environment. Juicer should be invoked manually
on a single machine to create the binary files before the decoding is launched on the cluster.

16 IDIAP–Com 06-03

#
usage: juicer [options]
#

General Options:
 −logFName <string> −> the name of the log file []
 −framesPerSec <int> −> Number of feature vectors per second (used to output timings in recognised words, and also to calc
ulate RT factor [100]

Vocabulary Options:
 −lexFName <string> −> the dictionary filename − monophone transcriptions []
 −sentStartWord <string> −> the name of the dictionary word that will start every sentence []
 −sentEndWord <string> −> the name of the dictionary word that will end every sentence []

Acoustic Model Options:
 −htkModelsFName <string> −> the file containing the acoustic models in HTK MMF format []
 −doModelsIOTest −> tests the text and binary acoustic models load/save

Hybrid HMM/ANN related options:
 −priorsFName <string> −> the file containing the phone priors []
 −statesPerModel <int> −> the number of states in each HMM used in the hybrid system [0]

WFST network parameters:
 −fsmFName <string> −> the FSM filename []
 −inSymsFName <string> −> the input symbols (ie. CD phone names) filename []
 −outSymsFName <string> −> the output symbols (ie. words) filename []
 −genTestSeqs −> generates some test sequences using the network.

Decoder Options:
 −mainBeam <real> −> the (+ve log) window used for pruning emitting state hypotheses [−3.40282e+38]
 −phoneEndBeam <real> −> the (+ve log) window used for pruning phone−end state hypotheses [−3.40282e+38]
 −maxHyps <int> −> Upper limit on the number of active emitting state hypotheses [0]
 −inputFName <string> −> the file containing the list of files to be decoded []
 −inputFormat <string> −> the format of the input files (htk,lna) []
 −outputFName <string> −> the file where decoding results are written (stdout,stderr,<filename>). default=stdout []
 −outputFormat <string> −> the format used for recognition results output (ref,mlf,xmlf,verbose). default=ref []
 −refFName <string> −> the file containing word−level reference transcriptions []
 −lmScaleFactor <real> −> the language model scaling factor [1]
 −removeSentMarks −> removes sentence start and end markers from decoding result before outputting.
 −modelLevelOutput −> outputs recognised models instead of recognised words.
 −latticeDir <string> −> the directory where output lattices will be placed []
 −monoListFName <string> −> the file containing the list of monophones []
 −silMonophone <string> −> the name of the silence monophone []
 −pauseMonophone <string> −> the name of the pause monophone []
 −tiedListFName <string> −> the file containing the (tied) model list []
 −cdSepChars <string> −> the characters that separate monophones in context−dependent phone names (in order) []

Figure 3.4: Command line help message for the juicer decoder.

Table 3.4: Detailed description of juicer command line options.

Option Description
-lexFName string Required. The name of the text file containing the pro-

nunciation dictionary.
-sentStartWord string The word in the dictionary that begins every recognised

sentence (e.g. <s>).
-sentEndWord string The word in the dictionary that ends every recognised sen-

tence (e.g. </s>).
-htkModelsFName string The name of the HTK MMF (master macro file) containing

the HMM/GMM definitions.
-priorsFName string The name of the file containing phone prior probabilities

for hybrid HMM/ANN decoding. The ordering of prior
probabilities must match the order of monophone names in
the monophone list file. The phone priors are used to scale
the phone posterior probabilities from the input LNA file,
producing scaled likelihoods that are suitable for decoding.

-statesPerModel integer The number of states (including non-emitting initial and fi-
nal states) in each HMM within a hybrid HMM/ANN sys-
tem. For hybrid decoding, left-to-right HMM’s for each
monophone are synthesised, with a 0.5 probability self-loop
transition on each emitting state. All emitting states within
the same model use identical output probability distribu-
tions.

IDIAP–Com 06-03 17

Table 3.4: (continued)

Option Description
-fsmFName string Required. The filename of the integrated WFST file. This

file is in AT&T FSM format.
-inSymsFName string Required. The filename of the input-symbols file that

corresponds to the integrated WFST file. The entries in
this file map from the numeric labels used in the FSM file
to physical model names.

-outSymsFName string Required. The filename of the output-symbols file that
corresponds to the integrated WFST file. The entries in
this file map from the numeric labels used in the FSM file
to word strings in the dictionary.

-mainBeam real The main pruning beam width (a positive log value). At
each frame, a threshold is calculated by subtracting this
beam width from the score of the best active emitting state
hypothesis. All active emitting state hypotheses with scores
less than this threshold are then deactivated. The default
value of 0.0 disables this pruning.

-phoneEndBeam real The phone-end pruning beam width (a positive log value).
At each frame, and before extending hypotheses from the
final states of phone models to initial states of successor
phone models, a threshold is calculated by subtracting this
beam width from the score of the best phone end state
hypothesis. Phone end state hypotheses with scores less
than this threshold are then deactivated. Typically the
phone-end beam width can be smaller than the main beam
width. The default value of 0.0 disables this pruning.

-maxHyps integer Sets an upper limit on the number of active hypotheses
at each frame. Has no effect if the total number of active
hypotheses is less than the limit. Often used as a secondary
measure in conjunction with the other pruning options, to
place an upper bound on the number of active hypotheses
in speech regions with high confusability. The default value
of 0 disables this pruning.

-inputFName string Required. A file containing the list of filenames that to
be decoded. This can be a flat list of different files, or can
be in “extended” HTK script file format, that allows the
specification of multiple segments within a single file to be
decoded.

-inputFormat string Required. The format of the files that are to be decoded.
For HMM/GMM decoding, input files must be in HTK
feature file format (see Section 5.10.1 of [7]), and this value
must be htk. For hybrid HMM/ANN decoding, input files
must be in LNA 8-bit format (see Appendix B), and this
value must be set to lna.

-outputFName string The name of the file where the decoding output is placed.
This can be a filename, stdout, or stderr. Default is
stdout.

18 IDIAP–Com 06-03

Table 3.4: (continued)

Option Description
-outputFormat string The format of the decoder output. Valid values are ref (all

words from one utterance/file per line), mlf (HTK MLF
format, words only, no timings), xmlf (HTK MLF format,
words+timings), or verbose (nice formatted results, use
with -refFName option). See Section 6.3 of [7] for MLF
details. Note that due to the WFST framework, word
start/end times will be incorrect. Model start/end times
obtained by using the xmlf output format in conjunction
with the -modelLevelOutput flag will be correct.

-refFName string A file containing reference transcriptions. This option is
only useful in combination with the verbose output format
to have reference and recognised words displayed after each
file is decoded.

-lmScaleFactor real The log weights in the integrated WFST are multiplied by
this value before they are used during decoding. Care must
be taken, because the integrated WFST may already have
LM scaling and word insertion penalty applied. This option
will blindly scale all weights.

-removeSentMarks Removes the sentence start and end words from the out-
put decoding result. Use is only advised when the output
format is verbose.

-modelLevelOutput Activates model level output. Physical model names (as op-
posed to logical names) are output, so care must be taken
when interpreting results if model tying is being utilised. If
this flag is specified, then information about monophones
and context-dependent phones must be provided using
the -monoListFName, -silMonophone, -pauseMonophone,
-tiedListFName, and -cdSepChars options.

-monoListFName string The name of a text file containing the complete list of
unique phonemes (one phoneme per line) that are used in
the dictionary, and elsewhere in the system (e.g. to form
context dependent phone names). Used in conjunction with
-modelLevelOutput. Also required for hybrid HMM/ANN
decoding.

-silMonophone string The name of the silence phoneme. Only used in conjunction
with -modelLevelOutput.

-pauseMonophone string The name of the pause phoneme. Only used in conjunction
with -modelLevelOutput.

-tiedListFName string The name of the file containing the (possibly tied) list of
context-dependent phonemes. This list is in HTK HMM
list format (see sect. 7.4 and fig. 7.12 in [7]), and therefore
allows tying (sharing) of models between phonemes. Only
used in conjunction with -modelLevelOutput.

-cdSepChars string An ordered string containing the characters used to sep-
arate monophones when constructing context-dependent
phoneme names. For example, the value of this string
should be “-+” for triphones of the form “ax-d+ey”. Only
used in conjunction with -modelLevelOutput.

IDIAP–Com 06-03 19

Table 3.4: (continued)

Option Description
-latticeDir string If specified, then lattice generation is enabled. Defines the

directory where output lattice files are written. For now,
the lattices are output as WFST’s in FSM format.

Chapter 4

Examples

A number of example decoding configurations have been provided to demonstrate how to decode with
the various types of acoustic and language models supported by Juicer.

The following examples are provided:

numbers gmm mono. OGI numbers, GMM-based, Monophone HMM’s, Simple word-loop grammar.

numbers gmm wrdi. OGI numbers, GMM-based, Word-internal triphone HMM’s, Simple word-loop
grammar.

numbers gmm xwrd. OGI numbers, GMM-based, Cross-word triphone HMM’s, Simple word-loop gram-
mar.

numbers ann mono. OGI numbers, hybrid HMM/ANN-based, Monophone HMM’s, Simple word-loop
grammar.

rm gmm xwrd. Resource management, GMM-based, Cross-word triphone HMM’s, Word pair grammar.

There are two scripts provided for each example system. The make-wfst script builds the inte-
grated transducer network, and the do-decode runs the decoder. By default the make-wfst script
calls the build-wfst script to build the integrated transducer. Calling “make-wfst -attmit” or
“make-wfst -mit” forces the build-wfst-attmit and build-wfst-mit respectively to be called in-
stead of the default build-wfst.

4.1 Obtaining the examples� Copy.

1. Copy the examples .tar.gz file to the top-level directory created in Chapter 2 (i.e. <dir>).

2. cp /home/speech/moore/juicer rel/juicer-examples-0.5.0.tar.gz <dir>� Extract files.

1. cd <dir>

2. tar -xzvf juicer-examples-0.5.0.tar.gz

3. The <dir>/examples/ directory should now contain subdirectories for each example sys-
tem.� Setup paths in example files.

1. cd <dir>/examples

2. ./fix-paths

20

Chapter 5

Current Limitations

Memory requirements

When N -gram back-off language models are used, the grammar transducer contains an arc for every
n-gram weight and an arc for each back-off weight specified in the ARPA LM file. In addition, back-
off arcs all have ǫ labels, which increases the complexity of composition with the lexicon WFST and
the size of resulting composed WFST. In cases where the N -gram grammar transducer is huge, the
AT&T tools require large amounts of memory to produce the final integrated transducer, and often
the composition or the subsequent determinisation will fail due to lack of memory.

The final integrated transducer can also be very large, because it is an explicit representation of
the entire search space. AT&T often (e.g. [4]) use N -gram back-off language models that have been
pre-shrunk using, for example, the method of Seymore and Rosenfeld [5] in order to reduce the size of
the grammar WFST, preventing failure of composition/determinisation due to lack of memory, and
resulting in a final transducer of manageable size.

The inability of AT&T tools to handle large N -gram LM systems is currently the greatest weakness
of Juicer, and is the sole factor preventing its use on tasks with large ≥3-gram LM’s. A future release
will hopefully address this problem using, for example, on-the-fly (instead of the current offline)
composition with higher-order N -gram LM WFST’s, or by relying on WFST’s at the phoneme and
lexical levels, and incorporating LM knowledge using more conventional decoding techniques.

Note that when the final integrated transducer is large, the juicer decoder also requires a large
amount of memory (usually much more than other decoders) because it must load the entire integrated
transducer into a suitable data structure.

Lack of some HTK functionality

Some of the non-core functionality that is present in HTK has not yet been implemented within
juicer. However, in all cases HTK tools can be easily applied offline to overcome any limitations.
Missing functionality includes:

On-the-fly dynamic feature calculation. HTK has the ability to calculate first- and second-order
derivatives on-the-fly so that only base features need to be stored on hard disk. Juicer cannot
currently do this. Input feature files to juicer must contain all feature vector elements, including
all derivatives.

On-the-fly feature transformation. HTK has the ability to apply a transformation matrix to
input feature vectors on-the-fly. Juicer cannot currently do this. Any feature transformation
must be done offline, and transformed features stored in files that can be input to juicer.

On-the-fly model transformation. HTK has the ability to apply model transformations (e.g.
those calculated using MLLR) when models are loaded at run-time. Juicer cannot do cur-

21

22 IDIAP–Com 06-03

rently do this. Any model transformations must be applied off-line and the transformed models
must be stored in a separate file.

Forced alignment. The HTK HVite tool has the ability to input a reference transcription along
with the input feature vector stream and align the input features with the words (or phonemes)
in the transcription. Juicer cannot currently do this.

Appendix A

Pruning

A time-synchronous Viterbi-based search through a network involves updating a partial hypothesis
for each state of the network at each time instant. A partial hypothesis associated with a particular
state in the network represents the best path through the network that ends in that state at that time
instant. A simplistic Viterbi search implementation would require the partial hypothesis in every state
of the network to be updated for each input speech frame (e.g. 100 times per second). This is feasible
for small speech recognition tasks, such as a digits recognition task with a simple word-loop grammar.
However, the networks used in large vocabulary tasks with more sophisticated language models can
easily contain tens of millions of states, and the straightforward Viterbi implementation is completely
unsuitable in terms of the amounts of computing power and memory required.

As a result, speech decoders are usually implemented with one or more types of hypothesis pruning.
The objective of pruning is to remove all but the most likely hypotheses during the search, significantly
reducing the overall search effort.

In time-synchronous decoders the most common type of pruning used is beam-search pruning. At
each time instant the most-likely partial hypothesis (the partial hypothesis with the “best” (lowest
cost) accumulated score) is determined. A threshold is then calculated by subtracting a constant log
value (the beam-width) from the best accumulated log score. Partial hypotheses with accumulated
scores below this threshold are removed from further consideration. Beam-search pruning is “adaptive”
in the sense that if all partial hypotheses have scores that are very close to the best score (i.e. there
is a high degree of confusability), then they are all retained. If only a handful of partial hypotheses
are promising, then only those few are retained.

Juicer has two levels of beam-search pruning. The first is a global pruning as described above. The
second level only operates on hypotheses that are at the end of phonemes. The pruning threshold in
this case is based on the best phoneme end hypothesis rather than the global best. The beam-width
used for phoneme end pruning is usually narrower than the global beam-width, and thus only the
most promising phoneme end hypotheses undergo the relatively expensive operation of extension to
successor phonemes.

A variant of beam-search pruning is histogram pruning [6], where a histogram of partial hypoth-
esis scores is used at each time instant to determine the beam-width that will result in at most N

hypotheses being retained. This method is relatively inflexible because it imposes a hard limit on the
number of active hypotheses, regardless of the amount of confusion present in the network. Therefore,
the two levels of beam-search pruning described previously normally serve as the primary pruning
mechanism, with histogram pruning employed at a more relaxed level to prevent explosions in the
search space during periods of high confusion.

Beam-search and histogram pruning are both non-admissable, because it is possible that a partial
hypothesis destined to be on the globally best path will be pruned at an intermediate stage during
decoding. There is thus a trade-off between the degree of pruning (and therefore the speed of decoding),
and the recognition accuracy. In practice, large decoding speed-ups can be achieved with negligible

23

24 IDIAP–Com 06-03

effect on recognition accuracy. This is demonstrated on a large vocabulary task in the following
section.

A.1 WSJ 20k pruning analysis

The effect of pruning on recognition speed and accuracy was assessed on a WSJ 20k task. Acoustic
models were phonetic decision tree state clustered triphone models trained on the si tr s set (38,275
utterances). The language model was a modified version of the standard open vocabulary, verbalised
punctuation, backoff bigram LM produced by MIT and distributed with the WSJ1 corpus. The original
word list (20,002 words) was reduced to 18,453 words, removing all words for which pronunciations
were not readily available. The original bigram LM was then re-normalised to match the reduced
word list using the HTK LNorm tool.

The test set was the si dt 20 standard 20k development test set from the WSJ1 corpus, consisting
of 503 utterances. The tests were run in a parallelised manner on a 16-CPU linux cluster. Each machine
on the cluster was a dual AMD Athlon MP 2800+ (i.e. total of 8 dual-CPU machines).

Table A.1 shows the sizes of the intermediate and final WFST’s.

WFST States Arcs
G 18,454 1,341,223
L 442,634 499,176
C 5,899 209,678
det(L ◦ G) 1,026,044 2,854,292
det(C ◦ det(L ◦ G)) 1,317,235 5,408,694

Table A.1: WFST sizes for WSJ 20k pruning analysis. G = grammar, L = lexicon, C = CD-phoneme,
◦ = composition operation, det = determinisation operation.

The three types of pruning implemented within juicer were firstly analysed in isolation, and
then their combined effect was assessed. Each figure provided in the following sections plots word
recognition accuracy (%) vs. decoding speed (times real-time). The “baseline” word-accuracy achieved
with minimal pruning was 81.90%. On each graph two horizontal lines mark the word accuracy levels
that are 1% and 2% absolute below this baseline.

Global beam-search pruning

This type of pruning is controlled using the -mainBeam option to juicer. Figure A.1 shows the effect of
varying the global beam-width from 250.0 (light pruning) to 120.0 (heavy pruning). By narrowing the
pruning beam-width, large speed gains are achieved with only a small effect on recognition accuracy
(from 40xRT to ∼ 9xRT with 1% loss in accuracy).

Phone-end beam-search pruning

This type of pruning is controlled using the -phoneEndBeam option to juicer. Figure A.2 shows the
effect of varying the phone-end pruning between 90.0 and 250.0 both in isolation, and also when used
in conjuction with a fixed (and relatively broad) main-beam of 250.0.

The main observation from Figure A.2 is that phone-end pruning is ineffectual when used in
isolation. However, when phone-end pruning is coupled with a relatively low level of global beam
pruning (250.0), a better speed/accuracy trade-off is achieved than using global pruning in isolation,
with 1% accuracy loss achieved at ∼ 5xRT.

IDIAP–Com 06-03 25

 60

 65

 70

 75

 80

 0 5 10 15 20 25 30 35 40

W
or

d
A

cc
ur

ac
y

(%
)

Real Time Factor (xRT)

Main beam pruning effect

-1.0%
-2.0%

Figure A.1: Main-beam pruning effect.

 60

 65

 70

 75

 80

 0 5 10 15 20 25 30 35 40

W
or

d
A

cc
ur

ac
y

(%
)

Real Time Factor (xRT)

Phone-end beam pruning effect

-1.0%
-2.0%

90.0

160.0 250.0

80.0

110.0

No main-beam
250.0 main-beam

Figure A.2: Phone-end pruning effect.

26 IDIAP–Com 06-03

 60

 65

 70

 75

 80

 0 5 10 15 20 25 30 35 40

W
or

d
A

cc
ur

ac
y

(%
)

Real Time Factor (xRT)

Histogram (max. hyps) pruning effect

-1.0%
-2.0%

800

2000 6000 20000

No main-beam
250.0 main-beam

Figure A.3: Histogram pruning effect.

Histogram (maximum hypotheses) pruning

This type of pruning is controlled using the -maxHyps option to juicer. Figure A.3 shows the effect
of varying the histogram pruning between 800 and 20000 both in isolation, and also when used in
conjuction with a fixed (and relatively broad) global pruning beam of 250.0.

Histogram pruning in isolation has a very similar speed/accuracy tradeoff to global-beam prun-
ing. Combining histogram pruning with light global-beam pruning results in a slightly improved
speed/accuracy tradeoff for real-time factors between 5 and 15, where the histogram pruning im-
poses an upper limit on the number of active hypotheses that remain after global pruning. In the
region below 5xRT, the tight histogram pruning dominates, and therefore no change is observed when
histogram pruning is augmented with light global pruning.

Combined pruning

Figures A.4 and A.5 show decoding performance over a range of phone-end and histogram pruning
values, for global-beam pruning values of 250.0 and 200.0 respectively. Each line in the two graphs
corresponds to varying the histogram pruning factor over the range [1000, 20000] with a particular
combination of global and phone-end pruning.

The main observation from figures A.4 and A.5 is that the two levels of beam search pruning
(global and phone-end) are the most important for attaining a desired speed/accuracy tradeoff. The
effect of histogram pruning is to slightly improve upon the tradeoff already achieved with a given
combination of global and phone-end pruning, and the improvement is relatively independent of the
beam-widths used. For example, by following each line starting from the lower left, it can be seen
that the optimal histogram pruning threshold occurs at roughly the fourth point (i.e. at a threshold
of 6000) regardless of the global and phone-end beam-widths.

The best decoding speeds achieved in these experiments were ∼ 3.9xRT with 1% accuracy loss and
∼ 2.7xRT with a 2% accuracy loss. However, the combinations of the 3 pruning factors tested were
far from exhaustive, and the trends in the graphs indicate that slightly better tradeoffs exist.

IDIAP–Com 06-03 27

 72

 74

 76

 78

 80

 82

 0 2 4 6 8 10 12 14

W
or

d
A

cc
ur

ac
y

(%
)

Real Time Factor (xRT)

Combined pruning effect (main-beam = 250)

-1.0%

-2.0%

Main/End Pruning = 250/220
Main/End Pruning = 250/180
Main/End Pruning = 250/160
Main/End Pruning = 250/140
Main/End Pruning = 250/120

Figure A.4: Combined pruning effect. Global beam-width = 250.0. Each line obtained by varying
histogram pruning from 1000 to 20000 with a fixed phone-end beam-width.

 72

 74

 76

 78

 80

 82

 0 2 4 6 8 10 12 14

W
or

d
A

cc
ur

ac
y

(%
)

Real Time Factor (xRT)

Combined pruning effect (main-beam = 200)

-1.0%

-2.0%

Main/End Pruning = 200/200
Main/End Pruning = 200/180
Main/End Pruning = 200/160
Main/End Pruning = 200/140
Main/End Pruning = 200/120

Figure A.5: Combined pruning effect. Global beam-width = 200.0. Each line obtained by varying
histogram pruning from 1000 to 20000 with a fixed phone-end beam-width.

28 IDIAP–Com 06-03

Conclusion

Pruning is a vital tool for efficiently limiting the search space in large vocabulary decoding. Significant
speedups can be achieved with minimal loss in accuracy. Juicer implements three types of pruning:
two-levels of beam-search pruning (global and phone-end) and histogram pruning. The two beam-
search pruning types are the most important for achieving a desired tradeoff between speed and loss of
accuracy. Histogram pruning can provide a further speedup without significantly affecting accuracy,
and the optimal value is relatively independent of the beam-search pruning parameters.

A good strategy for finding the optimal pruning parameters could be to :

1. Run a test with light global-beam pruning only to discover the best accuracy that can be
realistically achieved.

2. Decide upon an accuracy cut-off that represents an acceptable trade-off for fast decoding.

3. Experiment with tighter global pruning beam-widths, until accuracy cut-off is approached.

4. Add phone-end pruning, starting with a value the same as the global beam-width

5. Tighten phone-end pruning beam-width, until accuracy decreases to cut-off value.

6. Add histogram pruning, starting with a large value.

7. Decrease histogram pruning threshold until accuracy drops below desired cut-off.

Appendix B

LNA File Format

29

30 IDIAP–Com 06-03LNA(5) ICSI SPEECH SOFTWARE LNA(5)

NAME
 lna − compressed format for MLP output probablility files

SYNOPSIS
 *.lna

DESCRIPTION
 lna is a compression format for speech developed by Tony Robinson, used
 by y0(1) and noway(1). There are really two lna formats (8 bit and 16
 bit) supported by the software, but everybody just uses 8 bit.

 Basically, each floating point probability is quantized to an 8 or 16
 bit integer by the following formula:

 intval = floor(− LNPROB_FLOAT2INT * log(x + VERY_SMALL))

 where LNPROB_FLOAT2INT is 24 for 8 bit, and 5120 for 16 bit. The int
 is then pinned to between 0 and 255 (or 65535). VERY_SMALL prevents
 ugliness if the probability is 0.0.

 As for the actual file format, it is a binary stream of frames, where
 each frame consistes of a fixed number of 8 or 16 bit values.

 EOS Val0 Val1 Val2 ... Valn

 EOS is 0x80 if the frame is the last frame in a sentence, 0 otherwise.
 Val0 ... Valn are the quantized integers corresponding to the probabil−
 ities.

SEE ALSO
 lna2y0new(1), rap2lna(1)

AUTHOR
 This man page was written by:

 Jonathan Segal <jsegal@ICSI.Berkeley.EDU>
 Eric Fosler <fosler@ICSI.Berkeley.EDU>.

 updated by: Alfred Hauenstein <alfredh@icsi.berkeley.edu>

ICSI $Date: 2005/08/24 03:20:41 $ LNA(5)

Appendix C

BSD License

Copyright (c) 2005, Darren Moore (IDIAP)

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,

this list of conditions and the following disclaimer in the documentation

and/or other materials provided with the distribution.

3. Neither the name of the author nor the names of its contributors may be

used to endorse or promote products derived from this software without

specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

31

Bibliography

[1] C. Allauzen, M. Mohri, F. Pereira, and M. Riley. AT&T FSM library - file formats manual page.
http://www.research.att.com/projects/mohri/fsm/doc4/fsm.5.html.

[2] M. Mohri, F. Pereira, and M. Riley. The design principles of a weighted finite-state transducer
library. Theoretical Computer Science, 231(1):17–32, 2000.

[3] M. Mohri, F. Pereira, M. Riley, and C. Allauzen. AT&T FSM library - finite state machine library.
http://www.research.att.com/sw/tools/fsm.

[4] M. Mohri, M. Riley, D. Hindle, A. Ljolje, and F. Pereira. Full expansion of context-dependent
networks in large vocabulary speech recognition. In Proceedings of ICASSP ’98, 1998.

[5] K. Seymore and R. Rosenfeld. Scalable backoff language models. In Proceedings of ICSLP ’96,
pages 232–235, 1996.

[6] V. Steinbiss, B.-H. Tran, and H. Ney. Improvements in beam search. In Proceedings of ICSLP
’94, pages 2143–2146, 1994.

[7] S. Young, G. Evermann, T. Hain, D. Kershaw, G. Moore, J. Odell, D. Ollason, D. Povey,
V. Valtchev, and P.Woodland. The HTK Book (for HTK Version 3.2.1). Cambridge Univer-
sity Engineering Department, 2002.

32

