

E
S

E
A

R
C

H
R

E
P

R
O

R
T

I
D

I
A

P

Rue du Simplon 4

IDIAP Research Institute
1920 Martigny − Switzerland

www.idiap.ch

Tel: +41 27 721 77 11 Email: info@idiap.ch
P.O. Box 592
Fax: +41 27 721 77 12

PRIOR KNOWLEDGE IN KERNEL
METHODS

Alexei Pozdnoukhov

IDIAP–RR 06-66

2 IDIAP–RR 06-66

IDIAP Research Report 06-66

PRIOR KNOWLEDGE IN KERNEL METHODS

Alexei Pozdnoukhov

Abstract. This thesis explores approaches towards learning with kernel methods us-
ing prior knowledge. Invariant learning with kernel methods is considered in more
details. In the first part of the thesis, kernels are developed which incorporate prior
knowledge on invariant transformations. Next, algorithms which specifically include
prior knowledge are considered. An algorithm which linearly classifies distributions by
their domain was developed. In the last part of the thesis, the use of unlabelled data
as a source of prior knowledge is considered. The technique of modelling the unlabelled
data with a graph is taken as a baseline from semi-supervised manifold learning. For
classification problems, we use this apporach for building graph models of invariant
manifolds. For regression problems, we use unlabelled data to take into account the
inner geometry of the input space.

2 IDIAP–RR 06-66

Abstract

Machine Learning is a modern and actively developing field of computer science, devoted
to extracting and estimating dependencies from empirical data. It combines such fields as
statistics, optimization theory and artificial intelligence. In practical tasks, the general aim
of Machine Learning is to construct algorithms able to generalize and predict in previously
unseen situations based on some set of examples. Given some finite information, Machine
Learning provides ways to exract knowledge, describe, explain and predict from data.

Kernel Methods are one of the most successful branches of Machine Learning. They
allow applying linear algorithms with well-founded properties such as generalization abil-
ity, to non-linear real-life problems. Support Vector Machine is a well-known example of a
kernel method, which has found a wide range of applications in data analysis nowadays.

In many practical applications, some additional prior knowledge is often available. This
can be the knowledge about the data domain, invariant transformations, inner geometrical
structures in data, some properties of the underlying process, etc. If used smartly, this
information can provide significant improvement to any data processing algorithm. Thus,
it is important to develop methods for incorporating prior knowledge into data-dependent
models.

The main objective of this thesis is to investigate approaches towards learning with ker-
nel methods using prior knowledge. Invariant learning with kernel methods is considered
in more details.

In the first part of the thesis, kernels are developed which incorporate prior knowledge
on invariant transformations. They apply when the desired transformation produce an
object around every example, assuming that all points in the given object share the same
class. Different types of objects, including hard geometrical objects and distributions are
considered. These kernels were then applied for images classification with Support Vector
Machines.

Next, algorithms which specifically include prior knowledge are considered. An algo-
rithm which linearly classifies distributions by their domain was developed. It is con-
structed such that it allows to apply kernels to solve non-linear tasks. Thus, it combines
the discriminative power of support vector machines and the well-developed framework
of generative models. It can be applied to a number of real-life tasks which include data
represented as distributions.

In the last part of the thesis, the use of unlabelled data as a source of prior knowledge
is considered. The technique of modelling the unlabelled data with a graph is taken as a
baseline from semi-supervised manifold learning. For classification problems, we use this
apporach for building graph models of invariant manifolds. For regression problems, we
use unlabelled data to take into account the inner geometry of the input space.

i

ii IDIAP–RR 06-66

To conclude, in this thesis we developed a number of approaches for incorporating some
prior knowledge into kernel methods. We proposed invariant kernels for existing algo-
rithms, developed new algorithms and adapted a technique taken from semi-supervised
learning for invariant learning. In all these cases, links with related state-of-the-art ap-
proaches were investigated. Several illustrative experiments were carried out on real data
on optical character recognition, face image classification, brain-computer interfaces, and
a number of benchmark and synthetic datasets.

Keywords: machine learning, kernel methods, support vector machine, invariances, semi-
supervised learning, manifold regularization, unlabelled data

Version Abrégée

L’apprentissage automatique est un domaine actif de l’informatique moderne. Il s’agit
d’extraire et d’estimer des dépendances à partir de données empiriques. Ce domaine est
à l’intersection des statistiques, de la théorie de l’optimisation et de l’intelligence arti-
ficielle. Sur des tâches pratiques, le but général de l’apprentissage automatique est de
construire, à partir d’un ensemble d’exemples, des algorithmes capables de généraliser,
c’est-à-dire de prédire dans des situations inconnues auparavant. A partir d’une informa-
tion finie, l’apprentissage automatique permet d’extraire des connaissances, de les décrire,
d’expliquer et de prédire à partir de données connues.

Les méthodes à base de noyau forment l’une des branches les plus fructueuses de
l’apprentissage automatique. Elles permettent d’appliquer des algorithmes linéaires, dont
les propriétés sont bien connues, aux problèmes non-linéaires du monde réel. Les Machines
à Vecteurs de Support (SVM) sont un exemple bien connu de méthodes à base de noyau.
On les trouve aujourd’hui dans un large éventail d’applications d’analyse de données.

Dans de nombreuses applications pratiques, une connaissance a priori est disponible.
Ce peut être une connaissance du domaine des données, de l’invariance par certaines trans-
formations, de la structure géométrique interne aux données, de propriétés spécifiques aux
processus sous-jacents, etc. Utilisées intelligemment, ces informations peuvent amener
des améliorations significatives à n’importe quel algorithme de traitement des données. Il
est donc important de développer des méthodes pour incorporer cette connaissance a priori
dans les modèles dérivés des données.

L’objectif principal de cette thèse est d’utiliser la connaissance a priori dans les méth-
odes à base de noyau. Une attention particulière est portée à l’apprentissage d’invariance
avec les méthodes à base de noyau.

La première partie de cette thèse propose des noyaux qui incorporent la connaissance
à priori de transformations invariantes. Ces noyaux sont utilisables lorsque les transfor-
mations en question produisent un objet autour de chaque échantillon, en supposant que
tous les points d’un tel objet appartiennent à la même classe. Différents types d’objets sont
considérés, dont des objets géométriques “durs”, et des distributions. Ces noyaux sont alors
appliqués à la classification d’images avec les SVM.

Ensuite, des algorithmes qui incluent la connaissance a priori de fa con spécifique sont
considérés. Un algorithme est proposé qui classifie, de fa con linéaire, les distributions suiv-
ant leur domaine. Il permet d’appliquer les méthodes à base de noyau pour résoudre des
problèmes non-linéaires. De cette fa con, il combine le pouvoir discriminatif des SVM avec
la structure bien développée des modèles génératifs. Il peut être appliqué à de nombreuses
tâches réelles, dès lors qu’elles incluent des données représentées par des distributions.

La dernière partie de cette thèse considère l’usage de données sans label, comme source

iii

iv IDIAP–RR 06-66

de connaissance a priori. Comme méthode de base, nous nous inspirons de l’apprentissage
semi-supervisé d’hypersurface, et modélisons les données sans label à l’aide d’un graphe.
Pour les problèmes de classification, nous utilisons cette approche pour construire des mod-
éles graphiques d’hypersurfaces invariantes. Pour les problèmes de régression, nous util-
isons les données sans label pour prendre en compte la géométrie intrinsèque des données.

Pour conclure, dans cette thèse nous développons plusieurs approches pour incorporer
une connaissance a priori dans les méthodes à base de noyau. Nous proposons des noyaux
invariants pour des algorithmes existants, puis développons de nouveaux algorithmes. En-
fin, nous adaptons à l’apprentissage d’invariance une technique utilisée en apprentissage
semi-supervisé. Des expériences sont conduites sur des données réelles : reconnaissance
optique de caractères, classification d’images faciales, interfaces cerveau-machine, ainsi
que sur plusieurs tests de références et sur des données synthétiques.

Mots-clés: apprentissage automatique, méthodes à noyaux, machines a vecteurs de sup-
port, invariances, apprentissage de varietés et semi-supervisé, données non-labellées

Contents

1 Introduction 1
1.1 Machine Learning . 1
1.2 Learning with Prior Knowledge . 2
1.3 Challenges and Objectives . 3
1.4 Contributions . 4
1.5 Organization of the thesis . 5

2 Learning With Kernels 7
2.1 Statistical Learning Theory . 8

2.1.1 Three Main Learning Problems . 8
2.1.2 Induction Principles and VC-dimension 9

2.2 Support Vector Learning . 12
2.2.1 Support Vector Classification . 13
2.2.2 Support Vector Regression . 16

2.3 Kernels . 17
2.3.1 Kernel Trick . 17
2.3.2 Choosing Kernel Parameters . 18

2.4 Invariant Learning with Kernel Methods . 18
2.4.1 Virtual Samples . 20
2.4.2 Transformation Manifolds . 21
2.4.3 Algorithms . 22
2.4.4 Invariant Features . 23

2.5 Conclusions . 23

3 Invariant Kernels 25
3.1 From Samples to Objects . 25

3.1.1 Hard Objects . 26
3.1.2 Soft Objects . 26
3.1.3 Objects Based on Tangent Vectors . 26
3.1.4 Objects Based on Sample Models . 27

3.2 Tangent Vector Kernels . 28
3.2.1 Kernels for Hard Objects . 28
3.2.2 Kernels for Soft Objects . 30

3.3 Distribution-Based Tangent Vector Kernels . 31
3.3.1 Links with Kernel Jittering and Virtual SV 32

v

vi IDIAP–RR 06-66

3.4 Applications and Experiments . 33
3.4.1 Artificial Data . 33
3.4.2 EEG Signals Classification . 34
3.4.3 Face Recognition Experiments . 35
3.4.4 Invariant Face Images Classification . 36
3.4.5 The Importance of Prior Knowledge for Small Datasets 38

3.5 Discussion and Conclusions . 39

4 Invariant Kernel Algorithms 41
4.1 Optimization with Constraints . 41
4.2 Vicinal Risk Minimization . 43

4.2.1 Scaling Invariance . 44
4.3 A Kernel Classifier for Distributions . 45

4.3.1 Margin Maximization for Distributions 46
4.3.2 Optimization Problem . 47
4.3.3 Hyper-plane Projection Method . 48
4.3.4 Discrimination of Gaussian Distributions 50
4.3.5 Experiments . 52
4.3.6 Discussion and Conclusions . 55

5 Prior Knowledge from Unlabelled Data 57
5.1 Learning on Manifolds . 58
5.2 Graph Models of Invariant Manifolds . 58

5.2.1 Graph-based Invariant Manifolds . 59
5.2.2 Kernels For Invariant Manifolds . 59

5.3 Classification Experiments . 60
5.3.1 Practical Issues . 60
5.3.2 Global Rotation . 61
5.3.3 USPS digits . 61

5.4 Kernel Regression with Unlabelled Data . 63
5.4.1 Manifold Regularization . 63

5.5 Kernel Regression Methods . 63
5.5.1 Kernel Ridge Regression . 64

5.6 Regression Experiments . 64
5.6.1 Kernel Choice . 64
5.6.2 Spiral: 2D Synthetic Example . 64
5.6.3 Boston Housing: High Dimensional Regression Estimation 66
5.6.4 Sunspots: Time Series Prediction with Missing Values 66

5.7 Discussion and Conclusions . 67

6 Conclusion and Perspectives 69
6.1 General Summary . 69
6.2 Possible Future Directions . 70

List of Figures

1.1 Prior Knowledge in Regression. Solid line represents the underlying depen-
dency F(x). Left: dashed line represents one of the possible regression esti-
mations G(x) based on training samples. Right: the additional knowledge on
function derivatives allows for better prediction. 2

1.2 Prior Knowledge in Classification. Prior knowledge on rotational invariance
(left) and scaling invariance (right) ask for completely different classification
models for the same dataset (center). 3

1.3 Classification in the presence of unlabelled data. The linear decision bound-
ary (left) changes into non-linear to reflect the structure of classes, given
unlabelled data (right). 3

2.1 The bound on the risk is controlled by a trade-off between the empirical risk
(training error) and the confidence interval (capacity of the set of functions). . 12

2.2 Maximizing the margin between classes leads to generalization in classifica-
tion. 14

3.1 Artificial two-class classification problem. Black training points have to be
discriminated against white training points. Left: Original decision function
of an SVM with RBF kernel (σ = 0.2), Center: decision function using slightly
modified kernel, Right: decision function facing full invariance. 34

3.2 Examples of original face images. Left: two random training samples. Right:
three random testing samples. The labels for class membership are shown
below the images. 35

3.3 Examples of noisy face images. The labels for class membership are shown
below the images. 36

3.4 Testing error curve of the SVM with object-based kernel for both noisy testing
sets. X-axis: tlim parameter, Y-axis: testing classification error rate. Testing
errors at tlim = 0 (37% and 0.18%) correspond to standard SVM. 36

3.5 Two Types of Virtual Images. Top row: images obtained with tangent vector
calculation. Bottom row: images obtained using finite differences. 37

3.6 The performance of SVM with RBF and TVK kernels for different dataset
sizes. The influence of prior knowledge increases with the decreasing train-
ing set size. 39

4.1 The illustration of the hyper-plane projection method. Refer to the text for
the notations. 50

vii

viii IDIAP–RR 06-66

4.2 Toy Data Discrimination. The decision boundary changes according to the
covariances of the distributions in the training set. 53

5.1 Kernel centered at image ‘A’. The value of the kernel function can be consid-
ered as a similarity measure. 62

5.2 Kernels for different γ values. This parameter controls the amount of invari-
ance information incorporated into the kernel. 62

5.3 Some rotated USPS digits. 63
5.4 2D spiral data used for method validation. 65
5.5 Spiral data experimental results. 66
5.6 Sunspots database results. Semi-supervised SVR provides better predictions. 67

List of Tables

3.1 Experimental results on the EEG dataset. 35
3.2 Face recognition testing error obtained with SVM with Gaussian RBF ker-

nel, VSV SVM, SVM with jittered kernel and SVM with Tangent Vector and
Distribution-based Tangent Vector Kernel. 39

4.1 Classification accuracies for the compared algorithms on face image classifi-
cation problem. 54

5.1 Testing errors on USPS data. Standard SVM fails on rotated data. Methods
with graph-based kernels outperform the virtual samples methods in compu-
tational time providing competitive generalization performance. 63

5.2 Experimental results for Boston Housing database. 66
5.3 Experimental results for the Sunspots database. 67

ix

x IDIAP–RR 06-66

Chapter 1

Introduction

1.1 Machine Learning

Learning can be defined as a modification of a behavior through experience. “Learning to
generalize in unseen situations” and not “learning by heart” is of our interest when we refer
to this term in this study. The Machine Learning (ML) field aims to explore ways to make
machines learn. It focuses on algorithms which can learn and disregards the hardware
necessary to implement the algorithms.

Building a model from incomplete information in order to predict as accurately as pos-
sible some underlying structure of the unknown reality is considered to be the main task
of ML. For this problem formulation to make sense to a mathematician, the information
about the structure, the experience, and the model have to be expressed numerically. Thus,
from the statistical point of view, the problem of learning becomes the one of function esti-
mation from empirical measurements.

It is convenient to group learning problems into different domains. The particular prop-
erties of these domains generally give the need for the special properties of the types of
functions used to describe the underlying reality. Indeed, considering solutions to problems
in certain specific domains, one can construct learning machines with properties that en-
able them to solve tasks which would at present be impossible to solve in the general case.
Thus, the philosophy of building a particular machine for a particular task which avoids
solving general problems at an intermediate step (if possible) is accepted while building
learning algorithms. The “Occam’s Razor” principle is another formulation of the latter.

Besides the property of a learning machine to be a good (precise) estimator of the un-
known function, we would like it to be able to estimate the function in a practical amount
of time. Thus, optimization theory comes into ML as an important part.

We will come back to these considerations throughout the thesis, when we will develop
new approaches for learning from empirical data with prior knowledge. Both precision of
the learning machine in terms of expected generalization performance and computational
speed will be considered as the main features to improve.

1

2 IDIAP–RR 06-66

1.2 Learning with Prior Knowledge

It is often desirable to include some prior knowledge to the data model. By prior knowledge
we mean any information about the task that is given in addition to the training samples.
Being one of the most successful learning machines, human can provide a valuable addi-
tional knowledge to implement into a learning algorithm.

In this general setting, the usual smoothness assumption (the smoothness of the mod-
eling function in the vicinity of training samples) is also accepted based on a kind of prior
knowledge. Consider the regression problem in Figure 1.1. The smoothness assumption
is actually the prior information that the derivatives of the underlying function are small.
Knowing the exact values of the derivatives in the training samples, the prediction could be
improved even more. Thus, the additional knowledge about the derivatives provide better
solutions.

Figure 1.1. Prior Knowledge in Regression. Solid line represents the underlying dependency F(x). Left:
dashed line represents one of the possible regression estimations G(x) based on training samples. Right:
the additional knowledge on function derivatives allows for better prediction.

One of the most useful prior information is a knowledge on the invariances of the prob-
lem. We mean by the notion of invariance that the output of the learning system is un-
changed while the inputs are transformed by some operator. Invariance under shifts and
small rotations in the field of character recognition is a well-known example. Consider the
example presented in Figure 1.2. Given the set of training samples of two different classes
and a problem to classify the input space into two domains of the respective classes (Figure
1.2, center), it can be solved by a number of different ways. The two different partitions,
shown in Figure 1.2, left and right, are facing two completely different solutions, however
they both fit the data perfectly. The difference between them is a type of invariance they
follow. Thus, the prior knowledge about invariances provides valuable additional informa-
tion in this classification task. The invariance learning is a mainstream of the presented
research.

Another important knowledge comes from unlabelled data. The information one ob-
tains from it can be of different nature. A reasonable assumption to make is the following.
Assume the data lies on some lower-dimensional manifold in the original input space. Us-
ing some properties of the manifold, data analysis methods can be improved. Particularly,
unlabelled data, i.e. the samples without output information such as class labels or regres-
sion value, can reflect the structure of the underlying process. Considering Figure 1.3, let
us illustrate the solution to a simple binary classification problem. In the left part of the

IDIAP–RR 06-66 3

Figure 1.2. Prior Knowledge in Classification. Prior knowledge on rotational invariance (left) and scaling
invariance (right) ask for completely different classification models for the same dataset (center).

figure the reasonable decision boundary is some kind of a line or any other smooth func-
tion which separates the samples of different classes. However, the understanding of the
problem changes in the presence of unlabelled data (black dots in Figure 1.3, right). This
information precises the structure of classes. Thus, the reasonable classification boundary
changes significantly in the presence of unlabelled data.

Figure 1.3. Classification in the presence of unlabelled data. The linear decision boundary (left) changes
into non-linear to reflect the structure of classes, given unlabelled data (right).

Similar kinds of prior knowledge in regression, such as the geometry of the manifold
the data belongs to, can improve the predictive performance of the learning machine.

These ideas will be elaborated in the presented research.

1.3 Challenges and Objectives

One of the most important fields in Machine Learning concerns the so-called Kernel Meth-
ods. This is a large group of methods which tackles most of the data analysis problems:
classification, regression, density estimation, dimensionality reduction, etc. Many tradi-
tional algorithms, e.g. principal component analysis, discriminant analysis, ridge regres-
sion, etc. were “kernelised” to solve nonlinear problems in high dimensional spaces.

The most famous algorithm from the family of kernel methods is the Support Vector
Machine (SVM) which is based on Statistical Learning Theory (SLT). At present SLT is

4 IDIAP–RR 06-66

still under intensive development and SVMs find new areas of application. Being a data-
driven approach, SVM is well suited to many data analysis tasks. SVMs develop robust
and nonlinear data models with excellent generalisation abilities. SVMs are extremely
good when input space is high dimensional and training data set is not big enough for
traditional methods to develop a consistent nonlinear model.

Despite their extreme power of data modelling, SVM research and applications still
have some room for challenging developments. Kernel methods provide solutions as an
expansion of weighted kernel functions. An important question which arises in this frame-
work is the choice of the kernel function as it explicitly defines the feature space hence it
is of crucial meaning for the performance of the algorithms. The kernel function is also a
factor that defines the capacity of the model. Kernel design methodology, and the particu-
lar problem of incorporating some prior knowledge into the kernel function is an important
reseach direction. The same problems can be approached using the information from un-
labelled data.

Combining the generalization abilities of SVMs (garanteed by the results of Statistical
Learning Theory) and prior knowledge into an advanced kernel algorithm opens promising
perspectives for further improvements in real-life use of kernel methods. The incorpora-
tion of prior knowledge on the invariances of the problem is of particular interest. The
preferable directions are oriented to obtaining a general approach to the problem rather
than in particular application-dependent solutions.

1.4 Contributions

The following main contributions of the thesis can be mentioned.

• Invariant Kernels. New kernels were developed that incorporate the knowledge
about possible sample transformations into the learning algorithm. These kernels
can be used in classification methods such as Support Vector Machines. They apply
when the prior knowledge can be formalized by the description of an object around
each sample of the training set, assuming that all points in the given object share the
same desired class. A number of implementation techniques of this method, based on
hard geometrical objects and soft objects based on distributions are considered. The
method was applied to real-life task of face images classification and EEG signals
classification. The results of this research were published in [55], [50].

• Invariant Algorithms. A new algorithm for classifying distributions by their do-
mains was developed. The algorithm combines the principle of margin maximization
and a kernel trick, applied to distributions. Thus, it combines the discriminative
power of Support Vector Machines and the well-developed framework of generative
models. It can be applied to a number of real-life tasks which include data repre-
sented as distributions. The algorithm can also be applied for introducing some prior
knowledge on invariances into a discriminative model. This was applied to face im-
age classification task [54]. Other applications such as object categorization were
discussed in [53].

• Invariant Manifolds in Classification. Graph-based manifold modeling, used in
semi-supervised learning, was adapted for invariant learning with kernel methods.

IDIAP–RR 06-66 5

The approach is based on building a kernel function on the graph modeling the invari-
ant transformation manifold. It provides a way for taking into account nearly arbi-
trary transformations of the input samples. The approach is verified experimentally
on the task of optical character recognition in paper [51], providing state-of-the-art
performance on harder problem settings.

• Unlabelled Data in Regression. A semi-supervised kernel method for regression
estimation in the presence of unlabeled patterns was introduced. The method exploits
a recently proposed data-dependent kernel which is constructed in order to represent
the inner geometry of the data. This kernel was implemented into Kernel Regres-
sion methods. Experimental results revealed the properties of the method and its
advantages as compared to fully supervised approaches. The results of this study are
published in [52].

• Links. Several links between existing and newly developed approaches are described
in the thesis. Regularization techniques, Vicinal Risk Minimization, Virtual Samples
approaches are also described and compared to the developed methods.

1.5 Organization of the thesis

This thesis is organized as follows. First, we present some background of Machine Learn-
ing and the basics of the Statistical Learning Theory in Chapter 2. We then introduce the
main learning algorithm which will be used in this study, the Support Vector Machine. The
important notion of kernel functions is presented and plugged into the SVM framework.
Next, in the same chapter, we outline the state-of-the-art techniques of invariant learn-
ing with kernel methods. We then present the contributions of the presented research.
Chapter 3 presents a method for modifying the kernel function of SVM classifiers in order
to include some invariant knowledge. Chapter 4 presents some developments devoted to
constructing algorithms for classifying objects instead of samples. The particular method
developed is a classifier of distributions according to the domain. The application of this
approach are discussed. Next, in Chapter 5 we discuss the use of unlabelled data and the
respective field of semi-supervised learning. We apply the techniques developed for semi-
supervised learning to the problem of invariant learning in classification. We also apply
these methods for high-dimensional regression estimation on the hidden low-dimensional
manifolds. Chapter 6 concludes the thesis with discussions on current and future research
directions of the presented ideas.

6 IDIAP–RR 06-66

Chapter 2

Learning With Kernels

Kernel-based analysis is a very powerful tool for mathematicians, scientists and engineers.
It provides a surprisingly rich and efficient way for data mining and pattern recognition
and spreads from splines and Gaussian processes to neural networks [27], [58]. Kernel-
based methods cover very different basic and applied scientific fields: statistics, biocomput-
ing, finance, image analysis, geosciences, signal treatments, vision and speech recognition,
and many others [27], [66]. Futhermore, the Statistical Learning Theory (SLT) (Vapnik-
Chervonenkis theory [74]) establishes solid methodological and theoretical framework for
many kernel-based algorithms.

The most famous algorithm from the family of kernel methods is the Support Vector
Machine (SVM). At present SLT is still under intensive development and SVMs find new
areas of application. Being a data-driven approach SVMs are well suited to many data
analysis tasks. They develop robust and nonlinear data models with excellent generalisa-
tion abilities. Moreover, they are extremely good when input space is high dimensional and
training data set is not big enough for traditional methods to develop a consistent nonlinear
model. SVMs use only support vectors (most important samples of the dataset) to derive
decision boundaries between classes. In fact, Support Vector Machines have demonstrated
one of the best results on different classification problems, ranging from bio-computing to
handwritten digits recognition [22]. Despite their extreme power of data modelling, SVM
research and applications still have some room for challenging developments: task depen-
dent adaptation of kernels, incorporation of prior information into kernel-based models
and hyper parameter tuning, task-specific kernel design, etc.

Many traditionally linear algorithms, e.g. principal component analysis, ridge regres-
sion, were "kernelised" to solve nonlinear problems in a high dimensional feature spaces.
Numerous real case studies in different fields have demonstrated high efficiency of kernel-
based methods in solving basic data analysis problems: data clustering, classification and
pattern recognition, regression, distribution modelling, outliers and novelty detection and
others, see for example [63] and references therein.

In this chapter, the basics of Learning with Kernels are presented, starting from funda-
mental definitions of Statistical Learning Theory to state-of-the-art in invariant learning
with kernels.

7

8 IDIAP–RR 06-66

2.1 Statistical Learning Theory

In the framework of statistical learning, by the term “ learning” we mean estimating some
function y = f(x), where x ∈ RN and depending on the type of problem, y ∈ R for regres-
sion, y ∈ [1, 2, ...M] forM -class pattern recognition or y ∈ {−1, 1} for binary pattern recogni-
tion. The estimate has to be made given only examples {(x1, y1), . . . , (x`, y`)} of the mapping
performed by the unknown function. Practically, the process of learning is considered as
follows. A learning machine must choose from a given set of functions {F = f(x, α), α ∈ Λ}
the one which best (in some predefined sense) approximates the unknown dependency. Λ is
an abstract set of parameters, chosen beforehand. This choice is actually an optimization
in the parameter space of α.

The constraints in the considered setting are quite general, providing robust framework
within which to construct powerful learning algorithms. A probabilistic interpretation of
the data is assumed. An empirical example is considered to be drawn according to some
fixed but unknown distribution P (x, y), each point possibly being skewed by noise which
also comes from a fixed but unknown distribution. The examples x1, . . . ,x` are assumed
to be vectors in RN and as such we are only permitted to solve problems that have some
geometric interpretation. It restricts us from direct applications such as classification of
strings of different lengths, raw signal classification of unknown duration, etc. In these
cases, some preliminary preprocessing procedures have to be carried out. However, the
presented setting includes many real-world applications in different fields.

Learning Algorithm. A number of notions have to be formalized to construct a learn-
ing algorithm. First, we need to define a learning problem with associated loss function, an
induction principle, a set of decision functions, and finally an algorithm that implements
these components. Let us first consider the learning problems which we are interested in,
together with their associated loss functions.

Loss functions and Risk Minimization. We define learning as estimating the func-
tion f(x) from the set of functions {F = f(x, α ∈ Λ)} defined a priori, which provides the
minimum value of the risk function

R(α) =
∫
Q(y, f(x, α))dP (x, y) (2.1)

where Q(y, f(x, α)) is the loss function - a measure of discrepancy between the estimate
and the actual value y given by the unknown function at a point x. By defining our goal
as minimizing the risk function we state that our objective is to minimize the expected
average loss (as defined by the loss function we choose) for a given problem.

For this definition to be applied to real-life tasks, the types of learning problems with
the associated loss functions have to be defined. In this work we mainly consider two
basic learning problems (classification and regression), and mention the third one (density
estimation). We describe them in the next section.

2.1.1 Three Main Learning Problems

In the framework of SLT [74] three main learning problems of function estimation are
defined. The problems are: pattern recognition, regression estimation and density estima-
tion. In this thesis we consider the first two, and mention density estimation briefly. In this

IDIAP–RR 06-66 9

introduction we follow the traditional way for introducing Machine Learning framework,
and review the definition of these problems in turn.

Pattern Recognition. In the problem of pattern recognition, each vector x can be
labeled with one of two classes, i.e. the output y ∈ {−1, 1}. The loss function for this task
measures the number of incorrectly classified patterns

Q(f,x) =
{

0, if f(x) = y,
1, otherwise.

(2.2)

For this loss, the risk (2.1) which is minimized measures the probability of classification
error.

Regression Estimation. In the problem of regression estimation, the value of y at
any point x is a real value, i.e. outputs y ∈ R. In the general case of estimation any point xi
is measured with noise generated from a usually unknown distribution. It is known that if
the regression function f(x) belongs to the set F = {f(x, α), α ∈ Λ}, and noise distribution
in the outputs is Gaussian, then it can be found by minimizing (2.1) with the squared loss
function

Q(f,x) = (f(x)− y)2. (2.3)

Considering the links with approximation theory, where the data is noiseless, the choice
of loss function depends on the metric one considers. That is, supposing the function f(x)
does not belong to the set F, then we have to find the closest function to the unknown one in
a given metric. Regularization framework [71] is introduced to solve such kinds of ill-posed
problems.

Density Estimation. In the problem of density estimation one has to estimate the
density function p(x) of a random variable X given the i.i.d. data {x1, . . . ,x`}. For this
problem, if the unknown density belongs to the set of densities {P (x, α), α ∈ Λ} it can be
found using the following loss function

Q(x, p) = − log p(x) (2.4)

for the risk functional
R(α) =

∫
Q(x, p)dF (x), (2.5)

where F (x) is the c.p.d.f. of X. The general solution of the density estimation problem is
out of scope of this thesis, however, some referencies will be provided throughout the text.

2.1.2 Induction Principles and VC-dimension

An induction principle provides a method for generalizing some particular observations
into a general rule. For example, it allows one to construct a decision rule that can classify
every point in a space given only finite examples (points) from the space (the training
set). First we will consider one of the simplest induction principles, the so-called Empirical
Risk Minimization (ERM) principle. We will then review the main induction principle in
statistical learning theory, the Structural Risk Minimization (SRM) principle, and discuss
the similarities between SRM and Regularization theory. The Vicinal Risk Minimization
principle is considered later as well.

10 IDIAP–RR 06-66

The Empirical Risk Minimization principle

While minimizing the risk functional (2.1) we choose the function that provides the mini-
mum deviation (in the sense of our loss function) from the true function across the whole
function space for every point x. In reality, however, the joint distribution function P (x, y)
is unknown, and we do not have the value of y for each point x in the function space, but
only the training set pairs {x1, y1, . . . ,x`, y`}. We can instead approximate function (2.1) by
considering the following so-called empirical risk functional:

Remp =
1
`

∑̀
i=1

Q(yi, f(xi, α)). (2.6)

Then, a function that gives minimum to the empirical risk is chosen as an optimal decision
(regression) function. This induction principle is called Empirical Risk Minimization. By
this we only choose a decision rule based on its empirical performance on the finite number
of known examples. One can calculate the value of Remp(α) and hence select a choice of α
which minimizes this value. However, the minimum of (2.6) does not necessarily approxi-
mate well the minimum of (2.1) when ` is small. We consider two basic improvements to
this. First, note that the probability distribution which actually appears here (refer to Eq.
(2.1)) is an empirical distribution p(x, y) = 1

`

∑`
i=1 δ(x − xi)δ(y − yi). Later, more sophisti-

cated distributions will be used which result in Vicinal Risk Minimization principle.
Now, we consider another extention of the ERM induction principle. The following

result has actually gave rise to the explosive growth of Machine Learning methods. Let us
consider the case of pattern recognition. For this problem, the following bound on expected
risk holds with probability 1− η [74].

R(α) ≤ Remp(α) +

√
h(log(2`

h) + 1)− log(η4)
`

. (2.7)

The parameter h, introduced here, is the VC dimension of the set of decision functions
parameterized by α. For the case of classification, the VC dimension of a set of functions is
the maximum number of points that can be separated in all possible ways by that set (see
[75], p. 76 for details). Knowning the exact value of h and choosing a sufficiently small η
one can use this bound to calculate the best choice of α (the best function to select from the
set of decision functions). The ERM principle, which minimizes the empirical risk (the first
term only) gives a small value of expected risk when `

h (the ratio of the number of training
samples to the VC dimension of the set of functions) is large. If the VC dimension of the
set of functions is large the second term (the so-called confidence interval) will be large.
To minimize over both terms the VC dimension of the set of functions would have to be a
controlling variable and not just be chosen a priori. This is discussed in details in the next
section.

VC Dimension and Generalization

So far, the aim in learning is to choose the function (decision rule) from the set of possible
decision rules which best describes the data and the underlying process as well. Because

IDIAP–RR 06-66 11

the amount of data is usually a small sample the function chosen may describe dependen-
cies in the data but not in the unknown function as a whole. We call the ability to describe
the actual underlying functional dependency from finite empirical data the generalization
ability of a learning machine.

Generalization ability is controlled by choosing an appropriate set of functions F =
{f(x, α)}. The capacity of this set of functions, one measure of which is VC dimension, con-
trols the empirical risk achieved. In classification, it is the number of possible separations
of the data with the functions from this set. Choosing a set of functions which can perform
many possible separations will achieve a low empirical risk but can generalize poorly. This
phenomenon of choosing the false (too complex) structure is called overfitting. Choosing
a low capacity, i.e. a weaker set of functions, can result in better generalization ability,
but then the set of functions may be too weak to describe the necessary dependencies in
the data. For example, at one extreme F = {f(x, α)} could be the set of linear decision
functions (hyperplanes), at the other the set of sine functions. The former can only de-
scribe linear dependencies, whereas the latter is a non-falsifiable learning machine - it can
describe any dependency with a high frequency sine curve and so generalization will not
take place [75]. The generalization ability can be controlled by choosing the VC dimen-
sion or some other embodiment of capacity in the set of functions. In the next section, we
describe the Structural Risk Minimization (SRM) induction principle which attempts to
control both the empirical risk on the training data and the capacity of the set of functions
used to obtain this value of risk.

The Structural Risk Minimization Principle.

For pattern recognition, the SRM principle is justified by the result (2.7). Its objective is
to minimize both the empirical risk and the confidence interval - both terms in the bound
(2.7). This can be thought as follows. Let us define a structure

S1 ⊂ S2 ⊂ · · · ⊂ ST (2.8)

on the set of decision functions F whose VC dimensions satisfy

h1 ≤ h2 ≤ · · · ≤ hT (2.9)

and then choose an appropriate element Sopt of the structure that minimizes the bound
(2.7). This can be approached by minimizing the empirical risk using each learning ma-
chine (each element Si from the set) and selecting the one with lowest value of the bound.
Thus the SRM principle defines a trade-off between the accuracy (empirical risk or train-
ing error) and complexity of the approximation by minimizing over both terms in (2.7). The
theory of bounds is an important part of Machine Learning, since it provides the founda-
tion for a new algorithm to possess good generalization abilities. Similar bounds for risk
were derived (and are constantly improved) in SLT for other learning problems as well.

Vicinal Risk Minimization Principle.

This induction principle is an extention of ERM, with a more sophisticated density estimate
rather then empirical density. It was introduced by Vapnik (2000) by considering local

12 IDIAP–RR 06-66

Figure 2.1. The bound on the risk is controlled by a trade-off between the empirical risk (training error) and
the confidence interval (capacity of the set of functions).

distributions instead of delta functions for every sample. Defining the vicinities of the
training samples (the support of the local distribution functions) and assuming some local
density p(x|xi, ri) therein, one obtains the following Vicinal Risk functional:

Rvic(α) =
1
`

∑̀
i=1

L

(
y −

∫
f(x, α)p(x|xi, ri)dx

)
, (2.10)

where xi is a training sample and ri is its vicinity parameter. Minimizing (2.10) instead of
empirical risk is called the Vicinal Risk Minimization (VRM) principle.

Note that a number of learning algorithms can be achieved as a direct development
of the VRM, considering the corresponding local density estimates. For example, as it
was shown in [10], Ridge Regression, Logistic Classifiers, and some other methods can be
derived from VRM. We consider these relations in more details later.

Vapnik mentions how to use the VRM principle to incorporate an invariance into the
learning algorithm. Using the density functions p(x|xi, ri) defined on the non-symmetrical
support that describes the invariance to the desired transformation, one enforces the learn-
ing algorithm to obey the invariance’s properties. This approach has definite links with
regularization and invariant learning framework, discussed below.

2.2 Support Vector Learning

The particular learning machine we are interested in this work, the Support Vector (SV)
Machine, implements the set of linear decision functions and uses the SRM principle. In

IDIAP–RR 06-66 13

this section we will review how SV Machines are constructed for pattern recognition and
regression estimation, and see how the available decision rules provide a general method
of function estimation that is performed by solving only a convex (quadratic) optimiza-
tion problem. In the following chapters we will then review and explore approaches for
incorporating prior knowledge to the Support Vector learning. The practical aspects of
the methods are discussed. The presented developments provide further extentions to the
powerful, elegant and generally applicable Support Vector learning algorithms.

The Set of Decision Functions. We shall consider the following set of functions to
construct the basic linear Support Vector learning machine:

f(x) = w · x + b, (2.11)

where x is a vector in RN (input space), b is a scalar, and w is an unknown vector in RN to
be optimized. For the case of classification, the sign of the function f(x) is considered as a
classifier output.

2.2.1 Support Vector Classification

SVMs are originally a kind of linear classifier. Let us consider the following decision func-
tion, defined by w and b:

y =
{

1, if w · x− b ≥ 1
−1, if w · x− b ≤ −1.

(2.12)

The difference with (2.11) is that now the decision is taken according to the position of
the sample with respect to some margin along the hyperplane defined by w. This is an
important property, since the following result holds:

Lemma. If the training set of vectors in RN belongs to the sphere with a radius R, the
VC-dimension h of the set (2.12) is bounded with:

h ≤ min(
[
R2‖w‖2

]
, N) + 1. (2.13)

Hence the margin can be maximized to minimize the upper bound for VC dimension (2.13)
and, correspondingly, the bound for the risk (2.7). This is the key idea of the Support Vector
Machine classifier.

Thus, SVMs not only aim at separating two classes (as does the Perceptron algorithm,
for example) but also at maximizing the margin between these two classes, as depicted in
Figure 2.2. The intuitive idea is that a hyperplane with a large margin should be more
resistant to noise than a hyperplane with a small margin. SVMs are thus often referred to
as large margin classifiers. More formally, we first define strict separating constraints of
the classes as

w · xi + b, if yi = 1
w · xi + b, if yi = −1.

(2.14)

The scaling of w and b is arbitrary and fixed as above. For convenience sake, the constraints
can be rewritten as

yi(w · xi + b) ≥ 1 (2.15)

14 IDIAP–RR 06-66

The margin ρ can be easily computed as the distance between the hyperplane f(x) = 1 and
the hyperplane f(x) = −1, refer to the Figure 2.2.

ρ =
2
‖w‖

. (2.16)

Hence, the SVM algorithm has to maximize the margin (2.16) while respecting the con-

Figure 2.2. Maximizing the margin between classes leads to generalization in classification.

straints (2.15). This is usually done by minimizing the squared norm ‖w‖2. This optimi-
sation problem can be solved in Lagrangian formulation. Introducing the Lagrange multi-
pliers αi for the constraints, one has to minimize the Lagrangian L with respect to w and
b and maximize with respect to αi:

LP = 1
2‖w‖

2 −
∑̀
i=1

αiy(w · xi + b) +
∑̀
i=1

αi, (2.17)

αi ≥ 0, ∀i. (2.18)

We obtain the saddle point, where derivatives of LP with respect to the primal variables
w, b vanish:

∂LP (w, b, α)
∂b

= 0,
∂LP (w, b, α)

∂w
= 0, (2.19)

i.e.: ∑̀
i=1

αiyi = 0,
∑̀
i=1

αiyixi = 0. (2.20)

These can be substituted to Lagrangian (2.17) to get the dual formulation of the problem:

LD =
∑̀
i=1

αi − 1
2

∑̀
i,j=1

αiαjyiyjxi · xj (2.21)

IDIAP–RR 06-66 15

∑̀
i=1

αiyi = 0,
∑̀
i=1

αiyixi = 0. (2.22)

This formulation is the most widely used for the optimisation problem solving. It
should be noted that the solution depends only on the dot product of the data with nonzero
weights/coefficients, since the decision function becomes:

f(x) =
∑̀
i=1

yiαixi · x + b. (2.23)

The problem is a convex QP-problem with respect to linear constraints, and, in gen-
eral, any of well-known methods can be applied to solve it [45], [73]. But there are some
particular features that can be taken into account when developing QP-solvers [47].

From the Kuhn-Tucker conditions we obtain the following result. If αi = 0, then yi(w ·
xi + b) ≥ 1, and for αi > 0, the equality holds: yi(w · xi + b) = 1. These two possibilities,
αi = 0 and αi > 0 give the name for the whole Support Vector method. The samples from
training data corresponding to αi > 0 will fall on the hyperplanes f(x, {w, b}) = +1 or
f(x, {w, b} = −1 of the decision surface. They are called the Support Vectors. Notice, that if
we remove all other points except the SV from the training data set and train SVM on the
SVs only, we obtain the same decision boundary, i.e. SVs have the determinant meaning for
the given classification task. In particular, it gives us an opportunity to use the number of
the SVs and their location as one of the criteria for the search of optimal SVM parameters.

Soft Margin Classifier. All the techniques developed up to now for linearly separable
sets can be extended to the non-separable sets by adding slack variables ξi ≥ 0 to the
constraints (2.15) [Cortes and Vapnik, 1995]:

yi(w · xi + b) ≥ 1− ξi, i = 1, ..., L. (2.24)

As few ξi as possible should be non zero, so now the task is to minimize the functional:

τ(w, ξ) = 1
2‖w‖

2 + C
∑̀
i=1

ξi (2.25)

subject to the constraints (2.24). The first term in (2.25) corresponds to minimising of
the VC-dimension, the second one corresponds to minimising the number of misclassified
points of the training set. The positive constant C is weighting the second criterion with
respect to the first one. It also becomes an upper bound for the weights, resulting in the
box-type constraints C ≥ αi ≥ 0,∀i. This problem is also a QP-problem and it can be solved
by standard QP-solvers.

In this form, the described Support Vector learning machine is of intensive use for
data classification problems. Strictly speaking, the presented method is often referred to
as Large Margin Classifier, and its kernelised version is now called the Support Vector
Machine. This important kernel extention of the classifier will be discussed especially in
Section 2.3.

16 IDIAP–RR 06-66

2.2.2 Support Vector Regression

In the problem of regression estimation we are given a set of observations {(x1, y1), . . . , (x`, y`)}
generated from an unknown probability distribution P (X,Y) with xi ∈ RN, yi ∈ R and a
class of functions F = {f |Rn → R, α ∈ Λ}. Our task is to find a function f from the given
class of functions that minimizes a risk functional (2.1). When it is known that the mea-
surements are corrupted with additive normal noise, then minimization of the empirical
risk with a quadratic loss function (2.3) results in a best unbiased estimator of the regres-
sion f in the selected class F. But when it is only known that noise generating distribution
is symmetric, the use of linear loss function is preferable, and results in a model from the
so-called robust regression family. The Support Vector Regression model is based on the
ε-insensitive loss functions. For example the linear ε-insensitive loss is defined as

Q(y, f(x)) =
{
|y − f(x)| − ε if |y − f(x)| > ε
0 otherwise. (2.26)

Following the Structural Risk Minimization principle, the model complexity has to be pe-
nalized simultaneously with keeping empirical risk (training error) small. In analogy to
the classification case, the complexity of linear regression functions F = {f(x)|f(x) =
w · x + b} can be controlled by the term ‖w‖2. We refer to [75] for the strict foundation
of the latter. Introducing the slack variables ξ and the corresponding trade-off constant C,
this results in the following optimization problem:

minimize
1
2
‖w‖2 + C

∑̀
i=1

(ξi + ξ∗i) (2.27)

subject to

f(xi)− yi − ε ≤ ξi
−f(xi) + yi − ε ≤ ξ∗i

ξi, ξ
∗
i ≥ 0 for i = 1, . . . , ` .

Introducing Lagrange multipliers leads to the following dual formulation of the problem:

maximize −1
2

∑̀
i=1

∑̀
j=1

(α∗i − αi)(α∗j − αj)xi · xj

−ε
∑̀
i=1

(α∗i + αi) +
∑̀
i=1

yi(α∗i − αi) (2.28)

subject to

∑̀
i=1

(α∗i − αi) = 0

0 ≤ α∗i , αi ≤ C for i = 1, . . . , ` .

This problem is a Quadratic Programming problem hence can be numerically solved by
a number of standard or specialized methods ([47], [70], [73]). The prediction is a linear
regression function:

f(x) =
∑̀
i=1

(α∗i − αi)xi · x + b (2.29)

IDIAP–RR 06-66 17

where b can be found easily given the constraints in 2.28. The same properties as for SV
classification holds for SVR: the solution is sparse (usually, most of the α weights are zero),
robust, and unique due to QP optimization. The hyper-parameters of SVR are therefore
C and ε. The positive constant C is the parameter that defines the trade-off between
training error and model complexity. In dual formulation C defines the upper bound of the
multipliers αi and α∗i (2.28), hence defines the maximal influence a sample can have on
the solution. This means that the more noisy the data the less should be the value of C.
The positive constant ε is the width of the insensitive region of the loss function. This is
the parameter that mainly defines the sparseness of the SVR solution - the points that lie
inside the ε-tube have zero weights.

2.3 Kernels

Kernel Methods are playing an important role in Machine Learning being one of the the-
oretically well-founded methods which showed promising performances on real-life prob-
lems [63]. Support Vector Machines, one of the basic and most advanced algorithms, is a
natural field for applying kernels. Given a training set ((x1, y1), (x2, y2), ...(x`, y`)) of ` sam-
ples, most kernel methods typically model them with the following hypothesis function:

f(x) =
∑̀
i=1

αiK(xi,x) + b, (2.30)

where K(xi,x) is a kernel function and αi and b are the parameters to optimize. For binary
classification task (yi ∈ {+1,−1}) the decision is usually taken according to the sign of
(2.30), and the weights α appear to be positive or negative according to the label of the
corresponding sample.

The application field of kernel algorithms (basically, SVMs) is quite wide. It includes a
number of tasks in the field of text processing [30], image processing [48], gene structure
analysis [23], time series analysis and prediction [44], environmental applications [32].

2.3.1 Kernel Trick

The following result justifies the so called kernel trick:
Theorem(Mercer). Consider a continuous symmetric function K(x,x′) : X2 → R where

we denoted an input space as X. If for any function g ∈ L2(C), C is the compact subset of X,∫
C

∫
C
K(x,x′)g(x)g(x′)dxdx′ ≥ 0 (2.31)

then it can be expanded in a absolutely and uniformly converging series

K(x,x′) =
∞∑
k=1

akψk(x)ψk(x′) (2.32)

where ψk(.) and ak ≥ 0 is the eigensystem of the corresponding integral operator with a
kernel K(x,x′).

18 IDIAP–RR 06-66

For us it means that for every function K(x,x′) satisfying the conditions of the theorem
there exists a feature space where it acts as a dot product. Mercer theorem gives one
way of obtaining a dot product from a kernel function. Note that the exact mapping x 7→
{√akψk(x)} from input space to the feature space is undefined, but we can be sure that
this space exists. If one wants to use a definite feature space and can provide the explicit
mapping to it then the kernel function would be just a dot product in this feature space.

Therefore, given a kernel function and some learning algorithm formulated only in
terms of the dot products between input samples, one easily obtains a non-linear form
of the algorithm. This is the case for a number of contemporary algorithms such as
Support Vector Machines both for classification [6] and regression [75], Kernel Ridge Re-
gression [59],[49], Kernel Principle Component Analysis [61], Kernel Fisher Discriminant
Analysis [41], etc.

Considering the optimization problems and the decision rules of Support Vector algo-
rithms ((2.21), (2.23) for classification and (2.28), (2.29) for regression), one can see that
the training samples only appear in the terms of dot products. Therefore, the kernel trick
can be directly applied with substituting the dot products with kernels:

x · x′ 7→ K(x,x′). (2.33)

Thus, a non-linear extension of the Support Vectror algorithms is derived. The basic model
which is used in Support Vector learning is a kernel expansion (2.30).

2.3.2 Choosing Kernel Parameters

An important question which arises in this framework is thus the choice of the kernel func-
tion. Kernel functions explicitly define the feature space hence they are of crucial meaning
for the performance of the algorithm. The kernel function is also a factor that defines the
capacity of the model. Kernel design methodology, and the particular problem of incorpo-
rating some prior knowledge into the kernel function is an important part of the presented
work.

There are several widely used kernels in SV learning. These are

• Polynomial kernel: K(x,x′) = (x · x′ + 1)p, p ∈ N.

• Gaussian RBF kernel: K(x,x′) = e
(x−x′)2

2σ2 , σ ∈ R+.

In these simple kernels, one has to tune one or two hyper-parameters, which is usually
done using cross-validation or validation error minimization with grid search. More so-
phisticated approaches are based on a number of estimates for cross-validation errors and
gradient descent method in the kernel parameter space [12]. Another branch of research
in this direction concerns learning the kernels from data, as it is introduced in [40].

2.4 Invariant Learning with Kernel Methods

It is often desirable to include some prior knowledge to the data model. By prior knowledge
we mean any information about the task that is given in addition to the training samples.

IDIAP–RR 06-66 19

In this general setting, the usual smoothness assumption (the smoothness of the model-
ing function in the vicinity of training samples) is also accepted based on a kind of prior
knowledge. This assumption is actually one of the basic principles in Machine Learning
[15]. However, more specific knowledge can also be used to improve the model quality.
One of the most useful specific prior information is a knowledge on the invariances of the
problem. We mean by the notion of invariance that the output of the learning system is
unchanged while the inputs are transformed by some operator. Invariance under shifts
and small rotations in the field of character recognition is a well-known example.

Among the growing activity in the application of kernel methods to real-world problems,
the question of incorporating invariances into kernel-based models is of particular interest
[24].

A general approach to the problem was considered in [8]. Suppose we deal with a sparse
kernel model, where part of the αi weights in (2.30) are equal to zero, and the samples xsvq
with αq 6= 0 are the Support Vectors (SVs). Consider a model representation of the kind:

f(x) =
∑
q

αqK(xsvq ,x) + b. (2.34)

To provide the invariance of (2.34) to the small continuous transformation of the input
vectors x 7→ x + dx, the following value should be unchanged:

dρ =
∑
q,i

αqdxi∂iK(xsvq ,x), (2.35)

where ∂i ≡ ∂/∂xi and xi is the i-th component of the vector x. Assuming the following
one-parameter transformation

x′i = xi + γχi(x), γ ∈ R1, (2.36)

defined with some function χi(x) the desired invariance will be satisfied if the kernel func-
tion K(xsvq ,x) obeys the following equation:∑

i

χi(x)∂iK(xsvq ,x) ≡ 0. (2.37)

For the case of multiple invariances one has to find the non-trivial integrals of the system
of equations corresponding to (2.37).

Given all the independent integrals of the system of equations of the kind (2.37), one
can construct the kernel, satisfying the desired invariances.

Although this approach is quite general, it suffers from a number of drawbacks. First,
the decision function for the classification problem is the sign of (2.34). Thus, we are in-
terested in keeping the sign of (2.34) unchanged under the transformation, and not the
function (2.34) itself. Next, it is indirectly supposed that the set of Support Vectors {xsvq }
and weights αq are unchanged when the model is retrained on the data transformed by
(2.36), which may not be the case even for small values of γ. Moreover, since one needs
to find the integrals of the system which consists of equations such as (2.37), the proposed
approach is not applicable practically for high-dimensional data, especially when dealing
with multiple invariances.

20 IDIAP–RR 06-66

Therefore, more specific methods have to be developed for practical use. The evident
way consists in developing application-specific kernels for different types of data.In the
presented research we, however, develop more general methods that can be applied in dif-
ferent areas. Our general (but not strictly obligatory) assertions to the desired methods
are as follows. We would like the methods to be general enough to be used for most ap-
plications. The computational complexity of the algorithm (hence its speed) should not
exceed the computational complexity of the base state-of-the-art methods (SVMs). More-
over, ideally we would like to exploit the existing optimization algorithms, developed for
SVM training [47], [16].

The presented work includes modifications of state-of-the-art methods as well as the
development of new approaches. More detailed description of the existing methods and the
main directions of our research are presented in the next chapters.

Now we describe the state-of-the-art of invariant learning with kernels in more details.

2.4.1 Virtual Samples

Injecting virtual samples into the training database is a general state-of-the-art method
for incorporating invariances that can be used in a number of ML algorithms [46]. Applied
to SVMs, it can be modified into the Virtual Support Vector method (VSV) [60].

The idea of the method is to add virtual samples made only from the Support Vectors of
the problem, transformed according to the desired invariance. The presence of the Virtual
Support Vectors in the training set makes the solution more invariant to the considered
transformation, while preventing too large training dataset (since SVs are often only a
small part of the whole dataset).

Another related approach is known as Jittered Kernel and was proposed in [17]. The
method combines generating artificial examples which are not included into the dataset
but used for kernel function modification.

Regularization Theory.

The SRM principle has a strong analogy in regularization theory, developed in the 1960s
by Tikhonov (see for example, [Tikhonov and Arsenin 1972]). Regularization is a method
of solving problems by making some prior assumptions about the desired function. Instead
of minimizing the loss function directly, one minimizes the so-called regularized functional
containing two terms - the loss function and a special type of functional that reflects the
chosen method of regularization.

Instead of minimizing the loss functional

Remp =
1
`

∑̀
i=1

Q(yi, f(xi, α)), (2.38)

which is analogous to the ERM principle, one instead minimizes the regularization func-
tional

Rreg =
1
`

∑̀
i=1

Q(yi, f(xi, α)) + λΨ(α), (2.39)

IDIAP–RR 06-66 21

where λ is an appropriately chosen constant, and Ψ is a regularization term. Typically,
Ψ is a measure of smoothness of f(x), defined as some measure on the parameters α. If
Ψ coincides with some measure of capacity, then the regularization method is analogous
to the SRM principle. The constant λ controls the trade-off between smoothness of ap-
proximation (generalization ability or confidence interval) and accuracy of approximation
(empirical risk). Moreover, the following links of regularization and invariant learning
exist.

Regularization and Invariant Learning

The link between the approach of virtual samples and regularization was shown in [37].
For a learning algorithm based on the squared loss function it was shown that under a
number of assumptions training the model with virtual examples in the training set is
equivalent to adding a regularization term to the risk functional.

In this setting, it is considered that the original training data are randomly corrupted
with some parametrized transformation. For example, for the case of local translational
invariance, i.e. to the transformation of the input samples xi ↪→ xi + δxi, where δxi are
considered to be normally distributed with variance σδ, it can be shown that the following
regularization term has to be used:

Ψ(x,w) ∼
∫
σδ

2|∇xf(x,w)|2p(x)dx. (2.40)

For the case of linear regression function f(x) = w · x + b, it converges to the familiar term
‖w‖2.

However, the assumptions needed for this equivalence are quite strong. For other loss
functions (including the loss functions of Support Vector Machines for regression and clas-
sification) the existence of such kind of equivalence is a hard problem. Some links between
SVMs and regularizartion framework are presented in [69], more links with emphasis on
regression are revealed in [19].

The evident link between the VSV approach, jittered kernel and regularization is also
a subject of our consideration. The general approach developed later in Chapter 3 is based
on the objects “built” on samples and hence is a kind of limit case of the virtual sample
approach.

2.4.2 Transformation Manifolds

Given an invariant transformation, we can consider that every sample is potentially equiv-
alent to the manifold generated by this transformation. For this setting, a number of
approaches were developed. Here we describe the two branches linked with the further
research results presented in the subsequent chapters.

Tangent Distance

Tangent vectors were extensively used in the work of [67] to introduce invariances. A tan-
gent vector is simply a linearization of the transformation at the given point. Then, a span

22 IDIAP–RR 06-66

of all the tangent vectors is a linear tangent manifold. In the case of J local transformations
one can linearly approximate the actual manifold S(x, ϑ) as follows:

Slinear(x, ϑ) = x +
J∑
j=1

(ϑj − ϑ0
j)Lϑj

(x), (2.41)

where Lϑj
(x) are local transformations of x defined by:

Lϑj
(x) =

∂S(x, ϑ)
∂ϑj

∣∣∣∣
ϑ=ϑ0

. (2.42)

Note that Lϑj
(.) are operators that generate the whole space of local transformations (a

Lie algebra of local transformations). For example, three operators of X-translation, Y-
translation and rotations about the origin produce a transformation (and a corresponding
object) of all possible translations and rotations.

Tangent vectors `j(x) can be obtained by discretising the result of applying the operators
Lϑj

to the sample x. This is caused by real-life representation of images with picsels, while
the transformation operators are defined on continious objects. The direct application of
the Tangent Distance for SVM kernels was considered in [25]. This approach, however, has
to be further developed in order to include non-local and non-linear transformations.

Invariance with Semi-Definite Programming

Considering the invariant manifold as a polynomial trajectory in the input space (which
includes tangent manifold representation for single invariance), the algorithm for learning
linear classifiers is based on semi-definite programming. The Semi-Definite Programming
Machine (SDPM) [21] is able to find a maximum margin hyper-plane when the training
examples are 2nd order polynomial trajectories instead of single points. The solution is
found to be sparse in dual variables and allows to identify those points on the trajectory
with minimal real-valued output as virtual support vectors. However, this optimization
problem is time consuming to solve. Furthermore, the invariant transformations with
more than one transformation parameter are hard to handle with this method.

2.4.3 Algorithms

In order to include the prior knowledge on invariances into the SVM classifier, one can mod-
ify the algorithm itself. As the margin is a key idea of the method, margin maximization
can be constrained in the following way. Instead of maximing the margin by minimizing
‖w‖2, consider the following:

(1− γ)‖w‖2 + γ
∑̀
i=1

(w · `j(x))2, (2.43)

where `j(x) is a tangent vector (see previous section) and γ ∈ [0, 1] controls the relative
influence of the terms. The second term actually constrains the decision function of the
linear SVM (2.11) to be smooth in the direction of tangent vector of the invariance, since:

f(xi + `i(x))− f(xi) = w · `i(x). (2.44)

IDIAP–RR 06-66 23

This is solved under the usual constraints (2.15) to enforce the SVM classifier to be
invariant to local transformations. This can be generalized to the kernel version of SVM,
while it requires complex computations (LU decomposition of the kernel matrix) and can
not be handled on large training databases [11].

2.4.4 Invariant Features

An application-specific method of invariant learning consists in the use of invariant fea-
tures. The relevant invariant features are first extracted from the raw data. Next, a
“standard” kernel, such as RBF or polynomial, is used in the learning method. The prior
knowledge on invariances is then included into the extracted features and not to the learn-
ing algorithm.

The areas of feature selection and kernel design are naturally linked. It is not possible
to provide a boundary between these fields to discriminate where feature selection ends
and kernel design starts. The feature selection process can be often included directly into
the kernel calculation. In this work, we develop general methods devoted to invariance
incorporation into kernel methods. Invariant features are not considered. However, we
mention the most important current trends in the state-of-the-art in this field.

In the field of image analysis and object detection, SVM-based systems are used ex-
tensively. A number of recent developments in the image processing field are considered
as potential candidates for baseline methods used for kernel design. The latter includes
the approach of [65] based on the analysis of the objects using the statistics of parts, the
approach of [38] where the Scale Invariant Feature Transform is introduced, that provides
a way to produce a set of feature vectors invariant to basic image transforms, the approach
of [42] based on detecting the interest points from the image and computing the set of
features therein.

2.5 Conclusions

In this Chapter we presented the background for Machine Learning with Kernel Methods.
The state-of-the-art of learning with prior knowledge and invariances was presented as
well. In the next Chapters, the new approaches will be developed, which provide solutions
for invariant learning with prior knowledge in different conditions. Given different repre-
sentation of the invariances, the methods to incorporate this information will be presented.
The presentation is organized in three main parts. First, in Chapter 3, we incorporate
invariances by modifying the kernel functions for standard kernel algorithms. Next, in
Chapter 4, we develop some approaches based on the construction of the new algorithms
based on prior knowledge. Then, the kernel trick is applied. Finally, in Chapter 5, we adapt
the approach from semi-supervised learning, which exploit unlabelled data to enforce the
desired properties of the kernels.

24 IDIAP–RR 06-66

Chapter 3

Invariant Kernels

This chapter presents a general method for incorporating prior knowledge on invariances
into kernels. These kernels can be used in classification methods such as Support Vector
Machines. It applies when the prior knowledge can be formalized by the description of an
object around each sample of the training set, assuming that all points in the given ob-
ject share the same desired class. A number of implementation techniques of this method,
based on hard geometrical objects and soft objects based on distributions are considered.
Tangent vectors are extensively used for object construction. Empirical results on one ar-
tificial dataset and two real datasets of Electro-Encephalogram signals and face images
demonstrate the usefulness of the proposed method. The method can establish a founda-
tion for an information retrieval and person identification systems. This chapter is mainly
based on the publications [55], [50].

In this chapter we assume that the prior knowledge can be formalized as a mapping
of a special kind. This mapping transforms each sample into an object in such a way that
it includes the prior knowledge, similar to that done in the Tangent Distance approach of
Simard et al. (1998) [67] applied to neural networks. The method does not lead either
to enlarged training sets or to the modification of the cost function as opposed to other
techniques. It simply exploits standard SVM optimization algorithms. It uses local models
(objects) based on training samples. The restrictions for these models (i.e. the conditions
for the object to be a tangent manifold, etc.) will be introduced as needed.

The rest of the chapter is organized as follows. The general idea is presented in Sec-
tion 3.1, as well as two implementations for hard geometrical (Section 3.2.1) and soft
distribution-based objects (Section 3.2.2). We give links to several other approaches in
Section 3.3.1. Section 3.4 presents the experiments on artificial data where we illustrate
the performance of the proposed method, and on two real datasets, where the first task is
to classify EEG signals for a Brain-Computer Interface system and the second is devoted
to a number of classification tasks in the area of face recognition and person identification.
Section 3.5 completes this chapter with a discussion of the presented results.

3.1 From Samples to Objects

Suppose we have some understanding of our data that can be formalized as a transforma-
tion of the inputs that leaves the outputs unchanged. For example, in a 2D image classifi-

25

26 IDIAP–RR 06-66

cation task we are often given the evident knowledge that small rotations and translations
of the raw images do not affect the desired output class. Suppose the representation of the
data (the set of features) allows us to describe the desired transformation as a mapping
that leaves the outputs unchanged. The mapping applied to every sample produces a set
of corresponding objects, which becomes a point of our consideration. In other words, we
assume that given some understanding of the data we are able to generalize each sample
into the equivalence class - the object in the input space. By doing this we aim to capture
some prior similarities in the data. If this formalization is successfully performed, it is pos-
sible to deal with objects instead of samples when solving our particular learning problem.
We will consider several kinds of such objects below.

3.1.1 Hard Objects

We define “hard” geometrical objects by the following transformation

xi 7→ Sxi = {ϕϑ(xi), ϑ ∈ Ω}. (3.1)

Function ϕϑ(.) defines a set in the input space through the admissible set Ω of parameters
ϑ. For example, one can consider segments or circles instead of points xi.

3.1.2 Soft Objects

Instead of using hard geometrical objects one can define an object as a local distribution of
the kind

xi 7→ p(x|xi, ri), (3.2)

where ri is a vector of parameters of the local distribution p(x|xi, ri). This distribution is
constructed in a way to describe the desired local transformations of a sample. It represents
the probability that a given point x is in fact a (transformed) sample xi.

Though a uniform distribution on the bounded support can be considered as a hard
object, we still discriminate the hard/soft cases due to the different underlying approaches
used to define the kernel functions.

3.1.3 Objects Based on Tangent Vectors

One evident way to create objects from samples is to use the tangent vector approach.
Tangent vectors were extensively used in the work of [67] to introduce invariances into
neural networks. We will now present the notion of tangent vectors in a way suitable for
further applications in image processing. A good intuition for the following equations lies
in considering 2D images on the plane (ξ, ψ). The intensity of the image is defined by some
function U(ξ, ψ). It provides a high-dimensional input vector x for a given discrete set of
coordinates (ξ, ψ).

Suppose the 2D transformation of the image plane tϑ we want to be invariant to is
defined by the set of parameters ϑ in some region of D ⊂ R2:

tϑ : D ⊂ R2 7→ tϑ(D) ⊂ R2, (3.3)

where ϑ is a J-dimensional vector which parametrises the transformation. This transfor-
mation is assumed to be differentiable with respect to ϑ and (ξ, ψ) ∈ D, and reduces to the

IDIAP–RR 06-66 27

identity transformation for some value of ϑ0. Then the object generated by this transfor-
mation and associated with an image U is defined by

S(U, ϑ) = U ◦ t−1
ϑ , ϑ ∈ Ω, (3.4)

where Ω is some admissible set of parameters ϑ. In the case of J local transformations one
can linearly approximate S(U, ϑ) as follows:

S1(U, ϑ) = U +
J∑
j=1

(ϑj − ϑ0
j)Lϑj

(U), (3.5)

where Lϑj
(U) are local transformations of U defined by:

Lϑj
(U) =

∂S(U, ϑ)
∂ϑj

∣∣∣∣
ϑ=ϑ0

. (3.6)

Note that Lϑj
are operators that generate the whole space of local transformations (a

Lie algebra of local transformations). For example, three operators of X-translation, Y-
translation and rotations about the origin produce a transformation (and a corresponding
object) of all possible translations and rotations. Tangent vectors `j(x) can be obtained
by discretising the result of applying the operators Lϑj

to the continuous image U which
correspond to a discrete sample x.

The examples of tangent vectors calculation for widely used transformations such as
rotations and scaling are shown below:

• Rotation:
tϑ =

(
cosϑ
sinϑ

− sinϑ
cosϑ

)
, Lrotϑ = ψ ∂

∂ξ − ξ ∂
∂ψ . (3.7)

• Scaling:
tϑ =

(
1+ϑ

0
0

1+ϑ

)
, Lscϑ = ξ ∂∂ξ + ψ ∂

∂ψ . (3.8)

If Ω = RJ , (3.4) is a J-dimensional differentiable manifold and (3.5) is a corresponding
linear tangent manifold which is used in the tangent distance method of Simard et al.
(1998) [67]. However, tangent vectors can hardly model the transformation of complex
images, such as faces, providing acceptable results only for small values of ϑi. Therefore,
the bounded set of parameters ϑ ∈ Ω can be used. Since every parameter ϑi corresponds
to a transformation we intend to be invariant to, then the choice of the set Ω defines the
influence of this or that type of prior information on the invariances. Later, we will use
tangent vectors for the construction of specific distributions which represent soft objects.

3.1.4 Objects Based on Sample Models

In general there is no need to build identical objects for every sample. Consider an exam-
ple from Optical Character Recognition (OCR). There is no need to build an object which
represents a set of symmetrically rotated characters for every sample of the database. A
number of characters may appear to be rotated significantly already and the latter object
representation would make them worse by rotating them unreasonably much.

28 IDIAP–RR 06-66

So far, object construction can also be thought of as follows. Suppose we have a model
Ψ(.) for the samples we are dealing with. The model represents our knowledge of the
sample’s properties and can be of a very general kind. Note that it has to be output-
independent to be used at the predictions stage. Given a sample from the dataset, the
model transforms it into an object based on some estimated sample-dependent parameters:
objecti = Ψ(samplei). Following the example from OCR, suppose we estimated the angle a
digit character is rotated by, hence an object will be constructed to describe basically the
rotation in the opposite direction.

However, practical implementation of this approach requires solving the tasks of application-
dependent model construction and estimation of model parameters, which are rather com-
plicated and will not be considered further here.

3.2 Tangent Vector Kernels

There are two major ways to make use of objects in kernel methods. Generally, one would
like to formulate a criterion for a learning algorithm directly for objects. For example, a
criterion can be to maximise the margin between objects of different classes. It will be
considered later in Chapter 4.

We explore here another approach based on defining a kernel function for objects, which
can be used in a standard algorithm like SVM.

3.2.1 Kernels for Hard Objects

Since we apply our knowledge directly and deal with objects in the input space, it is rea-
sonable to deal with distance-based kernels that have clear intuitive interpretation as a
measure of similarity.

Suppose one uses a distance-based kernel, for example the commonly used Gaussian
Radial Basis Function (RBF) kernel:

K(xi,xj) = e
−ρ(xi,xj)2

2σ2 , (3.9)

where sample-to-sample distance in the input space is defined by ρ(xi,xj)2 = ‖xi − xj‖2

and σ2 is the variance of the kernel.
Substituting the object-to-object distances into the kernel, one includes the prior knowl-

edge into the algorithm. The problem here is to provide a way to compute distances be-
tween objects efficiently. In the following subsections we give some simple examples of
distances that can be derived analytically and calculated efficiently.

Linear Scaling

Consider the linear transformation

x 7→ Gx = {ϑx, ϑ ∈ [a, b]} (3.10)

where a, b ∈ R. This transformation corresponds to a brightness change of the image
(given a raw image representation) or to an amplitude scaling of the signal. Note that in

IDIAP–RR 06-66 29

general for a finite range of ϑ this transformation cannot be taken into account by simple
normalization of the input data.

Consider the distance given by:

ρ(x, G(x̂))2 = (x− |ϑ∗|[a,b]x̂)2, ϑ∗ =
x · x̂
x̂2 , (3.11)

where |g|[a,b] is defined as a if g < a, b if g > b, and g otherwise. This is simply the distance
between x and the segment Gx̂ = [ax̂, bx̂] of the line corresponding to the directing vector
x̂. Though segment-to-segment distance can be easily derived, we will use a symmetrized
sample-to-segment distance in the experiments below for an illustrative artificial example
(Section 3.4.1) and the task of EEG signals classification (Section 3.4.2).

Translations

The second example is a particular case of translation invariance, i.e. the desired transfor-
mation is

x 7→ Px = {eiti + x; ti ∈ [−tlimi , tlimi]}, (3.12)

where ei are the basis vectors of the input space RN and tlimi is the maximum allowed
translation in dimension i, with i = 1, 2, ..., N . It corresponds to the mapping into an inte-
rior of the cuboid whose “center” is vector x and all the edges are parallel to the axes. This
transformation corresponds to a speckle noise in the image and its use will be illustrated
experimentally in Section 3.4.3.

The distance between vector x and cuboid Px̂ is given by minimization of

ρ(x, Px̂)
2 = min

~t
(x− Px̂(~t))

2, (3.13)

over the set of parameters ~t = {t1, t2, ...tN} and can be calculated as follows:

ρ(x, Px̂)
2 =

N∑
i=1

((xi − x̂i)− |xi − x̂i|[−tlimi ,tlimi])
2, (3.14)

where xi, x̂i are the components of the corresponding vectors.
The distance between two objects defined by (3.12) can be similarly computed with

ρ(Px, Px̂)
2 =

N∑
i=1

∣∣∣|xi − x̂i| − 2tlimi
∣∣∣
[0,∞]

. (3.15)

We will use this distance later for noisy image classification (Section 3.4.3).

Object to Object Distances

Using the sample-to-object distances, we take into account some prior knowledge but still
use a kernel matrix that might not be positive definite. One can use an average of two
sample-to-object distances to make the kernel matrix symmetric. Ideally, an object-to-
object distance may be preferable, but its calculation is often quite a difficult task and

30 IDIAP–RR 06-66

can not always be easily performed. For the considered examples it is possible to compute
segment-to-segment and box-to-box distances (3.15).

In general, the computation of the Euclidean distance between the objects leads to a
constrained optimization problem. Consider two objects S(x, ϑ) and Ŝ(x̂, ϑ̂). We approx-
imate the Euclidean distance between them with the Euclidean distance between their
linear approximations:

ρ(S, Ŝ)2 ' ρ(S1, Ŝ1)2 = min
ϑ,ϑ̂

(
x− x̂ +

L∑
i=1

ϑi`ϑi
(x)− ϑ̂i`ϑ̂i

(x̂)

)2

, (3.16)

subject to
ϑi ∈ [ϑmini , ϑmaxi], ϑ̂i ∈ [ϑ̂mini , ϑ̂maxi]. (3.17)

This problem can be considered as a Nearest Point Problem and a number of simple
iterative methods such as Gilbert’s or Mitchel-Demyanov-Malozyomov algorithms (which
are also used for SVM training) can be applied for distance minimization (e.g. Keerthi et
al. (2000), [34] and references therein). By controlling the maximum number of iterations
one defines a trade-off between accuracy and speed. The unconstrained problem (3.16)
corresponds to the Tangent Distance method. Its direct application for SVM kernels was
considered by Haasdonk and Keysers, (2002), [25].

3.2.2 Kernels for Soft Objects

Given a soft object in a form of local distributions centered at each sample, one can apply
a number of approaches developed in statistics for comparing two distributions. We first
introduce here a special kind of distribution which makes use of tangent vectors. Next, we
present some methods for defining the corresponding kernels.

Local Distributions based on Tangent Vectors

Suppose the transformation we want to be invariant to defines a differentiable manifold
in the input space. Hence the tangent vectors can be defined as described above, and the
whole set of tangent vectors can be used to model all the local linear transformations of the
given image. Let us define the following function H which gives the measure of proximity
of a given vector x to the linear span of some vector x′ generated with a tangent vector `j :

H(x
∣∣x′, `j) = e

−
(x−x′)2`2j−((x−x′)·`j)2

2γ2
w`2

j , (3.18)

where γw is the parameter related to the width of the proximity region.
The following distribution Ks describes a similarity between given sample x and an

object based on sample x′ generated by a set of corresponding tangent vectors {`1, ...`J}:

Ks(x,x′) = e−
(x−x′)2

2σ2 ·
J∏
j=1

(η +H(x
∣∣x′, `j)) (3.19)

where σ is a bandwidth and the real number η ∈ [0, 1] defines the shape of the distribution.

IDIAP–RR 06-66 31

Assuming η = 0 in (3.19) and applying normalization, one can reduce (3.19) to a stan-
dard Gaussian:

Ks(x,x′) = e
−(x−x′)T L−1

x′
(x−x′)

(2π)N/2|Lx′ |1/2 , where :

L−1
x′ =

(
1

2σ2 + J
2γ2

w

)
I −

J∑
j=1

`j`
T
j

2γ2
w`

2
j
,

(3.20)

where I is an identity matrix, and |...| denotes the determinant. This representation will
be extensively used below for kernel evaluation.

Tangent Vector Kernels

The simplest way to use the latter distribution for introducing invariances into kernel
methods is to consider (3.19) as a one-sided (sample-to-object) similarity measure. Then, a
two-sided kernel Kd can be obtained by taking the following average:

Kd(x,x′) =
1
2
(Ks(x,x′) +Ks(x′,x)). (3.21)

The proposed kernel combines the advantages of both Virtual Support Vectors and Tangent
Distance approaches. In this approach we not only analytically include the Virtual SV into
the model (without putting them into the data), but also take into account all the linear
combinations of invariant transformations of interest. Moreover, using all the tangent vec-
tors which correspond to linear transformations, one can take into account all the possible
local linear transformations of an image.

The proposed kernel (3.19)-(3.21) is not the only possible one to make use of the tan-
gent vectors. Other kernels can be constructed in a similar way to the one presented by
combining the terms (3.18) in a different manner.

3.3 Distribution-Based Tangent Vector Kernels

To be consistent in the sample-to-object approach, let us consider the distributions (3.18)
defined for every sample. We introduce the Distribution-based Tangent Vector Kernel (DB
TVK) as follows. The kernel can be obtained by measuring the overlap of two distributions
that correspond to the object based on samples x and x′. To do this we introduce the
following kernel between two distributions:

KB(x′,x′′) =
∫
Ks(x,x′)ρKs(x,x′′)ρdx, 0 ≤ ρ ≤ 1, (3.22)

which is a dot product in the space of functions Ks(.,x′) and was called the probability
product kernel in Kondor and Jebara (2004).

The closed form of KB(x′,x′′) can be obtained for a number of cases. For η = 0 and
using equation (3.20), KB(x′,x′′) reduces to integration of Gaussians and can be expressed
as follows:

KB(x′,x′′) = (2π)
(1−2ρ)N

2

∣∣∣L̂∣∣∣ 12 |Lx′ |−
ρ
2 |Lx′′ |−

ρ
2 · exp(−ρ

2x′TL−1
x′ x′ − ρ

2x′′TL−1
x′′ x

′′ + 1
2 x̂T L̂x̂)

(3.23)

32 IDIAP–RR 06-66

where L̂ = (ρL−1
x′ + ρL−1

x′′)
−1 and x̂ = ρL−1

x′ x′ + ρL−1
x′′ x

′′. A closed form equation for the
distribution-based tangent vector kernel can also be derived for η 6= 0 and ρ = 1, which is
more interesting but yields an even more cumbersome expression. We consider this case
in the next section.

Making Distribution-based TVK practical

Direct implementation of the proposed DB TVK demands costly computations. Therefore,
we propose here a practical way to compute (3.22). It consists of computing the approxi-
mation of the integral (3.22) for η 6= 0, ρ = 1 and Ks(x,x′) as presented in (3.19). Note that
we fixed ρ = 1, hence the latter approximates the corresponding expected likelihood kernel.
The following approximation can be used:

KB(x′,x′′) = I0 + (1 +
σ2

2γ2
w

)
1−D

2

J∑
j=1

(I ′j + I ′′j) + ..., (3.24)

where
I0 = e−

(x′−x′′)2

4σ2 . (3.25)

The term I0 correspond to the RBF kernel between samples x′ and x′′. The terms I ′j and I ′′j
correspond to the impact of jth invariance of the samples x′′ and x′ to the samples x′ and
x′′ correspondingly. The exact expressions of I ′j and I ′′j are quite cumbersome, which can
be obtained as explained. The expansion of (3.22) with terms given by (3.19), ρ = 1 and
η = 1 consist of the sum of products. One can neglect the terms which include the products
of three and more exponents. Then the integration of the rest terms is analogous to (3.23).
This approximation requires only O(J ·N) operations to compute. The exact expression is
out of the scope of our analysis, however. We present here the most important conclusion.

The impact of invariances reduces as the input dimension increases. Considering equa-
tion (3.24), one can see that with increasing dimension of the input space D second term
in (3.24) decreases. For very high dimensional input spaces its influence vanishes, and
the only term that matters is I0. We’ve faced this problem in our experiments, which we
describe later in Section 3.4.4.

3.3.1 Links with Kernel Jittering and Virtual SV

The distance between hard objects is a distance between some of the points the objects
consist of. The points that give minimum to the distance effectively affect the model and
can be considered as virtual samples. This allows interpretation of the described approach
as a kind of virtual sample approach with automated choice of virtual samples, which may
differ for every pair of objects. Furthermore, virtual samples can be used to replace tangent
vectors with finite difference vectors. It appeared to be useful in our face classification
experiments (see Section 3.4.3).

In analogy with the Virtual Support Vector approach of Scholkopf et al. (1996), [60],one
can define objects based on pre-determined support vectors only to enhance the speed of
the algorithm.

The method of kernel jittering was proposed by DeCoste and Burl (2000), [17]. It com-
bines artificial sample generation and kernel function modification as follows. Consider

IDIAP–RR 06-66 33

two samples, xi and xj and the corresponding non-jittered kernel function Kij . Assume
sample xj could have been any of a set of values around xj according to the desired trans-
formation. Consider the transformed (“jittered”) forms of the sample xj , including itself,
and select one (xq∗) closest to xi in the feature space according to the Euclidean distance in
the feature space:

q∗ = arg min
q

√
Kii − 2Kiq +Kqq. (3.26)

The new “jittered” kernel for the examples xi and xj is simply Kiq∗ . This idea can be
interpreted as follows. Believing that transformed examples belong to the same class,
kernel jittering corresponds to a kernel based on the distance between the sets generated
from the examples by the allowed transformations.

The main drawback of the jittering approach is the need to do a lot of kernel calculations
while selecting the minimal distance (3.26). The approach also requires that we do these
calculations during the testing phase. Next, we have to note that the resulting valueKiq∗ is
not a kernel in its strict sense. The kernel matrix becomes non-symmetric and may appear
to be non positive-definite. Thus, this approach may suffer from computational problems
at the training phase.

The distance-based methods proposed above can be considered as an analytical jitter-
ing. It does not suffer from the drawbacks described above, however it introduces valuable
restrictions on the allowed transformations.

3.4 Applications and Experiments

It is often difficult to formulate real-life problems in a way suitable for object definition
in the input space. For example, it is difficult to define objects that correspond to the
invariances of interest in image processing such as 3D rotations with changing lighting
conditions. This is one of the drawbacks of the described approaches.

We present a series of experiments illustrating the proposed approaches. These are
an artificial two-class classification task, a problem of EEG signals classification and a
number of face image classification tasks.

3.4.1 Artificial Data

To illustrate the action of the considered methods, we used an artificial dataset generated
to be invariant to (3.10). The goal is thus to illustrate the influence of the modified kernels
on the decision boundary.

Figure 3.1 illustrates the training data for both classes and the decision boundaries
obtained with the following algorithms: the left image shows the original SVM with RBF
kernel (σ = 0.2); the center one shows an SVM with RBF kernel (σ = 0.2) and distance
defined by (3.11) with a = 0.5, b = 2; finally, on the right we see an SVM with RBF kernel
(σ = 0.2) and distance defined by (3.11) with a = 0.01, b = 10. The substantial difference
between the presented solutions lies in the number of support vectors, which is 20 for the
standard solution (left figure) and 8 for the modified one (right figure). Note, that given
the knowledge of global scaling invariance (Equation (3.10) with ϑ ∈ R) one could obtain
the right solution by simply using input normalization. However, this is not the case if the
scaling is bounded (Equation (3.10) with ϑ ∈ [a, b]).

34 IDIAP–RR 06-66

Figure 3.1. Artificial two-class classification problem. Black training points have to be discriminated against
white training points. Left: Original decision function of an SVM with RBF kernel (σ = 0.2), Center: decision
function using slightly modified kernel, Right: decision function facing full invariance.

3.4.2 EEG Signals Classification

The next series of experiments used EEG signals taken from the first competition de-
voted to Brain-Computer Interface system design. The competition was organized after
the NIPS’01 Brain Computer Interface workshop. The task is to classify the signals that
correspond to imaginary movements of the left or right hand. The original data consists
of signals taken from different electrodes located on a human’s head. The difference be-
tween two particular signals (from the C3 and C4 electrodes, according to the standard
labeling) was taken as input for the algorithm. The data were resampled to 100Hz, the
input dimension (the signal length) is 150. The dataset consists of 413 training and
100 testing samples. The details of data collecting and problem settings can be found
at [http://newton.bme.columbia.edu/competition.htm].

Raw data usage may appear not to be the best way of carrying out classification. How-
ever, it was found to work well for SVMs. For example, the classification performance based
on auto-regressive coefficients was significantly worse. The evident properties of these data
are the invariances to the signal amplitude and the selection of the reference point of the
“zero” level of the signal. These findings are also justified by the physical conditions of the
EEG signal measuring process.

The results for the baseline SVM classifier based on Gaussian RBF kernel and SVMs
with modified kernels (as derived in Sections 3.2.1 and 4.2.1) are presented in Table 3.1.
The hyper-parameters of all the algorithms were tuned according to cross-validation on
the training set. The obtained values are C = 25, σ = 1500. The invariance-defining
parameters are γ = 0.55 for VRM-based kernel (this will be explained in Section 4.2.1), and
for the kernel based on hard objects (segment-based SVM) the scaling range is [0.5, 1.5].

Both methods provided an improvement of the classification performance according to
the testing error. However, this improvement is hardly statistically significant (79% confi-
dence only according to the standard t-test) since the size of the test set is only 100 sam-
ples. This is a basic disadvantage of the competition setting caused by difficulties in data
collection.

IDIAP–RR 06-66 35

Table 3.1. Experimental results on the EEG dataset.
Algorithm Testing Error, %

EEG SVM 9
Segment-based SVM 6

VRM-based SVM 6

3.4.3 Face Recognition Experiments

The next example presented here deals with a real dataset obtained from a face detector.
These are faces detected on every fifth frame of a movie using a face detector from Schnei-
derman and Kanade (2000). Image dimension is 81 by 81 and greyscale level is 8 bit. There
were 2899 images in the database. The data is available at [http://www.robots.ox.ac.uk/ ∼
vgg/data]. We present an approach to the problem of binary classification of the main actor
against all the other images captured. Hence, this task can be seen either as a person
identification or an information retrieval task.

The training set consists of every tenth image of the database, while the testing set
consists of all the other ones. We used the first thousand images of the database, ending
up with training and testing sets of 100 and 900 samples correspondingly. Example images
are presented in Figure 3.2.

Figure 3.2. Examples of original face images. Left: two random training samples. Right: three random
testing samples. The labels for class membership are shown below the images.

Noisy Image Classification

To illustrate the use of the method described in Section 3.2.1 we have corrupted the images
with an additive speckle noise. The noise is generated from a uniform distribution with
zero mean and variance 30. Example images with noise are shown in Figure 3.3. Another
noisy testing set was obtained by corrupting the clean testing set with the same noise, and
“outliers”: random 10% of the pixels were corrupted with uniform noise with zero mean
and variance 70.

To show the performance of the method, we added noise to the testing set only. The
objective is to obtain an algorithm robust to a known type of noise while given a clean
training set only. Hence we are given a training set and a prior knowledge about the type
of noise that occurs in the testing samples.

We used the raw image as input. Standard SVMs with Gaussian RBF kernel (3.9) were
trained on the clean training set. The parameters were chosen according to the minimum

36 IDIAP–RR 06-66

Figure 3.3. Examples of noisy face images. The labels for class membership are shown below the images.

of the cross-validation error. The parameters are: σ = 3000, C = 100. Classification error on
the clean testing data is 9%, 17% on the noisy testing data and 37% on the noisy data with
outliers. One possible solution to handle noise is to use denoising techniques to preprocess
the testing data before applying the SVM classifier. Different denoising techniques such
as Wiener filtering, median filtering and Gaussian bluring were used. The best result
achieved was 14% of testing error for noisy data and 34% for the noisy data with outliers.

The SVM with an RBF kernel with the distance given by (3.15) was applied to the
problem. The testing error for various values of the prior parameter tlim is presented in
Figure 3.4 for both noisy testing sets. The minimum of the testing error is achieved for
the values of prior parameter tlim which correspond to the standard deviation of the noise.
The modified algorithm significantly (inside the 95 % confidence interval according to the
t-test) outperforms standard SVM on the noisy testing data. However, testing error of the
modified algorithm with tlim = 5 gives 10.8% of the testing error on the clean testing data.

Figure 3.4. Testing error curve of the SVM with object-based kernel for both noisy testing sets. X-axis: tlim

parameter, Y-axis: testing classification error rate. Testing errors at tlim = 0 (37% and 0.18%) correspond to
standard SVM.

3.4.4 Invariant Face Images Classification

In order to test the proposed approaches of Section 3.2.2, we conducted experiments using
images of the faces from the database described above. All the 2899 images of the database
were used. We used subsets of 300 training and 2599 testing samples. The resolution was

IDIAP–RR 06-66 37

decreased to 60x60 pixels.
We compared standard SVM with RBF kernel, Virtual Support Vector method, Kernel

Jittering, and the proposed approaches of Sections (3.2.2) and (3.3). Two types of invari-
ant transformations were studied: rotations (3.7) and scalings (3.8). Some considerations
of practical implementation of the approaches are described below starting with tangent
vectors evaluation.

Tangent Vectors and Finite Difference Vectors

There are some noticeable limitations in computing the tangent vectors. An input im-
age has to be smooth enough to compute gradients that would approximate local trans-
formations of the original image. The original method works well for binary images of
digits, which were blurred with Gaussian filter for computing the gradients. We applied
the method for our data using different Gaussian smoothing and found that the obtained
approximation from these tangent vectors was not sufficient to describe real transforma-
tions. Instead we generated virtual samples by applying a finite desired transformation
and used them for computing the finite differences that were used to approximate the tan-
gent vectors. Example transformed images obtained by rotations with original gradient-
based tangent vectors and finite differences are shown in Figure 3.5.

The first line in Figure 3.5 presents images obtained by applying direct calculation of
tangent vectors according to (3.7). We can thus see that despite the accurate tuning of
Gaussian filtering and other “tricks”, only very local rotations are reasonable.

The second line in Figure 3.5 presents the original sample image x in the center; virtual
samples obtained from x by applying rotations of 10 degrees are shown on the left and right
of the figure. Let us denote them as x + `expleft and x + `expright. The intermediate images in
between are x + 0.5`expleft and x + 0.5`expright.

The problem described here complicates the approach. On the other hand, the use of
finite difference vectors allows for better modelling of the real-life invariances.

Figure 3.5. Two Types of Virtual Images. Top row: images obtained with tangent vector calculation. Bottom
row: images obtained using finite differences.

38 IDIAP–RR 06-66

Scaling and Rotational Invariances with TVK

Since this approach implied that left and right rotations correspond to different tangent
vectors, we used the following modified Tangent Vector Kernel:

Kfd
s (x,x′) = e−

(x−x′)2

2σ2 +
J∑
j=1

H(x
∣∣x′, `j) · e− (x−x′−`j)2

2γ2
r , (3.27)

where we introduced one extra parameter γr corresponding to the length of proximity re-
gion and replaced product with a sum. The experiments with modified kernels based on
products (as presented in (3.19)) led to similar results. Note, that with this modification,
one uses more than one “tangent vector” per invariance.

With a proper choice of parameters in (3.27) (γw ∼ ∞, γr = σ), the resulted model is
closely linked to VSV. The noticeable difference is that in the VSV approach every virtual
sample is included in the decision function with its own weight, while in our case all the
virtual samples form an object hence share the same weight.

The parameters of the algorithms were chosen according to the minimum of cross-
validation error over the training set, resulting in σ = 600, C = 100. Parameters γw and
γr in (3.27) can be chosen by the following heuristics: γw ∼ σ, and γ2

r ∼ V ar(`ij), i.e. the
variance of tangent vectors. We used γw = 500 and γr = 1000.

Scaling and Rotational Invariances with DB-TVK

Despite of the curse of dimensionality problems described above, we used non modifyed
Distribution-Based TVK, as it was introduced in Section 3.3. The parameters were as
follows: σ = 600, C = 100, γw = 1000.

As it was mentioned above, DB-TVK has worse performance for high-dimensional input
spaces. It is clearly seen from equations in Section 3.3, that the impact of “invariant” terms
of the kernel reduces with dimensionality. However, we obtained reasonable results in the
presented case study.

Experimental Results

Table 3.2 presents testing errors obtained with SVM with Gaussian RBF kernel (SVM),
SVM trained with virtual samples (VSV SVM), SVM with jittered kernel (KJ SVM) and
SVM with Tangent Vector and Distribution-based Tangent Vector Kernel (TVK SVM and
DB-TVK SVM). We used the same virtual samples both for VSV and KJ SVM and for
computing the finite difference vectors in TVK and DB-TVK. This is the reason of similar
results obtained with all the methods. The improvement of the testing error obtained with
developed TVK and DB-TVK kernels in comparison to the baseline SVM is statistically
significant with a 95% confidence interval according to the standart t-test.

3.4.5 The Importance of Prior Knowledge for Small Datasets

Another interesting experiment is to show the relative importance of prior knowledge with
respect to the amount of available training data. We thus split the data using every N -th
sample of the entire data for training, while the rest of the data were used for testing.

IDIAP–RR 06-66 39

Table 3.2. Face recognition testing error obtained with SVM with Gaussian RBF kernel, VSV SVM, SVM with
jittered kernel and SVM with Tangent Vector and Distribution-based Tangent Vector Kernel.

Algorithm Testing Error, % Training time, s
SVM 11.2 5.2

VSV SVM 9.8 24.0
KJ SVM 10.0 25.2

TVK SVM 9.7 12.5
DB-TVK SVM 9.9 16.8

Figure 3.6 shows the testing errors obtained for these different partitions. The X-axis in
Figure 3.6 corresponds to the logarithm of the training set size and the Y-axis corresponds
to the testing error. As expected, when the number of training examples is very small,
prior knowledge is of prime importance, while its importance eventually decreases with
increased amount of training examples.

Figure 3.6. The performance of SVM with RBF and TVK kernels for different dataset sizes. The influence of
prior knowledge increases with the decreasing training set size.

3.5 Discussion and Conclusions

The method of prior knowledge incorporation considered in this chapter consists in kernel
modification and exploits the standard SVM algorithm. The main idea of the kernel con-
struction is to consider an object in the input space: a set which can be derived for each
training sample by applying all known invariant transformations. Then the kernel is de-
fined for pairs of objects. Kernel calculation can appear to be a computationally expensive
part of the algorithm, although in the considered examples it was not the case. The method
does not lead to enlarging the training set.

The proposed approach has close links with the regularization framework. Loosely
speaking, regularization is used to enforce smoothness of the function in the vicinity of the
training points. For a learning algorithm based on the squared loss function it is shown by
Leen (1995) in [37] that, under certain assumptions, the approaches of adding virtual sam-

40 IDIAP–RR 06-66

ples to the training set and adding a regularization term to the cost function are equivalent.
Our approach generalizes the virtual sample approach, and obviously it has regularizing
properties.

Some similar approaches were recently proposed by Kondor and Jebara (2003), [35].
The idea there is to make a transition from samples to the sample-characterizing distribu-
tions which are then used for kernel definition. This approach mainly uses the distribu-
tions (objects) for data representation. As the evolution of the previous research, Kondor
and Jebara (2004) [36] presented a similar sample-to-object framework. This transition
step was used as an intermediate one to introduce probability product kernels. The aim of
the presented research is to focus on the prior knowledge incorporation.

In conclusion, in this chapter we presented a general method to incorporate prior knowl-
edge into kernel methods. It is based on modifying the setting of the problem by a transition
from samples to objects, which are generated from them using some prior knowledge. We
mainly considered these objects in the form of local distributions. Tangent Vectors were
extensively used for the construction of the latters. Several methods of kernel definition
were presented and tested in experiments on artificial and real-life data. This chapter is
based on the results presented in the publications in [55], [50].

The next chapter is devoted to another general branch of including the prior knowledge
into the learning algorithm. It will be done by modifying not the kernel but the algorithm
according to the available prior knowledge.

Chapter 4

Invariant Kernel Algorithms

In this chapter, we present yet another approach to the problem of kernel learning with
prior knowledge. Before, we modified the kernel function in accordance with the desired
invariance. Despite the obtained improvement in the performance, the method was still
subject to the curse of dimensionality. Now, we consider algorithms which include prior
knowledge at the basic step. They will be constructed in a such a way that the kernel trick
can be applied to produce the corresponding non-linear versions. This chapter is based
on the publications [54], [53]. We start with the general considerations, devoted to the
application of margin-based criteria to the objects in the input space.

4.1 Optimization with Constraints

Since we accept the sample-to-object approach, let us first consider the general setting of
discriminating objects with a large margin. To maximize the margin between positively
and negatively labeled objects (S+

i and S−i correspondingly) one has to solve the following
optimization problem:

min
1
2
‖w‖2 (4.1)

under the constraints:
minx∈S+

i
[w · x + b] ≥ 1, i ∈ I+,

maxx∈S−i
[w · x + b] ≤ −1, i ∈ I−, (4.2)

where we simply denoted the index sets of positive and negative examples by I+ and I−.
These constraints actually mean that we would like that the whole object to be outside the
respective side of the margin. To solve this problem let us first replace the (4.2) with the
only unifying constraint

min
x∈Si

yi [w · x + yib] ≥ 1, ∀i. (4.3)

So far, in primal form this is a constrained quadratic optimization. The type of constraints
is defined by the type of the object considered. By selecting an appropriate object, this op-
timization can be reduced to some known (and reasonable to solve) problem. For example,
the following sets were considered. Graepel et al. [21] considered quadratic tangent tra-
jectories instead of samples. It actually leads to Semi-Definite Programming optimization.
Using polygones as in [18] leads to a more complicated Quadratic Programming problem.

41

42 IDIAP–RR 06-66

Considering ellipses (or Gaussian distributions, as we shall see later) leads to the Second
Order Cone Programming problem [3], [4]. These optimization problems are difficult (time
and memory consuming) to solve, and an iterative procedure to obtain an appropriate ap-
proximate solution is often desirable.

Let us consider the general setting, which illustrates the use of an iterative procedure
for solving some kinds of margin maximization problems for objects. Introducing the non-
negative multipliers αi, i ∈ I for the constraints (4.3) we form the Lagrangian:

L(w, b, α) =
1
2
‖w‖2 −

∑
i∈I

αi

[
min
x∈Si

yiw · x + yib− 1
]

=
1
2
‖w‖2 +

∑
i∈I

αi − b
∑
i∈I

yiαi −
∑
i∈I

yi min
x∈Si

[yiw · x]
(4.4)

which has to be maximized with respect to w and b and minimized with respect to αi. The
last term of (4.4) defines the influence of the prior knowledge (incorporated with objects)
on the algorithm. Particularly, given the object Si which consists of only the data sample
xi implies

min
x∈Si

[yiw · x] = yiw · xi, (4.5)

and we arrive at standard large margin classifier.
The problem to solve at the moment is to compute the last term of (4.4). Let us consider

the following object, which corresponds to the sample xi:

Si = xi ∪ {xi + `ji , j = 1, . . . , J}, (4.6)

where `ji is the finite difference (tangent) vector of the jth desired transformation. This is
actually the substitution of every sample with a cloud of virtual samples. With this, we
obtain the following optimization problem:

min
x∈Si

[yiw · x] = yiw · xi + min

yiw ·
∑
j

`ji

 = yi w · xi +

−∑
j

|w · `jl |

 . (4.7)

Back substitution to (4.4) and differentation in b and w (according to the Kuhn-Tuker
conditions) gives ∑

i∈I
yiαi = 0, (4.8)

w−
∑
i∈I

yiαixi −

−∑
i∈I

αi
∑
j

`ji sign
[
w · `ji

] = 0. (4.9)

The first condition is equivalent to the analogous one in Large Margin Classifier. The
second condition has to be used to obtain the dual form for w. To combat this problem, we
organize an iterative procedure for computing w, starting from some initial value w0. The
first iteration gives:

w =
∑
i∈I

yiαi(xi + δxi) (4.10)

IDIAP–RR 06-66 43

where we denoted
δxi = −yi

∑
j

`ji sign
[
w0 · `ji

]
. (4.11)

So far, we are able to obtain the expression for decision function

f(x) =
∑
i∈I

yiα̂ix · (xi + δxi) + b, (4.12)

where α̂i gives maximum to the dual form of the optimization problem:

α̂i = arg max
α

∑
i∈I

αi −
1
2

∑
i∈I
j∈I

yiyjαiαj(xi + δxi) · (xj + δxj) (4.13)

under the following constraints: ∑
i∈I yiαi = 0,

αi ≥ 0, i ∈ I. (4.14)

We first note the meaning of the additive term (4.11): it shifts the “effective” sample to the
closest position to the separating hyperplane, as it was originally implied by Eq. (4.3). Let’s
note, that this fact can be used to develop a strategy for generating the “optimal” virtual
samples, i.e. a small number of samples which shift the decision surface. This can be done,
for example, by selecting the virtual samples which violates the constraints of the primal
optimization problem most.

We will show in Section 4.3 that this property also applies when a sample is replaced
by a distribution. This will be used to introduce an iterative procedure for solving the
optimization problem. We start, however, with an obvious way to deal with distributions
as input objects for the classifier, which is based on Vicinal Risk Minimization principle.

4.2 Vicinal Risk Minimization

Vapnik (2000) considered local distributions (soft objects) instead of samples to introduce
the Vicinal Risk Minimization (VRM) learning principle (see Section 2.1.2). The following
Vicinal Support Vector algorithm is obtained by Vapnik (2000):

f(x) =
∑̀
i=1

β∗iD(x,xi) + b, (4.15)

where the β∗i coefficients are such that

β∗ = arg max
β

∑̀
i=1

βi −
1
2

∑̀
i,j=1

yiyjβiβjM(xi,xj), (4.16)

subject to the constraints: ∑̀
i=1

yiβi = 0,

0 ≤ βi ≤ C.

(4.17)

44 IDIAP–RR 06-66

Functions D(x,xi) and M(xi,xj) are one- and two-vicinal kernels correspondingly:

D(x,xi) =
∫
K(x,x′)p(x′|xi, ri)dx′, (4.18)

M(xi,xj) =
∫∫

K(x,x′)p(x|xi, ri)p(x′|xj , rj)dxdx′. (4.19)

Now we show how to use specific density functions p(x|xi, ri) defined on the non-symmetrical
support that describes the invariance to the desired transformation. By this we enforce the
VRM-based learning algorithm to obey the invariance’s properties.

4.2.1 Scaling Invariance

Let us now present a simple example. To obtain the scaling invariance of the training
samples xi, consider the following vicinity density function:

p(x|xi, γ) =
1√
2πγ

∫
δ(x− (1− α)xi)e

− α2

2γ2 dα, (4.20)

where δ is the delta function, and the γ parameter defines the width of the vicinity and,
hence, the influence of scaling invariance.

Substituting (4.20) in both (4.18) and (4.19) using the standard isotropic RBF kernel
function given in (3.9) with the bandwidth parameter σ gives:

D(x,xi) =
σ

κ
e−

(x−xi)
2

2κ2 e−
γ2

2σ2κ2 (x2x2
i−(x,xi)

2) (4.21)

and

M(xi,xj) =
σ2

η
e
−

σ2(xi−xj)2

2η2 e
− γ2

η2 (x2
i x2

j−(xi,xj)
2)
, (4.22)

where the following definitions were used:

κ2 = γ2x2
i + σ2, (4.23)

η2 = γ2σ2(x2
i + x2

j) + γ4(x2
ix2
j − (xi,xj)2) + σ4. (4.24)

The resulting kernels are still RBF-based. The “effective” kernel bandwidth depends both
on the σ and γ parameters and on the samples xi and xj .

Experiments with VRM

Experimental results obtained when using VRM-based kernels were mentioned before in
Section 3.4, Table 3.1. They include artificial data classification and EEG signals classifica-
tion. The performance of the method appeared to be similar to the one which uses Tangent
Vector kernels described in the previous chapter. The reason for that is as follows. One
can note the similarity of (4.21)-(4.22) to the kernel (3.20) presented before. Thus, with a
correct choice of parameters, the results of the methods in the case of scaling invariance
coincide.

Generally, VRM-based kernel classifier considers the distributions by taking averages
of the kernels, as it is clealy seen in Eqs. (4.18), (4.19). We would like to obtain a method
which is more precise in terms of classification of distributions by their domain. The next
section is devoted to the latter.

IDIAP–RR 06-66 45

4.3 A Kernel Classifier for Distributions

In this section we present a new algorithm for classifying distributions. The algorithm
combines the principle of margin maximization and a kernel trick, applied to distribu-
tions. Thus, it combines the discriminative power of support vector machines and the
well-developed framework of generative models. It can be applied to a number of real-life
tasks which include data represented as distributions. The algorithm will be applied for in-
troducing some prior knowledge on invariances into a discriminative model. We illustrate
this approach in details for the case of Gaussian distributions, using a toy problem. We
also present experiments devoted to the real-life problem of invariant image classification.
We start with the background and motivation for our developments.

Large margin classifiers such as Support Vector Machines (SVMs) have shown to yield
state-of-the-art performance in various classification tasks [7]. Moreover, classification
tasks are known to be in general better solved by discriminant approaches (which aim at
providing a model that minimizes some error on the training set of positive and negative
examples), than by generative approaches (which aim at providing class-specific models
that maximize the likelihood of the corresponding class training data).

On the other hand there are still several well-known classification tasks for which the
current state-of-the-art is based on generative models. This is in general due to one of
many possible reasons. For instance, in speech recognition, for which the best solutions
are based on Hidden Markov Models and Gaussian Mixture Models trained by EM [57],
one faces datasets of potentially millions of frame examples, which cannot be handled by
SVMs given the (at least) quadratic training time and space complexity.

Another example is the task of speaker verification, which consists of determining
whether the voice of a given person corresponds to the claimed ID. One problem with this
task is that one can in general only collect very small (and thus non representative) amount
of data of a given client, but very large datasets of potential impostors, which makes the
problem highly imbalanced. State-of-the-art systems are thus based on the likelihood ratio
of generative models of the two classes, where the client model is often adapted from the
impostor model, given the lack of client specific data [39].

Based on these facts, there have been several attempts at integrating generative and
discriminant approaches into one framework. One such attempt is based on the Fisher
Kernel [29], where an SVM with a specific kernel is trained on examples which are the
derivative of the log likelihood of the generative models of each class with respect to the
parameters of the models.

Furthermore, in many classification tasks, feature extraction procedures sometimes re-
sult in huge sets of features, which can be hardly processed in the raw representation. One
solution often used is to model them with distributions. In the field of image processing,
this is the case for invariant features, extracted at some points of interest of an image.
This approach is extensively used in object categorization problems [38]. One of the direct
solutions for this problem is to build a kernel classifier (SVM) by defining the kernel over
distributions, using either KL-divergence or similar methods [43].

Facing these problems, we feel it is worth developing a discriminative classifier which
would directly deal with generative models, i.e. distributions. The approach presented
in this paper exploits some nice performance of margin-based methods by constructing a
maximum margin solution for a set of distributions labeled into two classes.

46 IDIAP–RR 06-66

The main field of applications in the scope of the presented research concerns invariant
learning. As it was introduced before, it is reasonable to deal with the whole set of patterns
which can be obtained from every given training sample by applying some transformation
(such as translation or rotation). A “soft” representation of these manifolds as distributions
will be used to apply the developed method for handling invariances.

The rest of the chapter is organized as follows. In Section 4.3.1, the notion of margin
maximization for distributions is defined. Some general facts, which provide a foundation
for an approximate approach, described in Section 4.3.2, are also presented. Section 4.3.3
justifies the proposed approximations. Next, we consider the particular important case of
Gaussian distributions in Section 4.3.4. Section 4.3.5 is devoted to the invariant image
classification experiments, followed by discussion and conclusions to the chapter in Section
4.3.6.

4.3.1 Margin Maximization for Distributions

The margin maximization principle is based on results from the Statistical Learning The-
ory [74], and provides a way to minimize the complexity of the model by bounding the
VC-dimension of the modeling function (see Chapter 2 for introduction to SLT). Intuitively,
the same approach can be used for other learning tasks. We thus now present a definition
of margin for distributions, and provide a way for constructing learning algorithms. The
proof of the margin maximization principle for the considered problem is out of the scope
of this research.

Suppose one is given a training set of L probability distribution functions p(x|xi,ri),
centered at xi and specified by some parameters ri. We also associate some label yi for
each distribution. These are {+1, -1} for binary classification problem.

Linear Decision Functions

Consider the set of linear decision functions {f = wx + b}, where w is a weight vector, and
b is a constant threshold. The actual decision is usually taken according to sign(f).

Consider the optimization problem:

min
1
2
‖w‖2 + C

L∑
i=1

ξi (4.25)

subject to the following constraints:∫
yi(wx+b)≥1

p(x|xi, ri)dx ≥ η − ξi, i = 1, ...L, (4.26)

ξi ≥ 0, i = 1, ...L. (4.27)

The first constraint corresponds to the fact that η-quantile of the distribution lies out-
side the margin, not taking into account the slack variable ξi. These slack variables are
equivalent to the analogue trick done in soft margin formulation of the Support Vector
Machine, Eqs. 2.24, 2.25.

IDIAP–RR 06-66 47

4.3.2 Optimization Problem

The method of Lagrange multipliers can be applied to solve the problem stated in Section
4.3.1. Introducing the Lagrange multipliers {αi} and {βi}, one obtains the optimization
problem of finding the saddle point of Lagrangian. Differentiation in b and w gives:

L∑
i=1

αi
∂

∂b

∫
yi(wx+b)≥1

p(x|xi, ri)dx = 0, (4.28)

L∑
i=1

αi
∂

∂w

∫
yi(wx+b)≥1

p(x|xi, ri)dx = w. (4.29)

Analogously to the standard SVM, the multipliers βi vanish, resulting in a box-type con-
straints for the weights αi: 0 ≤ αi ≤ C. Next, introducing the following notation:

I(w,xi, t) =
∫

yi(wx+b)=1−t

p(x|xi, ri)dx, (4.30)

one yields the following optimization problem:

min
1
2
‖w‖2 −

L∑
i=1

∞∫
ξi

I(w,xi, t)dt, (4.31)

s.t.

L∑
i=1

αiyiI(w,xi, ξi) = 0, (4.32)

L∑
i=1

αiyix∗i I(w,xi, ξi) = w, (4.33)

0 ≤ αi ≤ C. (4.34)

Generally, this problem can not be reduced to the dual variable formulation since there
is no closed form solution for w. However, for a number of applications and particular types
of distributions we will approach this problem by an approximate solution. Let us note,
however, that for the case of traditional data samples, p(x|xi,ri)=δ(x-xi), the problem (4.31)-
(4.34) reduces to the standard soft margin SVM.

Iterative Solution

The general approach for solving the optimization problem (4.25)-(4.27), or its equiva-
lent (4.31)-(4.34), is to apply an iterative procedure to obtain an approximate solution.
This type of optimization approach has been described in [2], and applied in [4]. Generally,
the nature of SVM-related methods is that they try to find the Support Vectors, i.e. the
samples which lie closest to the discrimination surface. When discriminating some subsets
S(xi), constraints of the type max

x∈S(xi)
[yi(wx + b)] ≥ 1 − ξi can be used. See [21, 18, 3] for

48 IDIAP–RR 06-66

examples of such solution for different types of S(xi). Solving problems with this type of
constraints is roughly equivalent to the task of finding the “optimal” or “effective” sample
from the subset.

Here we show that a similar approach holds for the case of distributions. Let us consider
the following result.

Lemma. Consider the optimization problem (4.25)-(4.27). There exists a set of samples
{x∗i , i=1,. . . L} such that the optimal separating hyper-plane w∗ for the set {x∗i } coincides
with the solution of the problem (4.25)-(4.27).

Proof. If the dimensionality of the feature space is less than the number of (non de-
genarative) samples, then the proof is trivial. Otherwise, for high (infinite) dimensional
feature spaces, let w be the solution of (4.25)-(4.27). Since p(x|xi,ri) is a p.d.f., then for
any w, and any fixed xi and p(x|xi,ri), function I(w,xi, t) is continuous and monotonically
increases with t. Then, according to the Weicherstrass theorem, there exists x∗i such that
I(w,xi,−yiwx∗i)=η. Thus, the optimization problem (4.25) can be reformulated in terms of
minimizing the regularized risk functional with the cost function c(., ., .) that only depends

on the choice of x∗i for any fixed xi, and p(x|xi,ri): c(xi, yi,w) = C
L∑
i=1

max(0, η − I(w,xi,−yiwx∗i)).

Thus, there exists a representation w =
L∑
i=1

αix∗i + b which coincides with the solution of

the problem (4.25)-(4.27).
The considered result, however, does not provide a way for finding neither x∗i nor αi in

the desired representation.
A general iterative scheme includes iterations through a series of (currently) optimal

samples for a given approximation to the hyper-plane. Then the margin is maximised again
for the modified samples, etc. The major disadvantage of this type of approaches is the
convergence of the described procedure. Even if it is possible to prove that these iterations
converge, the rate of convergence is unknown and may appear to be unreasonably low.
One of the successful attempts is [72], where the rate of convergence in a similar problem
was estimated. However, the problem considered in [72] is a quite specific case, where
iterations are carried out in the context of structured outputs.

We thus propose a simple 2-step method to obtain an approximate solution to (4.25)-
(4.27). While we do not provide the proof of convergence, it is justified by the empirical
evidence in our experiments.

4.3.3 Hyper-plane Projection Method

From now on, let us deal with the kernelized version of the proposed algorithm. Let K(., .)
be a positive definite reproducing kernel. Let some (w0, b0) define the optimal separating
hyper-plane (in the feature space) for the training set of means {xi, yi} in the feature space
induced by K(., .). Actually, this is given by the set of non-zero Lagrange multipliers {αi},
obtained by solving the standard SVM optimization. The proposed scheme is as follows:

• solve a standard SVM optimization problem for the means xi. The solution is (w0, b0);

• calculate the projections of p(x|xi, ri) on w0. This results in a 1-D optimization prob-
lem (see details below);

IDIAP–RR 06-66 49

• solve the 1-D problem according to the given value of η;

• compute the inverse projection. This results in a modified training set x∗i (see details
below);

• solve a standard SVM optimization problem for the samples x∗i .

The detailed explanation of the projection steps is presented below. Please also refer to
Figure 4.1 for an illustration.

Direct Projection

Consider the following averages in the feature space, which provide the means and vari-
ances of some 1-D distribution π(χ|µj , σj).

µj = E[w0Φ(xj) + b0] =
L∑
i=1

yiαi

∫
X

K(xj ,xi)p(x|xi, ri)dx + b0, (4.35)

σ2
j = E[(w0Φ(xj)− µj)2] =

L∑
i,k=1

yiykαiαk

∫
X2

K(xi,xk)p(x|xi, ri)p(x′|xk, rk)dxdx′ − µ2
j .

(4.36)
These 1-D p.d.f.s correspond to p(x|xj ,rj) being projected to the 1-D subspace defined by
w0. Given these projections, the constraints (4.26) can be (currently) satisfied by taking
the χj in 1-D space such that ∫

yjf(x)≥χj

π(χ|µj , σj)dχ ≥ η. (4.37)

It can be solved easily and results in some threshold constant cjη such that χj = f(x∗j) =
cjη. The difficulty arises for the original samples that have been classified incorrectly. Cur-
rently, we propose to neglect these samples. The reasoning is simple: one would not like
to update the classification based on doubtful sample distributions, which means have not
been classified correctly.

Inverse Projection

Next, given the set of χj one has to find an inverse projection of χj into the feature space.
Obviously, this transformation is not unique and some criteria are required to define it. At
this step, it is hard to control the margin, while the constraint (4.26) can still be satisfied.
One would like to find x∗j such that the inequality in (4.26) holds (or violated as slightly as
possible) over variations in w and b. For the majority of distributions which are used in
real-life problems, the following criterion can be used to obtain the inverse projection x∗j of
the χj :

x∗j = arg max
x

p(x|xj , rj),

s.t. f(x) = cjη.

(4.38)

50 IDIAP–RR 06-66

The reasoning behind this criterion is as follows: if x∗j is fixed at the maximum of
p(x|xj ,rj) at the surface f(x)= cjη, then the integral in the left part of (4.26) is less likely
to change. Problem (4.38) is a constrained optimization problem, which has to be solved.
It results in the desired inverse projections x∗j which form the new training set. The stan-
dard SVM solution for the obtained training set approximates the solution of the initial
problem (4.25).

Figure 4.1. The illustration of the hyper-plane projection method. Refer to the text for the notations.

4.3.4 Discrimination of Gaussian Distributions

For the particular case of Gaussian distributions, p(x|xi,ri) = N (xi,Σi), the presented
scheme results in the following algorithm. The exact linear optimization problem reduces
to:

min 1
2‖w‖

2 −
L∑
i=1

αi(1− erf yi(wxi+b)−1√
2wT Σ−1

i w
), (4.39)

L∑
i=1

yiαi
(
wTΣ−1

i w
)− 1

2 exp(− (yi(wxi+b)−1)2

2wT Σ−1
i w) = 0,

w =
L∑
i=1

yiαix?i
(
wTΣ−1

i w
)− 1

2 exp(− (yi(wxi+b)−1)2

2wT Σ−1
i w).

Note that the term in the exponent is a Mahalanobis distance from xi to the line yi(wxi+b)=1.
This formulation can be used to control the precision of the approximate solutions. We now
present the non-linear version of the algorithm using the Gaussian isotropic RBF kernel
with parameter δ. The method of hyper-plane projections can be applied using the follow-

IDIAP–RR 06-66 51

ing results for the direct step:

µj =
L∑
i=1

yiαiD(xj ,xi) + b,

σ2
j =

L∑
i,k=1

yiykαiαkM(xj ,xi,xk)− µ2
j ,

(4.40)

where

D(xk,xi) =
∣∣Σ−1

i + δ
∣∣− 1

2 · exp(−1
2
(xk − xi)T δΣ−1

i (Σ−1
i + δ)−1(xk − xi)),

M(xk,xi,xj) =
∣∣∣Σ−1

i Σ−1
j + δ(Σ−1

i + Σ−1
j)
∣∣∣− 1

2 · exp(−1
2
(xk − xi)TΩ(xk − xi)), (4.41)

whereΩ = δΣ−1
i ((Σ−1

i Σ−1
k)−1(Σ−1

i + Σ−1
k) + δ)−1.

The inverse projection can then be carried out by solving the following optimization
problem:

x∗j = arg min
x

(x− xj)TΣ−1
j (x− xj),

s.t.
L∑
i=1

yiαi exp(−δ(x− xi)2) + b = cjη.
(4.42)

This problem has the following approximate analytical solution:

x∗j = (I + 2γδcjηΣi)−1(xj + 2γδ
L∑
i=1

yiαi exp(−δ(xj − xi)2)Σixi), (4.43)

for some positive constant γ, which has to be chosen to satisfy the constraint in (4.42).
Despite the cumbersome expressions above, the real computations are significantly sim-

plified, since for high-dimensional input data diagonal covariance matrices are often used.

Links to Related Methods

The most related methods for the particular case of Gaussian distributions discrimination
were proposed recently by [3] and [4] and deal with uncertain data. The training sam-
ples are considered to be given with some uncertainty, presented in a form of Gaussian
distributions.

The method of [3], which is aimed at classifing datasets with missing (uncertain) sam-
ples, considers margin maximization under the following constraints:

Pr[yi(wxi + b) ≥ 1− ξi] ≥ η, ξi ≥ 0. (4.44)

As one can see, this formulation is similar to the constraint (4.26). The relevance can be
shown by appling the Chebyshev inequality in order to obtain the corresponding determin-
istic constraint from (4.44).

[4] instead deal with the constraint

Pr[yi(wxi + b) ≥ 1− ξi] ≤ η, ξi ≥ 0. (4.45)

This type of approach leads to more robust models, since, in the end, the less certain sam-
ples obtain the least weights. However, this intuition is hardly applicable for the problems

52 IDIAP–RR 06-66

we are aiming to. It was developed for a specific medical applications considered by the
authors.

Despite these differences, both models lead to a Second Order Cone Programming
(SOCP) optimization problem. This optimization problem can be solved numerically by
Interior Point methods [45], which are, however, quite costly in terms of computational
time. The proposed approximate approach involves standard SVM QP optimization only.

Moreover, due to the computational costs of the SOCP, both papers mention the need
of an approximate solution. The approximation is also based on modifying the means.
However, the update rule of [4] is very straightforward, as it suggests updating the samples
along the w without taking into account any information on the covariance of the parent
distribution.

The related update rule can be easily derived from the approximate formulation pro-
posed by [3]. This, however, was not done by the authors. Nevertheless, let us note that
for the linear case of (4.42) the exact solution of the inverse projection for the Gaussians is
given by

x∗j = xj +
cjη − (wxj + b)

wTΣjw
Σjw. (4.46)

This linear case almost perfectly coincides with the result which could be derived from the
formulation considered by [3].

The significant difference with our method lies in the way the algorithms were kernel-
ized. Non-linearity through the kernel trick is introduced under a number of assumptions
in all the methods. It is not possible to “kernelize” the initial algorithms directly. This is
also the case for the general original problem (4.31)-(4.34), presented above (and for the
particular case of Gaussian distributions as well). However, the developed approximate
procedure deals with precise kernels directly by using the feature space of the original
SVM for making projections, hence this drawback is partly avoided.

Finally, as it was mentioned above, a number of papers devoted to invariant learning
are based on discriminating different objects in the input space. Methods aimed at direct
margin maximization were recently proposed by [21], [18]. Furthermore, a general method
for defining an SVM kernel function for pairs of distributions was presented by [36].

Concerning the representation of invariances through distributions, a related work was
presented previously in Chapter 3. There, we introduced a kernel for standard SVM model,
which counts a pair-wise overlap of distributions. This method is subject to the curse of
dimensionality. The problem has been avoided in the current approach by introducing the
margin between distributions directly.

4.3.5 Experiments

As mentioned in the introduction, there is a broad field of applications for the proposed
approach. This includes problems from speech processing, biometric client identification,
object categorization, etc.

However, the presented and some related approaches can also be used for handling
invariances in pattern recognition problems. A similar setting can also be applied for the
task where data samples are given with some uncertainty of a known nature. Here, we
present experiments on invariant face image classification.

IDIAP–RR 06-66 53

Let us start with a simple synthesized 2-D data example, which nicely illustrates the
presented approach.

Toy Data Experiments

The task to be solved is a 2-class classification of 2-D Gaussians (see Figure 4.2). The
dataset contains several samples of each class; their covariances are illustrated by ellipses
around the means. The modified training set of {x∗−} is shown with black dots, which
form a curve for different value of γ in Eq.4.43. The samples x∗j coincide with the means
xj for γ = 0, and tend to the decision boundary according to the covariance of their parent
distribution, as γ increases. Final samples (shown by filled boxes) correspond to the η = 0.9.
The modified decision boundary f∗(x) = 0 is shown with a thick line.

Figure 4.2. Toy Data Discrimination. The decision boundary changes according to the covariances of the
distributions in the training set.

Invariant Image Classification

The task of invariant image classification is still a challenging problem in computer vision.
While a number of approaches for dealing with simple images like Optical Characters exist,
methods for complex real-life images are still under development.

A natural way to model invariances is to consider how the desired transformation
change the input samples. Generally, this dependence is very complex and highly non
linear, hence difficult to model. Linear approximations are thus used instead. We use
tangent vector approximation, as it was introduced in the previous Chapter.

Let `ji denotes the tangent vector, which corresponds to the jth invariant transformation
of the sample xi.

54 IDIAP–RR 06-66

Table 4.1. Classification accuracies for the compared algorithms on face image classification problem.
ALGORITHM TR.ERR.,% TEST.ERR.,% TIME, S
SVM 0.5 11.2 0.75
VSV SVM 0.4 9.9 9.6
TVK SVM 0.5 9.7 4.2
SVM GAUSS 0.5 9.7 2.8

The corresponding tangent vector based Gaussian distribution is as follows:

P (x|xi, {`1i , . . . `Ji }) = exp(−(x−xi)
TL−1

xi
(x−xi))

(2π)N/2|Lx|1/2 ,

where L−1
x =

J∑
j=1

`ji `
j
i

T

2γ2
j `

j
i

2 .
(4.47)

We consider these distributions as a training set for our algorithm. Parameter γj controls
the effective width of the distribution for the given direction of `ji . It can be fixed to some
value according to some prior knowledge, since the resulting transformed images can be
visualized. We used the same value of γ for all the invariances. Generally, the resulting
Gaussians have full-ranked covariances, that dramatically slows down the overall compu-
tations.

Face Data Classification

We conducted experiments using images of the faces detected from movie scenes using a
face detector, described in [64]. There is a total of 2899 images in the database. The data
is available at [http://www.robots.ox.ac.uk/∼vgg/data]. This data were used in the previous
chapter, and a (Distribution-based) Tangent Vector Kernel method was applied to the task
of binary face image classification. Example images and their corresponding labels are
presented in Figure 3.2. As it is mentioned, that approach still suffers from a curse of
dimensionality problem.

Two basic invariant transformations were considered: scalings and rotations. Finite
difference vectors, obtained as a difference of an original and a transformed images were
used instead of the original tangent vectors. The reason is that real tangent vectors fail
for such complex and non-smooth images as faces when the transformation is more than
infinitely small. Different tangent vectors were used for the rotations to the left and right,
as well as for the zoom in and zoom out scalings, as it was described before in Section 3.4.4.

The parameters of the algorithms were chosen according to the minimum of cross-
validation error over the training set, resulting in the following values: δ = 2·10−5, C = 100,
γ = 1000. Table 4.1 presents training and testing errors obtained with SVM with Gaussian
RBF kernel (SVM), SVM trained with virtual samples (VSV SVM), SVM with Tangent Vec-
tor Kernel (TVK SVM) [50] (explained in the previous chapter), and the developed method
(SVM Gauss). We consider the Virtual SV method as a state-of-the-art approach to invari-
ant learning with SVM-based methods. Given unlimited computational resources, this is
currently the method of practical choice.

While both methods are statistically significantly better than baseline SVM (with 95%
confidence), no significant improvement was observed in comparison with Virtual Support
Vectors in terms of the testing error. However, the proposed approach is faster in terms of

IDIAP–RR 06-66 55

operational time. This advantage is even more significant if the covariance matrices are
diagonal.

4.3.6 Discussion and Conclusions

While classical SVMs discriminate between example points of two classes, we proposed in
this chapter a novel SVM formulation to discriminate between example distributions of two
classes, while still keeping advantages of SVMs such as margin maximization and kernel
trick. This presentation is based on the publications [54], [53]. The devloped extension
can be used for many different settings, including principled incorporation of invariances
described by distributions, which was illustrated with experiments in Section 4.3.5. Other
possible uses of this model include the possibility to maximize the margin for problems
that were traditionally solved by generative models and log likelihood ratios such as speech
processing.

Since the direct solution was not tractable, we presented an approach for an approxi-
mate solution of the optimization problem. This approach consists of two simple projection
steps, resulting in a modified training set. Thus, possible problems with the convergence of
an iterative scheme are avoided. Next, the algorithm was turned into a nonlinear version
through the usual “kernel trick”. The feature space of the original SVM (trained on the
means of the distributions) is exploited for the latter. The algorithm demands a standard
SVM QP solver only. The case of Gaussian distributions was considered in details, and
some links to related research were provided.

The algorithm was applied to the real problem of invariant face image classification.
The knowledge on invariances was incorporated into the algorithm by considering a special
type of distributions, based on tangent vectors. The comparison to the state-of-the-art
virtual support vector was provided. Currently, the method is found to be competitive with
the state-of-the-art, and the proposed solution was preferable in terms of computational
time.

Concerning invariant learning problems, the basic advantage of the proposed method
is that it maximizes the margin between invariance-modelling distributions directly. Note
that approaches based on measuring the pair-wise overlap between distributions are sub-
ject to the curse of dimensionality if the linear approximation to the invariant transforma-
tions is used.

For a practitioner, the algorithm provides a nice feedback. As x∗j are known, these
samples can be visualized. An interesting question is whether these samples coincide with
human’s intuition to be the most discriminative. To our knowledge, the answer is positive
most of the times.

Up to now, we have considered a number of approaches which use linear approximation
of the desired invariant transformation. Whether the kernel or the algorithm was mod-
ified to include this knowledge, the manifold was considered to be linear. Moreover, the
transformation was often assumed to be differentiable. In real life, this is not the case. Of-
ten, the desired transformation is complex and is hardly representable analytically. While
processing real-life images, even small transformations (such as considered rotations and
scalings) lead to lighting conditions changes, background changes, etc. It also concerns
the cases when feature selection is carried out before the classification step, since feature

56 IDIAP–RR 06-66

selection is often a complex non-linear transformation. In these cases, the only available
information about the manifold is actually the set of samples which belong to it. The uni-
versal virtual sample method remains the only one to handle invariances in this situation.
It may lead to the very large-scale optimization problems.

In the next chapter, we consider a method which handles invariances in the described
situation, when the only information given is the set of samples belonging to the trans-
formation manifold. It is based on kernel modification and does not require enlarging the
training set with virtual samples.

Chapter 5

Prior Knowledge from Unlabelled
Data

The idea of using the inner geometric structure of the data for better data processing al-
gorithms is of increasing attention in Machine Learning. This trend arises from unsu-
pervised methods such as clustering and dimensionality reduction techniques. A clever
use of geometrical structure should improve the performance of any learning algorithm.
In particular, semi-supervised methods are under rapid development recently [14]. These
methods exploit unlabeled data, i.e. those data samples which consist of the input values
only, while the desired output value is unknown. In fact, most real-life learning problems
are actually semi-supervised. For example, this is the situation when a huge amount of
images are available, but only a part of them is annotated, i.e. labeled.

The information one obtains from the unlabeled part of the dataset can be of differ-
ent nature. A reasonable assumption to make is the following. Assume the data lies on
some lower-dimensional manifold in the original input space. Using some properties of
the manifold, data analysis methods can be improved, as shown in recent developments
devoted to the exploration of such an approach (see [40], [1] and references therein for in-
stance). Furthermore, given the explosive growth of interest in the field of kernel methods,
non-parametric data-dependent kernels which reflect the inner geometry of the data are of
particular interest. A general approach was recently proposed in [68].

In this chapter, which is based on the publications [51], [52], we apply this framework to
approach the main problem of this research, namely prior knowledge incorporation. Con-
cerning classification, the methodology developed for semi-supervised learning is adapted
to model the manifolds induced by the desired invariant transformations. The kernel is
constructed in a way to produce smooth decision functions on the modeled invariant man-
ifolds, therefore preserving the class membership on these manifolds. Afterward, a kernel
classifier is applied to the task. For regression, we implement this kernel to enforce the
model to be smooth on the support of the estimated function, or, in other words, on the
manifold which is modelled using unlabelled data.

We introduce manifold learning in Section 5.1, present the way to adapt this frame-
work to invariant learning in Section 5.2, and introduce the corresponding kernels in Sec-
tion 5.2.2. We provide some practical issues and experimental results on a real Optical
Character Recognition (OCR) task in Section 5.3. Next, we provide the implementation

57

58 IDIAP–RR 06-66

of a similar technique for regression estimation in Section 5.4, and present experimental
results on regression estimation in Section 5.6. We conclude the chapter in Section 5.7.

5.1 Learning on Manifolds

As it is introduced in Machine Learning, the supervised learner aims at estimating the
input-output relationship (dependency or function) f(x) by using a training data set {xi, yi},
i = 1, . . . , N where the inputs x are n-dimensional vectors and the labels (or system re-
sponses) y are continuous values for regression tasks and discrete (e.g., boolean) for classi-
fication problems.

However, the situation where some labeled patterns are provided together with unla-
beled ones, arises frequently. This is called Semi-Supervised Learning. Currently, this is
an actively developing field [14]. When predictions have to be made to given unlabeled
locations only, this particular situation is called transductive learning [74], [9].

Recently several approaches to semi-supervised learning were proposed. Low Density
Separation (LDS) algorithms [13], Transductive SVMs, Graph and Gradient Transductive
SVMs [31], and a group of Manifold Learning methods [1] are the core of those recently
developed techniques.

Here we give a basic idea for the last group of methods, namely, Manifold Learning.
The so-called manifold assumption is accepted in this framework. This implies that data
actually belong to some lower dimensional manifold in high dimensional input space. Thus,
it is reasonable to build models which exploit regularization on the manifolds.

Usually the only information about the manifold is the finite set of (unlabeled) samples,
{xi}, i = N+1, . . . ,M . Thus, the model has to be smooth (regularized) on the corresponding
graph, whose nodes are data samples and edges are constructed to preserve the geometrical
properties (geodesic distances) on the graph. Let an edge connecting xi and xj have some
weight wij ; zero value means that the nodes are not connected.

A nice property here arises from the notion of graph Laplacian. It is defined as

L = D −W (5.1)

where W is the matrix with elements wij = exp(−δ(xi − xj)2), δ is some positive constant
(usually proportional to the avarage length of the graph edges), and D is a diagonal matrix
with dii =

∑
j wij .

It can be shown that eigenvectors of L provide a natural basis on the graph, giving
rise to regularization by penalizing the complexity. This can be done by minimizing the
norm in the space of functions defined on graphs. Please refer to [1] for details and solid
justification behind this technique.

5.2 Graph Models of Invariant Manifolds

Now, we present an approach for applying the technique of modeling data transformation
manifolds for invariant learning with kernel methods. The approach is based on building
a kernel function on the graph modeling the invariant manifold. It provides a way for
taking into account nearly arbitrary transformations of the input samples. The approach

IDIAP–RR 06-66 59

is verified experimentally on the task of optical character recognition, providing state-of-
the-art performance on harder problem settings.

One of the well-known approaches to invariant learning is the Tangent Distance method [67].
As we described before, it proposes to replace the Euclidean distance between data samples
with a distance between the corresponding linear tangent manifolds defined by tangent
vectors of the desired invariance transformation. This method was successfully applied
to Optical Character Recognition (OCR) tasks. Its direct application for defining a kernel
for SVMs was studied in [25]. A restriction of these methods is that they are suited for
distance-based kernels only. The proposed method, on the other hand, does not suffer this
restriction.

The decision function, which is smooth on the corresponding manifold, provides invari-
ant classification. This smoothness guarantees that the decision for class membership is
unchanged as one considers samples from the invariant manifold (i.e. transformed sam-
ples). There is a justification behind this intuition, which is explored, for instance, in [37],
and was mentioned in Chapter 2, Section 2.4.1. Moreover, as it is shown in [37], this prop-
erty is closely linked to the type of regularizer used.

The above-mentioned direct approach to enforce smoothness in the direction of tangent
vectors is considered in [11]. This method, however, leads to complicated optimization and
appeared to be impractical in real-life tasks.

5.2.1 Graph-based Invariant Manifolds

Given a training sample xi, consider a set of corresponding virtual samples, generated by
applying the desired (and, virtually, arbitrary) transformation G(x, α):

{xki } = G(xi, α), α ∈ Λ, (5.2)

where α is a vector of parameters from some finite set Λ (such as a set of rotation angles).
Then, a graph is built for every training sample by connecting and setting weights for the
nodes xki sharing the same original sample xi. The weights wij are set to exp(−δ(xi − xj)2)
if nodes are connected, zero otherwise. Considering the graph-based manifold models and
enforcing smoothness of the model on the graph, we constrain it to be invariant to the
transformation which generated the manifold.

Next, we introduce a kernel, adapted from [68], to apply a kernel classifier such as
Support Vector Machine to graph based manifolds.

5.2.2 Kernels For Invariant Manifolds

Hereafter, we briefly present a method, adapted from [68] for constructing non-parametric
semi-supervised kernels which deals with graph-modeled invariant manifolds. As a re-
minder, this implies that it corresponds to a dot product in some space (Reproducing Ker-
nel Hilbert Space, RKHS), sometimes referred to as a feature space. Generally, the choice
of the kernel function is an open issue.

We will follow the notation of [68]. Given data points {x1, . . . ,xn}, and some RKHS H,
consider the evaluation map S(f) = (f(x1), . . . , f(xn));S : H → Rn. The semi-norm on Rn

is given by a symmetric semi-definite matrix M,

‖S(f)‖2 = fTMf , (5.3)

60 IDIAP–RR 06-66

where we denoted f = (f(x1), . . . , f(xn)) and T means transpose.
The exact explicit form of the corresponding reproducing kernel k̃(x,x′) was derived

in [68] and is given by:

k̃(x,x′) = k(x,x′)− kTx (I + MK)−1Mkx′ (5.4)

where K is the complete kernel matrix of k(·, ·), kx represents one column of K and I is
the identity matrix. In the presence of unlabeled data, the choice of M implements the
smoothness assumption with respect to its geometric structure. As shown in [1], this is
achieved by taking M = γL, L being the Laplacian matrix of the graph built on unlabeled
samples, and γ a regularization parameter which defines the extent of kernel deformation.
By setting γ=0 one obtains the original kernel, as it is clearly seen with (5.4), and no
invariance information is used in the model.

This kernel can be plugged into any kernel classification algorithm. We will use the
widely known standard form of soft margin SVMs, see Section 2.2.1. This method provides
a classifier by taking the sign of the kernel expansion:

f(x) =

(
N∑
i=1

αik̃(xi,x) + b

)
, (5.5)

where the weights αi are obtained from solving the QP optimization problem (2.21).
The advantage of the method in computational speed is that the size of this QP is

the same as the size of the original optimization problem. In virtual samples methods,
however, the training set size and, correspondingly, the optimization problem dimension
is increased [60]. However, each kernel computation becomes more expensive. The main
idea to obtain improved performance of kernel computation is based on the observation
that graph Laplacian has block-diagonal structure. It open perspectives to speed up the
processing. Roughly, given N original training samples and L virtual ones, used as graph
nodes, the proposed method requires O(N3 + NL3) computations instead of O(N3L3) as
requires SVM with virtual samples.

5.3 Classification Experiments

The experiments described below deal with global rotational invariance as an example. We
start with an illustration of modeling the invariant manifold and kernel construction with
graphs, using character images. Finally, we test our approach on a real-world handwritten
digits dataset, commonly used in machine learning for benchmarking different algorithms
and known as USPS digits.

5.3.1 Practical Issues

We first start with a discussion on some issues which arise while implementing the de-
scribed method.

Manifold modeling. There are two basics to take into account while constructing the
graph: the smoothness of the transformation, which is modeled as locally linear between
the adjacent nodes; and the number of nodes, which has to be sufficient to model the man-
ifold reliably.

IDIAP–RR 06-66 61

A workaround is to build the graph by generating a sufficient number of virtual sam-
ples as nodes, and connect the K nearest neighbors. The rest of the procedure remains
unchanged. This approach will capture some intra-class similarity in the data. However,
the influence of noise in data such as mislabeling or outliers will probably be increased.

Choice of parameters. There are several parameters which influence the final clas-
sification model. A general way to tune them would be to carry out cross-validation on the
training data. However, this is complicated since the parameter space is of high dimension.
Here we consider several heuristics to simplify the choice.

There are two groups of parameters. The first group corresponds to the manifold-
modeling graph. These are δ and γ. The parameter δ is taken such that the bandwidth
of RBF function in graph Laplacian is equal to the average distance between the graph
nodes. The influence of the γ parameter is explored experimentally below.

The second group contains the hyper-parameters of the learning algorithm, which in-
clude the trade-off parameter C of the SVM and the kernel parameters. In this paper,
we used the kernel described in Section 5.2.2, using the standard Gaussian RBF kernel
with bandwidth σ as a base kernel. These parameters are tuned using the standard cross-
validation technique on the training data.

Features. The only restriction for the feature space used is to guarantee the smooth-
ness of the manifold in the feature space. For the sake of simplicity and to provide an
easy way for visualization, we use the pixel intensities of the raw images as inputs in the
experiments below. However, the use of this kernel in the feature space representation is
an important issue for future developments.

5.3.2 Global Rotation

The purpose of this section is to provide empirical evidence for the method, and particularly
manifold modeling. We consider the problem of kernel construction for character image
classification.

Figure 5.1 presents a contour plot of the kernel function centered at image A. Since
the basic kernel is an RBF one, this value can be considered as a measure of similarity.
The angle at the polar plane corresponds to the rotation angle of the image, and radius
corresponds to the lag of vertical translation of the image before rotation. Black dots are
the unlabeled rotated images used as graph nodes.

Figure 5.2 presents the value of kernel function centered at the original image of the
letter, as a function of the angle the image was rotated. The values were normalized. As
one can see, the parameter γ controls the amount of invariance information introduced by
virtual inputs.

5.3.3 USPS digits

In this section we carry out experiments on a widely used benchmark: the USPS dataset of
handwritten digits. It consists of 7291 training and 2007 testing samples. These are grey
scaled images of 16x16 pixels.

The data were modified by applying rotation to each character image. The rotation
angle is random in the range 0-360 degrees (see Figure 5.3). In this modified setting, this
classification problem becomes extremely difficult. The proposed algorithm was applied to

62 IDIAP–RR 06-66

Figure 5.1. Kernel centered at image ‘A’. The value of the kernel function can be considered as a similarity
measure.

Figure 5.2. Kernels for different γ values. This parameter controls the amount of invariance information
incorporated into the kernel.

binary classification. The task was to classify digits “0 − 4” against “5 − 9”. Graph nodes
were constructed by consequently rotating the original images on 15 degrees. This results
in 23 virtual samples per image. The training set was split into 36 subsets of 200 samples.
The results averaged over splits are presented in Table 5.1. Standard SVM obviously fails
to classify the rotated digits.

Another method which was tested at this experimental setting is a regularized least
squares classifier (RLS). The decision function (5.5) is used in this method. The weight
α are estimated by minimizing the empirical risk (training error) with quadratic regular-
ization term. The method is faster then SVM-like methods since this is an unconstrained
optimization solved by gradient descent.

IDIAP–RR 06-66 63

Figure 5.3. Some rotated USPS digits.

Table 5.1. Testing errors on USPS data. Standard SVM fails on rotated data. Methods with graph-based ker-
nels outperform the virtual samples methods in computational time providing competitive generalization
performance.

Algorithm Testing Error, % Time, s
SVM (unrotated data) 12.0 8.5

SVM (rotated data) 34.0 8.5
VSV SVM 13.1 2160

Graph SVM 12.5 480
RLS 14.0 1150

Graph RLS 13.2 280

5.4 Kernel Regression with Unlabelled Data

This section presents a semi-supervised kernel method for regression estimation in the
presence of unlabeled patterns. We incorporate the prior knowledge about the support of
the function. The method exploits a recently proposed data-dependent kernel which is con-
structed in order to represent the inner geometry of the data. This kernel is implemented
into Kernel Regression methods (SVR, KRR). Experimental results aim to highlight the
properties of the method and its advantages as compared to fully supervised approaches.
The influence of the parameters on the model properties will be evaluated experimentally.
One artificial and two real-world datasets were used to demonstrate the performance of
the proposed algorithm.

5.4.1 Manifold Regularization

Most of the work done in the field of semi-supervised learning field is related to fully un-
supervised tasks or semi-supervised classification problems. Semi-supervised regression
methods are, however, much less studied. The research done in this direction include [1],
[28], [14]. In this section, we combine recent developments in the field of manifold learn-
ing with kernel regression learners such as Support Vector Regression and Kernel Ridge
Regression.

5.5 Kernel Regression Methods

The same kernel as presented above is implemented into kernel regression methods. The
exact explicit form of the kernel k̃(x,x′) is given by:

k̃(x,x′) = k(x,x′)− kTx (I + MK)−1Mkx′ (5.6)

64 IDIAP–RR 06-66

where K is the complete kernel matrix of k(·, ·), kx represents one column of K and I is
the identity matrix. In the presence of unlabeled data, the choice of M implements the
smoothness assumption with respect to its geometric structure. As shown in [1], this is
achieved by taking M = γL, L being the Laplacian matrix of the graph built on unlabeled
samples, and γ a regularization parameter which defines the extent of kernel deformation.
By setting γ=0 one obtains the original kernel, as it is clearly seen with (5.6).

The first method which we will use in the experiments below is the standard form of
Support Vector Regression, as presented in Section 2.2.2. The second one is the Kernel
Ridge Regression.

5.5.1 Kernel Ridge Regression

Kernel Ridge Regression is a regularized least square approach, which leads to the same
form of regression function (5.5). However, it exploits the square loss function, and α
coefficients can be obtained from the following closed form expression:

α = (KTK + δI)−1KTY (5.7)

where δ is a regularization parameter and Y is the vector of training outputs. Note that
an iterative method can also be used to train the KRR model.

5.6 Regression Experiments

The experiments described below were carried out on the following datasets: spiral, Boston
housing and sunspots. The first one is an artificial dataset, which we use to explore and
illustrate the basic properties of the method. The other two are real-world datasets, com-
monly used in machine learning for benchmarking different algorithms.

5.6.1 Kernel Choice

In these experiments, we used the kernel described in Section 5.5, using the standard
Gaussian RBF kernel with bandwidth σ as a base kernel. Gaussian RBF is used in all the
baseline supervised algorithms as well. Another parameter to select is the regularization
parameter γ of the modified kernel (5.4). This will be explored empirically in this section.

5.6.2 Spiral: 2D Synthetic Example

This dataset was artificially generated with:
x1(φ) = 1

2

√
φ cos(φ) +N(0, σx)

x2(φ) = 1
2

√
φ sin(φ) +N(0, σx)

f(φ) = ln(1 + φ) sin(5
2φ) +N(0, σf)

(5.8)

in the range of φ ∈ [0; 6π]. The function f(φ) to predict is defined on the 2D spiral. This
function is presented in Figure 5.4a with a thin solid line. Both coordinates and function
values are corrupted with normal noise of variance σ2

x and σ2
f correspondingly. Two random

data realizations are presented in Figures 5.4b and 5.4c. We compare the performance of

IDIAP–RR 06-66 65

(a) Function f(φ) and its estimates by semi-supervised
(bold line) and standard (dotted line) SVR.

(b) Input samples, σx=0.05 (c) Input samples, σx=0.15

Figure 5.4. 2D spiral data used for method validation.

the proposed method and the standard Support Vector Regression with Gaussian RBF
kernel. Labeled part of the training set consist of 100 randomly selected samples, while
an other set of 900 samples were provided unlabeled to the semi-supervised method. The
results are averaged over 10 runs of the algorithm (each run selecting different training
and test examples), and its performance was measured in terms of RMSE using the known
underlying function f(φ) (5.8).

Figure 5.5a presents the dependence of the testing error of both methods with respect
to the variance of noise in the inputs σx. The top curve (with higher RMSE) corresponds
to standard SVR. As can be seen, semi-supervised regression (bottom curve) is preferable
for a large region of noise variance, provided that some geometrical structure in the data
remains.

Figure 5.5b presents the dependence of the testing error of both methods with respect
to the kernel regularization parameter γ. The dashed line corresponds to the testing error
of the basic SVR. The semi-supervised method outperforms SVR for a large range of values.

66 IDIAP–RR 06-66

Table 5.2. Experimental results for Boston Housing database.
Boston housing results

Algorithm Train err. Test err. Training time, s
SVR 4.0 5.3 0.3

SemiSVR 3.5 5.0 0.5
KRR 2.7 4.0 0.3

SemiKRR 3.5 4.0 0.5

5.6.3 Boston Housing: High Dimensional Regression Estimation

The task here is to predict the median price of the houses in certain area of Boston based on
12 continuous and 1 binary variables defining the characteristics of the area. The training
dataset consists of 466 samples, while 40 samples were reserved for testing. The parame-
ters of the methods were tuned with cross-validation error. Unlabeled data were randomly
chosen by removing the labels from 50% of data samples. The results were averaged over
10 runs of the algorithm (each run with different training and test examples).

Table 5.2 presents training, testing error and training time of the following algorithms:
the considered SVR with semi-supervised kernel (SemiSVR), SVR with Gaussian RBF
kernel, the standard method of Kernel Ridge Regression (KRR), and KRR with a semi-
supervised kernel (SemiKRR). The results suggest that no significant improvement was
achieved on this dataset. There was probably not enough data samples to model the mani-
fold in the 13-dimensional input space.

(a) RMSE, X-axis: σx. (b) RMSE, X-axis: γ.

Figure 5.5. Spiral data experimental results.

5.6.4 Sunspots: Time Series Prediction with Missing Values

This dataset is a time series representing the number of visible sunspots per day. The fol-
lowing embedding was used to apply a regression estimator for predictions: to predict the
yearly average of the year starting next day using the previous 12 yearly averages. The se-
ries is thus smoothed by averaging. Figure 5.6a presents some 2D projections (trajectories)

IDIAP–RR 06-66 67

Table 5.3. Experimental results for the Sunspots database.
Sunspots results

Algorithm Train err. Test err. Training time, s
SVR 10.3 15.8 10.1

SemiSVR 9.4 12.3 30.4
KRR 11.3 17.5 12.6

SemiKRR 12.1 14.0 35.3

in the embedded input space. One can observe a distinct structure of the inputs, which
justifies the use of manifold-based semi-supervised methods for making predictions.

We used only one part of the series containing 2000 values. 50% of the labels were
deleted from the series to simulate missing data. Hence, the unlabeled part of the dataset
consisted of 1000 samples, and the training set also contained 1000 labeled samples. Miss-
ing values in inputs were averaged using two nearest neighbors in time. The obtained
results are summarized in Table 5.3. The results are averaged over 10 runs of the algo-
rithm where different sections of 2000 points were selected randomly.

Predictions are presented in Figure 5.6b, for γ=0 (standard SVR), γ=0.1, γ=1. The semi-
supervised SVR gives better forecasting for longer time periods, for higher values of γ.

(a) Some 2D trajectories (b) SemiSVR Predictions

Figure 5.6. Sunspots database results. Semi-supervised SVR provides better predictions.

5.7 Discussion and Conclusions

The universal approach to invariant learning is the virtual samples approach. Given un-
limited computational resources and an ability to add enough virtual samples to the train-
ing set, all the information on invariances can be learned directly from data.

An alternative to this approach, proposed in this chapter and published in [51], consists
in modeling the invariant manifolds instead in order to obtain improvements in training
time without lack of precision. We adapted the recently developed method to model man-
ifolds defined by samples and we built a kernel classifier which enforced smoothness on
these manifolds. We thus obtained an invariance property of the classifier.

68 IDIAP–RR 06-66

The method provides a way to model nearly arbitrary invariances. It requires additional
computations to build the kernel. At the same time, the size of the optimization problem
is unchanged. The amount of invariant information used in the algorithm can be tuned by
the choice of parameter γ.

Promising classification performance on a real OCR task was observed. Other appli-
cations, such as dealing with specific invariances or matching problems are of particular
interest for further developments.

Concerning kernel regression methods, we proposed to implement the recently devel-
oped data-dependent semi-supervised kernel for regression estimation methods, namely
Support Vector Regression and Kernel Ridge Regression. Thus, the methods are adapted
for semi-supervised learning problems. Some issues of the practical use of the methods
were considered. We have shown that the semi-supervised methods do benefit in the case
where there exists some geometrical structure in data. A significant improvements in per-
formance compared to baseline supervised kernel regression estimators was shown in a
number of experiments on synthetic and real-life datasets, these results were published in
[52].

Chapter 6

Conclusion and Perspectives

6.1 General Summary

Throughout this thesis, we have explored an important problem of learning with kernel
methods in the presence of prior knowledge. We have shown that the smart use of the
latter improves the performance of the algorithms. Several approaches were proposed to
incorporate prior knowledge into kernel learning. Our main interest was in the scope of
invariant learning. The task here is to enforce the learning algorithm to obey invariance
properties. That is, the output of the learning system must not change if the input is
changed by a desired invariant transformation.

Particularly, we developed kernels that incorporate the knowledge about sample trans-
formations. Applying the desired transformation to some training sample, one obtains an
object in the input space. Next, a kernel is constructed which deals with objects. A number
of implementation techniques of this method, based on hard geometrical objects and soft
objects based on distributions were considered. The method was applied to real-life task of
face images classification and EEG signals classification. The results of this research were
published in [55], [50].

In a number of tasks, prior knowledge can be formulated by replacing the input vec-
tors with distributions. A novel algorithm for classifying distributions by their domains
was developed. The algorithm combines the principle of margin maximization and a ker-
nel trick, applied to distributions. Thus, it combines the discriminative power of Support
Vector Machines and the well-developed framework of generative models. The algorithm
can be applied for introducing some prior knowledge on invariances into a discriminative
model. It was verified on face image classification task [54]. Other applications such as
object categorization were discussed in [53].

Currently, semi-supervised learning is one of the most important branches of ML. Most
of the real-life problems are actually semi-supervised. We considered the group of meth-
ods known as manifold learning. Considering regression estimation, we implemented a
recently proposed data-dependent kernel which is constructed in order to represent the
inner geometry of the data. This kernel was built into kernel regression estimators. Ex-
perimental results revealed the properties of the method and its advantages as compared
to fully supervised approaches. The results of this study are published in [52]. Concerning
classification, we adapted the manifold learning approach to deal with invariant manifolds,

69

70 IDIAP–RR 06-66

generated by the desired transformations. It is based on building a kernel function for the
graph which models the invariant transformation manifold. It provides a way for taking
into account nearly arbitrary transformations of the input samples. The method is verified
experimentally on the task of optical character recognition [51], providing state-of-the-art
performance on harder problem settings.

Several links between existing and newly developed approaches are described in the
thesis. Regularization techniques, Vicinal Risk Minimization, Virtual Samples approaches
are described and compared to the developed methods. However, there is a room for further
developments.

6.2 Possible Future Directions

A number of interesting issues remain open in the described field. Moreover, some direc-
tions for further research arose as a result of the obtained achievements.

Considering invariant kernels (Chapter 3 and Chapter 5, classification part) it is in-
teresting to generalize the presented approaches into a unified framework of using models
of invariant manifolds based on virtual samples without enlarging the actual size of the
optimization problem. It would be interesting to obtain stronger links of these approaches
with the regularization framework.

Then, the developments of Chapter 4 (namely, the kernel classifier for distributions)
can be applied for a number of problems, where input data can be presented in the form
of distributions. Currently, it was applied to invariant image classification. An attention
can be paid to other problems such as biometric authentication, speech processing, object
categorization. This method can be also applied to speed up SVM training, considering the
clusters of data in the input space in the form of distributions.

Concerning the use of graphs for building models of invariant manifolds (Chapter 5),
the presented approach opens a number of perspectives for future developments. Given a
method for dealing with nearly arbitrary transformations of the input samples, the follow-
ing research directions are of particular interest. First, real-life applications in computer
vision tasks can be considered. Currently, the approach was applied to OCR tasks, and
invariant manifolds were modeled in the input space of raw images. The usage of the
approach for modeling manifolds in feature spaces (using SIFT and similar invariant fea-
tures) can be explored. It opens a way for achieving intra-class invariances in scene and
object categorization problems, classification of object images taken from different view-
points and in different lighting conditions, etc. Second, in biometric applications, not only
the standard transformations such as scalings, rotations and translations, but such trans-
formations as emotional and age changes can be modeled efficiently. Since the amount of
added invariant information can be easily controlled with a single hyper-parameter, the
trade-off between discrimination abilities and false acceptance can be tuned. Thus, the
performance of the authentication system can be controlled.

Generally, the growing interest of the field of machine learning with kernel methods
(both from applied and theoretical areas) opens promising perspectives for many further
developments in the field. The increasing number of applications demands for new exten-
sions of the existing algorithms, approaches and implementations.

IDIAP–RR 06-66 71

Acknowledgments

This research has been partially carried out in the framework of the European project
LAVA, funded by the Swiss OFES project number 01.0412. It supported in part by the
IST Programme of the European Community, under the PASCAL Network of Excellence,
IST-2002-506778, funded in part by the Swiss OFES. It was also partially funded by the
Swiss NCCR project (IM)2.

72 IDIAP–RR 06-66

Acronyms

BCI Brain-Computer Interface
DB-TVK Distribution-Based Tangent Vector Kernel
EM Expectation-Maximization
EEG ElectroEncephaloGram
ERM Empirical Risk Minimization
GM Generative Models
GMM Gaussian Mixture Models
HMM Hidden Markov Model
ID IDentity
KRR Kernel Ridge Regression
LDA Linear Discriminant Analysis
LDS Low Density Separation
MAE Mean Absolute Error
ML Machine Learning
NPP Nearest Point Problem
OCR Optical Character Recognition
PCA Principal Component Analysis
RBF Radial Basis Function
QP Quadratic Programming
RKHS Reproducing Kernel Hilbert Space
RLS Regularized Least Squares
RMSE Root Mean Square Error
SDP Semi-Definite Programming
SIFT Scale Invariant Feature Transform
SLT Statistical Learning Theory
SOCP Second Order Cone Programming
SRM Structural Risk Minimization
SV Support Vector
SVM Support Vector Machine
SVR Support Vector Regression
SSL Semi-Supervised Learning
TVK Tangent Vector Kernel
VRM Vicinal Risk Minimization
VSV Virtual Support Vectors
USPS United States Postal Service

73

74 IDIAP–RR 06-66

Bibliography

[1] Belkin, M. Problems of Learning on Manifolds. Ph.D. dissertation, University of
Chicago, 2003.

[2] Bezdec, J. and Hathaway, R. Convergence of alternating optimization. Neural, Paral-
lel Sci.Comput.,, 11, pp. 351-368, 2003.

[3] Bhattacharyya, C., Pannagadatta, K. S., Smola, A. A Second Order Cone Program-
ming Formulation for Classifying Missing Data. Proc. of Neural Inf. Proc. Systems.,
MIT press, Cambridge, 2004.

[4] Bi, J. and Zhang, T. Support Vector Classification with Input Data Uncertainty. Proc.
of Neural Inf. Proc. Systems., MIT press, Cambridge, 2004.

[5] C. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Oxford, 1995.

[6] B.E. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin clas-
sifiers. Proc. of 5th ACM workshop on Computational Learning Theory, pp. 144-152,
Pittsburgh, PA, 1992.

[7] Burges, C. A Tutorial on Support Vector Machines for Pattern Recognition. Data
Mining and Knowledge Discovery, Vol. 2, Number 2, p. 121-167, Kluwer Academic
Publishers, 1998.

[8] C.J.C. Burges. Geometry and invariance in kernel-based methods. In B.Scholkopf,
C.J.C. Burges, and A.J. Smola (eds.), Advances in Kernel Methods - Support Vector
Learning, MIT Press, 1999.

[9] Chapelle, O., V. Vapnik and J. Weston Transductive Inference for Estimating Values
of Functions. Advances in Neural Information Processing Systems 12, 1999.

[10] O. Chapelle, J. Weston, L. Bottou, and V. Vapnik, 2001. Vicinal Risk Minimization.
In: T.K. Leen, T.G. Dietterich, and V. Tresp, (eds.), Advances in Neural Information
Processing Systems, vol. 13, pp. 416-422.

[11] O. Chapelle and B. Scholkopf. Incorporating invariances in nonlinear SVMs. In T.G.
Dietterich, S. Becker and Z. Ghahramani, (eds.),Advances in Neural Information Pro-
cessing Systems, vol. 14, pp. 609-616. MIT Press, Cambridge, MA, USA, 2002.

[12] Chapelle, O., V. Vapnik, O. Bousquet and S. Mukherjee Choosing Multiple Parameters
for Support Vector Machines. Machine Learning 46(1), 131-159, 2002.

75

76 IDIAP–RR 06-66

[13] Chapelle, O., Zien, A. Semi-supervised Classification by Low Density Separation. In
Proc. of AI&Statistics, 2005.

[14] Chapelle, O., Schölkopf, B., and Zien, A. (eds.) Semi-Supervised Learning. MIT Press,
Cambridge, MA, in press, 2006.

[15] Cherkassky, V., Mulier, F. Learning From Data - Concepts, Theory, and Methods. John
Wiley & Sons, USA, 1998.

[16] R. Collobert and S. Bengio. SVMTorch: Support vector machines for large-scale re-
gression problems. Journal of Machine Learning Research, 1:143–160, 2001.

[17] D. DeCoste, M.C. Burl. Distortion-invariant recognition via jittered queries. In Com-
puter Vision and Pattern Recognition, CVPR-2000, June, 2000.

[18] Fung, G., Mangasarian, O.L., and Shavlik, J. Knowledge-based support vector ma-
chines classifiers. Advances in Neural Information Processing Systems, vol. 15, Cam-
bridge, MA, MIT Press, 2002.

[19] Evgeniou, T., Pontil, M., Poggio, T. Regularization networks and support vector ma-
chines. Advances in Computational Mathematics 13(1): 1-50, 2000.

[20] F. Girosi, and N. Chan, 1995. Prior Knowledge and the Creation of Virtual Examples
for RBF Networks. Neural Networks Signal Processing Proceedings of the 1995/IEEE-
SP/Workshop, IEEE Signal Processing Society, Cambridge, MA, 201-210, September
1995.

[21] Graepel, T., and Herbrich., R. Invariant Pattern Recognition by semidefinite pro-
gramming machines. Advances in Neural Information Processing Systems, vol. 16,
Cambridge, MA, MIT Press, 2003.

[22] I. Guyon (ed.), SVMs Application List. http://www.clopinet.com/isabelle/Projects/SVM/applist.html

[23] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification
using Suport Vector Machines. Machine Learning, 46, pp. 389-422, 2002.

[24] Haasdonk, B. Transformation Knowledge in Pattern Analysis with Kernel Methods.
PhD thesis, Computer Science Department, University of Freiburg, May 2005.

[25] Haasdonk, B., Keysers, D. Tangent Distance Kernels for Support Vector Machines. In
Proc. of International Conference on Pattern Recognition, Canada, Vol.2, pp. 864-868.,
2002.

[26] Haasdonk, B., Vossen, A. and Burkhardt, H., Invariance in Kernel Methods by Haar-
Integration Kernels. SCIA 2005, Scandinavian Conference on Image Analysis, pp.
841-851, Springer-Verlag, 2005.

[27] Hastie T., Tibshirani R. and Friedman J. The Elements of Statistical Learning.
Springer press, 2001.

IDIAP–RR 06-66 77

[28] Franz, M.O., Y. Kwon, C. E. Rasmussen and B. Scholkopf Semi-supervised kernel
regression using whitened function classes. Proceedings of the 26th DAGM Sympo-
sium LNCS 3175, 18-26. (Eds.) Rasmussen, C. E., H. H. Bulthoff, M. A. Giese and B.
Scholkopf, Springer, Berlin, Germany (2004)

[29] T. Jaakkola, and D. Haussler. Exploiting generative models in discriminative clas-
sifiers. In M.S.Kearns, S.A.Solla, D.A.Cohn (eds.) Advances in Neural Information
Processing Systems, vol. 11, pp. 487-493, MIT Press, 1999.

[30] T. Joachims. Text categorzation with Support Vector Machines: learning with many
relevant features. Proceedings of ECML’98 pp.137-142, Berlin, Springer, 1998.

[31] T. Joachims. Transductive Learning via Specral Graph Partitioning In Proc. of Int.
Conference on Machine Learning, 2003.

[32] M. Kanevski, A. Pozdnoukhov, S. Canu, M. Maignan. Advanced Spatial Data Anal-
ysis and Modelling with Support Vector Machines. International Journal of Fuzzy
Systems, Vol. 4, No. 1, pp. 606-616, 2002.

[33] M. Kanevski, A. Pozdnoukhov, S. Canu, M. Maignan, P. Wong, S. Shibli. Support
Vector Machines for Classification and Mapping of Reservoir Data. A chapter from
"Soft computing for reservoir characteri-zation and modelling", Springer-Verlag, pp.
531-558, 2001.

[34] S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, K.R.K. Murthy, 2000. A Fast Itera-
tive Nearest Point Algorithm for Support Vector Machine Classifier Design. IEEE
Transactions on Neural Networks, 11(1), pp.124−136.

[35] R. Kondor, T. Jebara, 2003. A Kernel Between Sets of Vectors. In proceedings of the
Twentieth International Conference on Machine Learning (ICML-2003), Washington
DC.

[36] Kondor, R., Jebara, T., Howard, A., (2004). Probability Product Kernels Journal of
Vachine Learning Research, 5(2004), pp. 819-844.

[37] Leen, T. K. From data distributions to regularization in invariant learning. Neural
Computation, vol. 7, no. 5, pp. 974-981, 1995.

[38] D.G. Lowe. Object recognition from local scale-invariant features. In Proceedings
of the Seventh International Conference on Computer Vision (ICCV’99), pages 1150-
1157, Greece, 1999.

[39] J. Mariéthoz and S. Bengio. A comparative study of adaptation methods for speaker
verification. In International Conference on Spoken Language Processing ICSLP,
pages 581–584, Denver, CO, USA, 2002.

[40] Micchelli C. and Pontil, M. Learning the Kernel Function via Regularization. Journal
of Machine Learning Research 6 (2005), 1099-1125.

78 IDIAP–RR 06-66

[41] S. Mika, G. Raetsch, J. Weston, B. Scholkopf, K.R.Mueller. Fisher discriminant anal-
ysis with kernels. Proc. of Neural networks for signal processing IX, pp. 41-48, IEEE,
1999.

[42] K. Mikolajczyk and C. Schmid. An affine invariant interest point detector. In Euro-
pean Conference on Computer Vision, pages 128-142. Springer, Copenhagen, 2002.

[43] P.J. Moreno, P. Purdy. A Kullback-Leibler Divergence Based Kernel for SVM Classifi-
cation in Multimedia Applications. In proc. of Advances in Neural Processing Systems,
Vol. 16, 2003.

[44] K.R. Mueller, A.J. Smola, G. Raetsch, B. Scholkopf, J. Kohlmorgen, V.N. Vapnik. Pre-
dicting time series with support vector machine. Proceedings of ICANN’97 pp. 999-
1004, 1997.

[45] Nesterov, Y., Nemirovskii, A., (1993) Interior Point Algorithms in Convex Program-
ming. Studies in Applied Mathematics, 13, SIAM, Philadelphia.

[46] P. Niyogi, T. Poggio, and F. Girosi. Incorporating Prior Information in Machine Learn-
ing by Creating Virtual Examples. IEEE Proceedings on Intelligent Signal Processing,
Vol. 86, No 11, 2196-2209, 1998.

[47] Fast Training of Support Vector Machines Using Sequential Minimal Optimization.
Advances in Kernel Methods - Support Vector Learning, pp.185-208, MIT Press, Cam-
bridge, MA, 1999.

[48] Pontil, M. and Verri, A. Support Vector Machines for 3D Object Recognition. IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 6, pp. 637-646, June
1998.

[49] A. Pozdnoukhov. The analysis of kernel ridge regression algorithm. IDIAP RR-02-54,
2002.

[50] Pozdnoukhov A., Bengio, S., (2004). Tangent Vector Kernels for Invariant Image Clas-
sification with SVMs. Proc. of Int. Conf. on Pattern Recognition, Cambridge, UK.

[51] Pozdnoukhov A., Bengio, S., (2006). Graph-based Transformation Manifolds for In-
variant Pattern Recognition with Kernel Methods. Proc. of Int. Conf. on Pattern Recog-
nition, Hong Kong, 2006.

[52] Pozdnoukhov A., Bengio, S., (2006). Semi-Supervised Kernel Methods for Regression
Estimation. Proc. of Int. Conf. on Acoustics, Speech and Signal Processing, Toulouse,
France, 2006.

[53] Pozdnoukhov A., Bengio, S., (2006). Improving Kernel Classifiers for Object Cate-
gorization Problems. Proc. of ICML’05 workshop on Learning with Partly Classified
Training Data, Bohn, Germany, 2005.

[54] Pozdnoukhov A., Bengio, S., (2005). A Kernel Classifier for Distributions. IDIAP
Research Report, IDIAP RR-05-32, 2005.

IDIAP–RR 06-66 79

[55] Pozdnoukhov A., Bengio, S., (2006). From Samples to Objects: Invariances in Kernel
Methods. In Pattern Recognition Letters Journal, Volume 27, Issue 10, pp. 1087-1097,
2006.

[56] Pozdnoukhov A., Kanevski, M., (2006). Monitoring Network Optimisation for Spatial
Data Classification Using Support Vector Machines. International Journal of Envi-
ronment and Pollution. Vol.28. 20 pp., 2006.

[57] Rabiner, L.R., (1989). A Tutorial on Hidden Markov Models and Selected Applications
in Speech Recognition. Proc. of the IEEE, vol. 77, 2, February 1989, pp. 257-286.

[58] Rasmussen C.E., Williams C. Gaussian Processes for Machine Learning MIT press,
2006.

[59] C. Saunders, A. Gammerman, and V. Vovk. Ridge Regression in dual variables. Tech-
nical Report, Royal Holloway University of London, 1998.

[60] B. Scholkopf, C. Burges, and V. Vapnik. Incorporating invariances in support vector
learning machines. In C. von der Malsburg, W. von Seelen, J. C. Vorbrĺuggen, and
B. Sendhoff, (eds.), Artificial Neural Networks ICANN‘96, pp. 47-52, Berlin, 1996.
Springer Lecture Notes in Computer Science, Vol. 1112.

[61] B. Scholkopf, A.J. Smola, and K.R. Mueller. Kernel Principal Component Analysis.
In Advances in Kernel Methods - Support Vector Learning, pp. 327-352, MIT press,
Cambridge, MA, 1999.

[62] Scholkopf, B., Herbrich, R., and Smola, A., (2001) A Generalized Representer The-
orem. In: Helmbold, D. and Williamson, B., (eds.) Proc. of COLT/EuroCOLT 2001,
LNAI2111, pp. 416-426, Springer-Verlag, Berlin.

[63] Scholkopf, B., Smola, A.J. Learning with Kernels. MIT press, Cambridge, MA, 2002.

[64] Schneiderman, H., Kanade, T., (2000) A Statistical Method for 3D Object Detection
Applied to Faces and Cars. In the proc. of CVPR-2000, pp.746-751.

[65] H. Schneiderman and T. Kanade. Object Detection Using the Statistics of Parts. In-
ternational Journal of Computer Vision, Volume 56 , Issue 3, pp. 151-177, 2004.

[66] Shawe-Taylor J., Christianini N. Kernel Methods for Pattern Analysis. Cambridge
University Press, 2004.

[67] Simard, P., LeCun, Y., Denker, J., Victorri B., (1998). Transformation invariance in
pattern recognition, tangent distance and tangent propagation. In: G. Orr and K.
Muller, (eds.), Neural Networks: Tricks of the trade. Springer.

[68] Sindhwani, V., Niyogi, P., Belkin, M. Beyond the Point Cloud: from Transductive to
Semi-supervised Learning In Proc. of ICML’05, Bonn, Germany.

[69] Smola, A.J., Schölkopf, B., Müller, K.-R. The connection between regularization oper-
ators and support vector kernels. Neural Networks, Volume 11, pp. 637-649, 1998.

80 IDIAP–RR 06-66

[70] Smola, A.J., Scholkopf, B. A Tutorial on Support Vector Regression. Statistics and
Computing, 1998. Invited paper.

[71] Tikhonov, A. N., Arsenin V. Y. Sollution of Ill-posed Problems W.H.Winston, Washing-
ton D.C., 1977.

[72] Tsochantaridis, I., Hofmann, T., Joachims, T., Yasemin, A., (2004). Support Vector
Machine Learning for Interdependent and Structured Output Spaces. 21th Int. Conf.
on Machine Learning, Banff, Canada.

[73] R. Vanderbei LOQO: An Interior Point Code For Quadratic Programming. Technical
Report SOR 94-15, Princeton University, 1994.

[74] V. Vapnik, 1998. Statistical Learning Theory. J.Wiley, NY, 1998.

[75] V. Vapnik, 2000. The Nature of Statistical Learning Theory. Second edition, Springer-
Verlag, NY.

