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Abstract
In this thesis, the framework of multi-stream combination has been explored to improve the noise

robustness of automatic speech recognition (ASR) systems. The central idea of multi-stream ASR

is to combine information from several sources to improve the performance of a system. The two

important issues of multi-stream systems are which information sources (feature representations)

to combine and what importance (weights) be given to each information source.

In the framework of hybrid hidden Markov model/artificial neural network (HMM/ANN) and

Tandem systems, several weighting strategies are investigated in this thesis to merge the posterior

outputs of multi-layered perceptrons (MLPs) trained on different feature representations. The best

results were obtained by inverse entropy weighting in which the posterior estimates at the output

of the MLPs were weighted by their respective inverse output entropies.

In the second part of this thesis, two feature representations have been investigated, namely

pitch frequency and spectral entropy features. The pitch frequency feature is used along with per-

ceptual linear prediction (PLP) features in a multi-stream framework. The second feature proposed

in this thesis is estimated by applying an entropy function to the normalized spectrum to produce

a measure which has been termed spectral entropy. The idea of the spectral entropy feature is ex-

tended to multi-band spectral entropy features by dividing the normalized full-band spectrum into

sub-bands and estimating the spectral entropy of each sub-band. The proposed multi-band spectral

entropy features were observed to be robust in high noise conditions. Subsequently, the idea of

embedded training is extended to multi-stream HMM/ANN systems.

To evaluate the maximum performance that can be achieved by frame-level weighting, we in-

vestigated an “oracle test”. We also studied the relationship of oracle selection to inverse entropy

weighting and proposed an alternative interpretation of the oracle test to analyze the complemen-

tarity of streams in multi-stream systems.

The techniques investigated in this work gave a significant improvement in performance for

clean as well as noisy test conditions.
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Version abrégée
L’idée centrale des systèmes à flux multiples est de combiner plusieurs sources d’information

pour améliorer la performance finale d’un système. Cette thèse explore la combinaison de flux mul-

tiples pour améliorer la résistance au bruit d’un système de reconnaissance automatique de la

parole (ASR). Deux directions complémentaires sont considérées : quel flux d’information utiliser

(type de représentation des données), et quel importance relative donner à chaque flux (un poids

pour chaque flux d’information).

Dans le cadre de la reconnaissance de la parole avec systèmes hybrides chaı̂ne de Markov

cachée/réseau neuronal (HMM/ANN) d’une part, et systèmes Tandem d’autre part, cette thèse

propose trois stratégies pour définir les poids relatifs. Un poids est attribué à chaque perceptron

multi-couches (MLPs), et chaque perceptron est entraı̂né sur un flux d’information différent. Les

deux stratégies “postérieure maximum” (MP) et “entropie inverse” définissent les poids à partir des

probabilités a posteriori estimées par chaque MLP. La troisième stratégie “vraisemblance maxima-

le” (ML) définit les valeurs des poids de façon à maximiser la vraisemblance des données de test. Les

expériences de reconnaissance montrent que la stratégie d’entropie inverse conduit aux meilleurs

résultats.

Cette thèse considère aussi deux types de flux d’information : fréquence de timbre et entropie

spectrale. La fréquence de timbre est liée au signal d’excitation du conduit vocal. Elle est ici utilisée

en concaténation avec les informations de prédiction linéaire perceptuelle (PLP). L’entropie spec-

trale est l’entropie du spectre normalisé. Une extension “bandes multiples” de l’entropie spectrale

est proposée : le spectre normalisé est divisé en sous-bandes, et l’entropie est estimée dans chaque

sous-bande. Les expériences de reconnaissance montrent que l’entropie spectrale est robuste aux

conditions fortement bruitées.

Pour connaı̂tre l’intégralité du bénéfice potentiel offert par les systèmes à flux multiples, nous

avons étudié un “test d’oracle”. Ce test indique la performance maximale qui peut être obtenue par

les différentes stratégies de combinaison. Nous avons ensuite étudié les relations entre le choix de

l’oracle et la stratégie d’entropie inverse. Ceci a conduit à une autre interprétation du test d’oracle,

qui permet d’analyser la complémentarité des flux dans les systèmes multi-flux. Enfin, l’idée d’en-

traı̂nement incorporé a été étendue aux systèmes HMM/ANN à flux multiples.
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Les techniques étudiées dans cette thèse, à savoir la stratégie de combinaison par entropie in-

verse, l’entropie spectrale et l’entraı̂nement incorporé à flux multiples, apportent une amélioration

significative aux performances de reconnaissance. Ceci est vérifié aussi bien en conditions non-

bruitées que bruitées. On en conclut donc que les techniques proposées rendent plus robustes les

systèmes de reconnaissance.
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Chapter 1

Introduction

Speech is a natural means of communication among human beings to convey the intended message.

Apart from the message content, the speech signal also carries variabilities such as speaker char-

acteristics, information about the environment in which it is produced and the properties of the

channel through which it propagates. In spite of these additional variabilities present in the signal,

human beings are able to extract the message content of the speech without much difficulty.

Automatic speech recognition (ASR) is the task of transforming the intended message content

of the speech into text with the help of a machine. In the ASR task, variabilities due to different

speakers, environment and channels degrade the performance of the system and are undesirable.

The goal of ASR is to have speech as a medium of interaction between man and machine and it is

desired that an ASR system is robust to these unwanted variabilities.

1.1 Objective of the Work

Typically, the performance of an ASR system drops in presence of noise (Hermansky and Morgan,

1994; Gong, 1995), and this noise can be additive, convolutional (channel or reverberant) or a com-

bination of any of them. In the present work, we have investigated a multi-stream combination

framework to address the issue of robustness towards additive noise in ASR.

In multi-stream systems, information from more than one source is combined to improve the

performance, assuming that different sources considered for combination carry complementary in-

formation. The resulting additional information from multiple sources can lead to an improvement

1



in performance over a single-stream system (Kirchhoff, 1998; Neti et al., 2001). The two impor-

tant issues studied in this thesis in the framework of multi-stream ASR are: which information

sources (feature representations) to combine and how much importance (weight) be given to each

information source.

1.2 Motivation for the Present Work

1.2.1 Human Speech Recognition

The multi-stream approach towards ASR is inspired to a certain extent by human speech recogni-

tion (HSR). The examples of multi-stream in HSR include:

1. The ability of human beings to perceive weak (low amplitude) sounds in presence of noise can

be explained by binaural hearing (Koenig, 1950; Kock, 1950). When compared to monaural

hearing, the ability to detect a signal in a background masking signal is greatly improved with

binaural hearing. In ideal conditions, the detection threshold for binaural hearing can exceed

monaural hearing by 25 dB (Arons, 1992). This phenomenon of robust speech recognition is

referred to as the binaural masking level difference (BMLD) (Kock, 1950).

2. It has been observed that humans use different acoustic cues to gain robustness, for exam-

ple, the cocktail party effect indicates that humans rely on different features to lock-in to

the voice of a particular speaker in presence of many other competing voices from different

speakers (Cherry, 1953; Cherry and Taylor, 1954; Arons, 1992).

3. The effect of lip movement of the speakers in HSR was investigated in (McGurk and Mc-

Donald, 1976), and it was reported that human beings use visual cues in speech perception

(McGurk effect).

4. Fletcher’s perceptual experiments (Fletcher, 1953; Allen, 1994) on HSR demonstrated that hu-

man beings process different frequency bands independently and the independent estimates

of the speech sounds in each frequency band are merged optimally at some higher level.

1.2.2 Multi-stream vs Single-stream ASR

1. In the past, it has been observed that combining evidence from more than one source improves

the performance of ASR systems if the different sources carry complementary information and



are given importance according to their reliability (Dupont and Luettin, 1998; Morgan et al.,

1998; Kirchhoff, 1998; Sharma et al., 2000; Zhu et al., 2005b). In Chapter 6, the performance

of multi-stream systems is compared with single-stream systems, and the potential of multi-

stream systems is demonstrated using an “oracle test”.

2. Including additional information by appending temporal features (deltas and double-deltas)

to static features1, also known as feature-level combination or early integration, has shown to

improve ASR performance (Furui, 1986).

3. Processing techniques such as spectral subtraction and mean normalization, which make in-

dividual feature streams more robust, further help multi-stream systems in improving the

performance.

Besides these motivations, multi-stream systems are a step towards fail-safe systems from an

engineering perspective as well. In the case of failure of one of the streams, the system can still

work, perhaps with a reduced performance. Considering these properties of multi-stream systems,

multi-stream combination is an interesting research area and has been investigated in this thesis.

1.3 Contribution of the Thesis

Out of several factors which need to be considered in multi-stream combination, this thesis focuses

on the following two important issues:

1. Weights given to the posterior outputs of each classifier2 in the combination: The follow-

ing three weighting techniques are investigated:

(a) Maximum-posterior (MP) weighting: The posterior outputs of a classifier are weighted

in proportion to its maximum-posterior probability. The approach is motivated by the rea-

soning that a classifier gives a high probability for a class if it is confident about that class.

Furthermore, it will yield low probabilities for all the classes if it is unable to distinguish

among them. By this reasoning, a classifier with high maximum-posterior probability is

more confident about its decision and its outputs should be given more weight.

1The feature extraction process is described in Section 2.1.1.
2In this work, we have used hybrid hidden Markov model/artificial neural network (HMM/ANN) systems, where a multi-

layered perceptron (MLP) is trained as a classifier (Bourlard and Morgan, 1994).



(b) Inverse entropy weighting: The entropy at the output of a classifier is low when the

classifier gives high probability for a particular class and low probabilities for rest of

the classes. Such a classifier is more confident about its classification and its outputs

should be given more weight. In contrast, a classifier having equal probabilities for all

the classes has the highest entropy and is least confident about its decision. Therefore,

the outputs of a classifier with high entropy should be given less weight (Okawa et al.,

1999; Heckmann et al., 2002; Misra et al., 2002, 2003).

(c) Maximum-likelihood (ML) weighting: ML weighting is inspired by the reasoning

that an increase in likelihood of test data might help in improving the recognition accu-

racy also. The weights at the output of the classifiers are estimated for each class and

classifiers’ outputs are combined such that the likelihood of the test data is maximized.

2. New sources of complementary information (feature representations) to be used in

the combination: We have studied two feature representations which are expected to carry

complementary information when compared with baseline perceptual linear prediction (PLP)

features (Hermansky, 1990).

(a) Pitch frequency feature: The pitch frequency carries information about the vocal-tract

excitation signal. It may have information complementary to commonly used cepstral

features which capture the characteristics of the vocal-tract. Further, pitch frequency

is one of the cues on which humans rely to improve robustness in the cocktail party

effect (Arons, 1992).

(b) Multi-band spectral entropy features: The multi-band spectral entropy features are

proposed to capture the spectral peaks of the spectrum which are more resistant to ad-

ditive noise compared to other parts of the spectrum (Misra et al., 2005a; Misra and

Bourlard, 2005). Recent studies on the spectral entropy feature have shown that the fea-

tures are robust to noise and have properties different from energy based features (Mc-

Clellan and Gibson, 1997; Shen et al., 1998; Subramanya et al., 2005).

The two main contributions of this work, namely inverse entropy weighting and spectral entropy

features, are further investigated with the help of the following:

1. Oracle analysis: An Oracle test is suggested to evaluate the potential of multi-stream sys-

tems by selecting the outputs of the classifier at every time instant that has the highest pos-



terior for the correct class. The Oracle test gives support to inverse entropy weighting and

illustrates the complementarity of spectral entropy features (Misra et al., 2005b).

2. Multi-stream embedded training: Single-stream embedded training is known to yield im-

proved performance in HMM/ANN systems. In the present work, such a scheme is proposed

and investigated for multi-stream HMM/ANN systems. The proposed method yields a signif-

icant improvement in ASR performance, both in clean as well as noisy test conditions (Misra

et al., 2005b).

3. Multi-stream Tandem: The Tandem model (Hermansky et al., 2000) for ASR is a two stage

sequential model where the feature processing is done by an MLP and the outputs of the MLP

(after some processing to make them Gaussian-like and uncorrelated) are used as features in

a standard hidden Markov model/Gaussian mixture model (HMM/GMM) system. In multi-

stream Tandem, the outputs of MLPs trained on different feature streams are combined and

the combined output is modelled by an HMM/GMM system. Inverse entropy weighting and

spectral entropy features are investigated in this framework, showing an improvement over a

single-stream Tandem system (Misra and Bourlard, 2005).

4. Large vocabulary ASR: The methods developed on a small vocabulary task were further

verified on a large vocabulary task. The improvements obtained on the small vocabulary task

were observed on the large vocabulary task as well.

1.4 Organization

The present thesis has been organized into 9 chapters. The next two chapters (Chapters 2 and 3)

give the general overview and the later chapters are related to the research work carried out in this

thesis.

Chapter 2 presents an overview of the current state-of-the-art HMM-based ASR systems. In this

chapter, we explain different components of an ASR system, giving a description of the two main

HMM based approaches to ASR, namely HMM/GMM and HMM/ANN. We conclude the chapter

with a discussion on robustness issues in ASR systems.

In Chapter 3, the motivation for multi-stream combination is presented. We identify the impor-

tant constituents of multi-stream combination systems, and review some of the contributions made



to multi-stream ASR in the past. Subsequently, we explain the “full-combination multi-stream”

approach, a special case of multi-stream combination. In this chapter, we also describe the OGI

Numbers95 spontaneously spoken connected digit US English database. This database has been

used to carry out the ASR experiments related to robustness studies in this thesis.

Chapter 4 gives details about weighting techniques for multi-stream combination that have been

studied in this thesis. We give the motivation for each weighting technique and present the results

for them on hybrid HMM/ANN systems.

The feature streams considered for combination should carry complementary information for a

multi-stream system to yield better performance compared to an ASR system using a single fea-

ture stream (typically cepstral features). We investigate pitch frequency and spectral-entropy as

additional feature streams in multi-stream combination in Chapter 5.

Chapter 6 is organized to analyze the performance of an Oracle in a multi-stream setup and

study its relationship with inverse entropy weighting. In the same chapter, we explain embedded

training, and then propose the idea of embedded training in the multi-stream framework for hybrid

systems.

Chapter 7 gives an introduction to Tandem systems where we describe two existing variants

of Tandem systems, and discuss multi-stream Tandem systems. The weighting techniques and the

features studied in the previous chapters are used in multi-stream Tandem systems and the results

are presented.

The studies conducted on OGI Numbers95 database (Chapters 4, 5, 6 and 7) are subsequently

tested on a large vocabulary conversational telephone speech database in Chapter 8.

In the last chapter, we summarize the techniques studied in this thesis and draw conclusions.

We also suggest future directions that can be pursued to improve the performance further.



Chapter 2

Speech Recognition: An Overview

Speech is a sequence of sounds which follows the phonological, semantic, lexical and syntactical

constraints of the language in which it has been produced.

The block diagram of a typical automatic speech recognition system is shown in Fig. 2.1. Simi-

lar to many other pattern recognition tasks, there are two phases in ASR, training and testing. In
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Figure 2.1. A standard speech recognition system with training and testing phases.

ASR, feature extraction involves computing a sequence of vectors to capture the linguistic informa-

tion present in the speech signal (Section 2.1.1). Training consists of estimation of parameters of
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the different statistical models in the ASR setup, typically using feature vectors extracted from a

limited amount of training data. In the testing phase, given the feature vectors extracted from the

test utterance and the model parameters learned during training, pattern matching is performed

using the constraints of the lexicon and language. The most likely word sequence resulting from

the pattern matching is output as the recognized text.

The list of words to be recognized are given in a dictionary (lexicon). A word in the dictionary is

represented in two forms, sequence of letters and sequence of phonemes, and the phoneme sequence

defines the pronunciation of the word. A phoneme is the smallest unit of speech that affects the

meaning of a word and distinguishes one word from another in a given language. Most languages

do not follow a one-to-one mapping between letters and phonemes, English being a particularly

good example.

On the higher level, words are made from sequence of phonemes, and in turn, sequence of words

forms sentences. Typically, phones (the acoustical realization of phonemes) are the preferred basic

units (or classes) in ASR1. It is possible to have words as classes and have one model for each word,

but in practice it is difficult to have sufficient realizations of each word while developing a large

vocabulary system.

The rest of the chapter is organized as follows: in Section 2.1, we explain the different com-

ponents of a typical ASR system. The issue of robustness towards noise in ASR is discussed in

Section 2.2. In addition, a few of the current techniques pursued to address the robustness issue

are reviewed briefly in this section.

2.1 Components of A Speech Recognition System

Typically there are three main components in ASR systems, feature extraction, acoustic modelling

and decoding, each shown as a block in Fig. 2.1. In the following sections, we explain each of these

components in detail.

2.1.1 Feature Extraction

Feature extraction is the process of retaining useful information of the signal while discarding re-

dundant and unwanted information. However, in practice, while removing the unwanted informa-

1In state-of-the-art ASR systems, context-dependent phones are used instead of context-independent phones.



tion, we may also lose some useful information in the process. Feature extraction may also involve

transforming the signal into a form appropriate for the models used for classification. In developing

an ASR system, a few desirable properties of the features are:

1. High discrimination between sub-word classes

2. Low speaker variability

3. Invariance to degradations in the speech signal due to channel and noise.

Different feature representations have been developed to emphasize one or more desirable prop-

erties of the features mentioned above. The features used in state-of-the-art ASR systems are usu-

ally derived from short-time Fourier transform (STFT) of the speech signal. Commonly used fea-

tures for ASR include Mel-frequency cepstral coefficients (MFCC) (Davis and Mermelstein, 1980),

perceptual linear prediction (PLP) (Hermansky, 1990) cepstral coefficients and RelAtive SpecTrAl

(RASTA)-PLP-derived cepstral coefficients (Hermansky and Morgan, 1994). Each feature has dif-

ferent properties, for example, PLP and MFCC perform well for clean speech conditions and de-

grade for noisy conditions while RASTA-PLP generally works well for conditions where noise is not

speech-like and yields inferior performance in clean conditions.

In the present work, we have used PLP-derived cepstral coefficients to develop the baseline

system. In Fig. 2.2, a block diagram of the PLP feature extraction process is shown.

The process of short-time feature extraction is explained in the following steps:

1. Pre-emphasis: Typically, the speech signal produced by human beings has a spectral slope

of approximately -6 dB/octave for voiced sounds. This slope is because of two reasons: a)

The shape of the glottal pulse introduces a slope of -12 dB/octave, and b) The lip radiation

introduces a slope of +6dB/octave. Therefore, the resultant slope of approximately -6dB/octave

exists in the recorded voiced speech sounds. Pre-emphasis is performed to remove this slope

of -6dB/octave. To accomplish the task, the speech signal is passed through a high-pass finite

impulse response (FIR) filter of order 1. The pre-emphasis is defined by,

y[n] = s[n] − P ∗ s[n − 1]

where s[n] is the nth speech sample, y[n] is the corresponding pre-emphasized sample and P

is the pre-emphasis factor typically having a value between 0.9 and 1. Pre-emphasis ensures



that in the frequency domain all the formants2 of the speech signal have similar amplitude so

that they get equal importance in subsequent processing stages.

2. Frame Blocking: Speech is a quasi-stationary signal and is stationary only for a short in-

terval of time. This allows us to use block processing techniques such as discrete Fourier

transform (DFT) to analyze speech signal. Typically, the signal analysis is performed by di-

viding the speech signal into small blocks of size 20-35 ms, and a shift of 5-15 ms is introduced

between adjacent blocks.

3. Windowing: Frame blocking in the time domain corresponds to truncating the signal by a

rectangular window. In the frequency domain, this leads to convolution of the Fourier trans-

forms of the signal and the rectangular window. The frequency domain equivalent of a rect-

angular window has one main-lobe and several side-lobes. The width of the main-lobe of the

window is dependent on the window type and size and should be as narrow as possible for bet-

ter estimates of the spectrum. Also, the ratio between magnitudes of the side-lobes and main

lobe of the window should be as large as possible to minimize interference from neighbouring

frequency components. The Hamming window (Oppenheim and Schafer, 1975) is a common

choice for windowing in short-time speech signal processing as it has a high ratio between

amplitudes of side-lobes and main-lobe.

4. Static Feature Computation: The most commonly used short-time features in ASR are

MFCC (Davis and Mermelstein, 1980) and PLP-derived cepstral coefficients (Hermansky,

1990) or a variation of them. To give an example of static features, we will describe the PLP

feature extraction process in brief. As mentioned earlier, PLP-derived cepstral coefficients

are used as features for developing the baseline ASR system in this thesis. Fig. 2.2 shows

the different stages of PLP feature extraction process. To begin with, the short-time Fourier

transform of the windowed signal is obtained. An estimate of energy in each band of the filter

bank defined on a bark scale is obtained. The resultant filter bank energies are multiplied

by an equal-loudness curve, and to simulate the power law of hearing, the output amplitudes

undergo cube-root compression. The final smooth spectrum thus obtained is transformed by

IFFT and using auto-regressive modelling3 (Makhoul, 1975) the PLP coefficients are esti-

mated. The order of LP analysis, p, is usually kept between 8 and 14 for telephone-quality
2Formants are peaks in the spectrum caused by resonances in the vocal tract. The position of the formants characterizes

the speech sound.
3Also known as linear prediction (LP) analysis.
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Figure 2.2. Extraction of PLP derived cepstral coefficients from short time windowed speech signal.

speech. p also has a physical interpretation and represents the number of poles of the signal

(or system response). LP analysis is also known as all-pole modelling for the reason that it

can model only the poles of the signal. In LP analysis, each complex-conjugate pole-pair corre-

sponds to a peak of the spectrum and real poles model the roll-off of the spectrum. PLP-derived

cepstral coefficients are obtained from PLP coefficients using a recursive equation (Makhoul,

1975; Rabiner, 1989).

5. Dynamic Feature Computation: The static features have information about the present

frame only and do not carry any temporal or dynamic information. Dynamic features are ob-

tained from static features and they capture the time trajectory of the static features. The

temporal information is included by taking first and second order time derivatives of each

feature component and appending them to the static features (Furui, 1981, 1986). The delta

(∆ct,l) and double delta (∆∆ct,l) cepstral coefficients are the first and second order time deriva-

tive of the cepstral coefficients (ct,l) respectively, and are obtained by,

∆ct,l =

∑k=i

k=−i k · ct+k,l∑k=i

k=−i |k|

∆∆ct,l =

∑k=i

k=−i k · ∆ct+k,l∑k=i

k=−i |k|

where t is the frame index, l is the index for feature component and i is generally kept between

2 and 4 to have a context of 5 to 9 frames (Furui, 1986).

Appending of dynamic features to static features is shown to improve ASR performance, and

the gains are usually more in presence of noise (Misra et al., 2003; Yang et al., 2005).

6. Cepstral Mean Subtraction (CMS) and Variance Normalization: The channel through



which speech is captured imposes its characteristics on the speech signal. Channel effects are

convolutional noise in the time domain, multiplicative noise in the frequency domain and ad-

ditive noise in the cepstral domain. CMS (Atal, 1976) helps in reducing the channel mismatch.

In CMS, the mean vector is computed from all the vectors of an utterance, and is subtracted

from each feature vector of that utterance. Similarly, variance normalization helps in robust-

ness against additive noise (Jain and Hermansky, 2001; Molau et al., 2003). In state-of-the-art

ASR systems, CMS and variance normalization are applied to the feature vectors to alleviate

the problem of channel mismatch and improve noise robustness respectively. Depending upon

the application, the normalization might be done at utterance-level or online.

7. Vocal-Tract Length Normalization: Typically, the vocal-tract length of females are shorter

than that of males, and as a consequence, the formant center frequencies between speakers

can vary upto 25% (Lee and Rose, 1996). The mismatch caused by the difference in vocal-tract

shape of speakers can lead to high inter-speaker variabilities (Wakita, 1977). This mismatch

can be reduced by vocal-tract length normalization (VTLN). This technique is usually ap-

plied at the spectrum level where the spectrum is either stretched or compressed along the

frequency axis by a factor (constant for each speaker) to enhance the likelihood of the obser-

vation (Cohen et al., 1995; Lee and Rose, 1998). VTLN has emerged as one of the important

techniques to improve the performance of large vocabulary speaker-independent continuous

speech recognition systems. VTLN is a two stage algorithm where the VTLN parameter on

test data needs to be computed first (an iterative expectation-maximization procedure), and

then applied to the spectrum to compute the features from the modified spectrum.

2.1.2 Acoustic Modelling

The ASR task can be defined as finding the word sequence given the feature vector sequence, X =

[x1, x2, · · · , xT ]4. This can be expressed as maximum-a-posteriori (MAP) problem (Jelinek, 1976;

Rabiner, 1989):

Ŵ = argmax
W

{P (W |X, Θ)} (2.1)

4The feature vector sequence could be the same as the cepstral feature vectors appended by first and second order time
derivatives described earlier.



where Ŵ is the most likely word sequence, W is the set of all possible word sequences from the

lexicon and Θ represents the set of parameters of the model (which needs to be estimated from

training data).

It is difficult to estimate P (W |X, Θ) directly. However, we can convert it into a maximum-

likelihood form using Bayes rule.

Ŵ = argmax
W

{
p(X |W, Θ)P (W |Θ)

p(X |Θ)

}
(2.2)

In (2.2), the term p(X |Θ) is common to all the hypotheses and thus can be dropped. The term Θ

is assumed to have two parts, acoustic model parameters, Θa, and language model parameters,

Θl. Usually, the two parameters are estimated separately and assumed to be independent of each

other. The term p(X |W, Θa) is referred as the likelihood of the feature vector sequence X given the

word sequence W and the acoustic model parameters Θa. Further, the term P (W |Θl) is the prior

probability of the word sequence and is defined by a language model. Accordingly, (2.2) can be

rewritten as:

Ŵ ≈ argmax
W

{p(X |W, Θa)P (W |Θl)} (2.3)

In state-of-the-art ASR systems, some parametric representation is assumed for the acoustic

model, Θa, and parameters of the model are estimated using a training database and its transcrip-

tion:

Θ̂a = argmax
Θa

{ ∏

X∈X

p(X |W, Θa)

}
(2.4)

where X represents all the utterances in the training set.

In contrast to acoustic model, the language model, Θl, is typically estimated by counting the

frequency of word-sequences (Bahl et al., 1983; Clarkson and Rosenfeld, 1997) and is expressed in

terms of n-grams (for example, n=2 gives a bigram language model).

In maximum-likelihood (ML) training given by (2.4), the aim is to find Θa which maximizes the

likelihood of the training set. Expectation-maximization (EM) (Baum et al., 1970; Dempster et al.,

1977) is a popular iterative algorithm employed to estimate Θa. In EM, a few hidden variables are

added to the parameter set (Θa) to simplify the otherwise intractable problem.



In each iteration of EM, the parameter set Θa is reestimated using the previous parameter

estimates Θs
a such that the likelihood of the training set is increased. That is,

∏

X∈X

p(X |W, Θa) ≥
∏

X∈X

p(X |W, Θs
a) (2.5)

Each EM iteration involves two steps, estimation and maximization. In the estimation step of

EM, the posterior distribution of the hidden variables is estimated using the parameters of the

previous step (Θs
a). In the maximization step, the posterior estimates are used to estimate the new

parameters (Θa). The two steps when repeated increase the likelihood of the data. The proof for

convergence of EM can be found in (Baum et al., 1970; Dempster et al., 1977).

In state-of-the-art ASR systems, typically hidden Markov model (HMM) are used for acoustic

modelling (Rabiner, 1989; Bourlard and Morgan, 1994), and are discussed next.

Hidden Markov Models (HMM) for ASR

The HMM is a finite state automaton and each state is associated with an output process which

is stochastic. Further, the transition between the states is non-deterministic. From the feature

extraction module, we extract sequence of feature vectors denoted by X = [x1, x2, · · · , xT ]. This

sequence of feature vectors is called the observation sequence in Markov modelling terminology.

In the HMM, it is assumed that this observation sequence is piecewise stationary and has been

generated by a sequence of states. The state sequence is hidden in HMM systems and is the hidden

variable of EM. The state sequence in the HMM is represented by Q = [q1, q2, · · · , qT ], qt ∈ 1, · · · , N ,

where N is the number of states, and transition between states takes place with time. The stochas-

tic output process associated with each state generates the feature vectors for that state. Generally,

some physical interpretation can be assigned to the states. In standard ASR systems, the states

usually represent phones (or parts of phones). We need to determine the parameters of the HMMs,

represented by Θa in (2.4), from the observation sequence during training.

The state sequence is hidden in HMM systems and has to be interpreted from the observation

sequence. Including the hidden variable Q in the likelihood term p(X |W, Θa), the likelihood term



can be rewritten as5:

p(X |W ) =
∑

Q

p(X, Q|W ) (2.6)

=
∑

Q

p(X |Q, W )P (Q|W ) (2.7)

In the equation,
∑

Q refers to set of all possible state sequences. We have two terms in the equation,

p(X |Q, W ) and P (Q|W ), and we can solve them separately.

To solve the first term, p(X |Q, W ), we make the assumption that the probability of the current

observation xt depends only on the current state qt, and is independent of all other observations as

well as states (independent and identical distribution). Also, the probability is independent of time.

p(X |Q, W ) = p(x1, · · · , xT |q1, · · · , qT , W )

≈

T∏

t=1

p(xt|qt) (2.8)

The second term is solved as follows using first order Markov assumption (the current state qt

depends only on the previous state qt−1):

P (Q|W ) = P (q1, · · · , qT |W )

≈ P (q1)
T∏

t=2

P (qt|qt−1) (2.9)

Substituting (2.8) and (2.9) in (2.7), we get

p(X |W ) =
∑

Q

P (q1)p(x1|q1)

T∏

t=2

P (qt|qt−1)p(xt|qt) (2.10)

The solution to evaluate the likelihood of an observation sequence for an HMM is given by (2.10).

An efficient procedure known as Baum-Welch algorithm (Baum et al., 1970) (also known as the

forward-backward algorithm) exists to compute (2.10). An approximation to (2.10) is the likelihood

of the best state sequence as realized by Viterbi decoding (Viterbi, 1967; Forney, 1973; Rabiner,

1989) and is given as follows:

p(X |W ) = max
Q

P (q1)p(x1|q1)
T∏

t=2

P (qt|qt−1)p(xt|qt) (2.11)

5In the following derivation, the dependency term Θ has been dropped for readability.



The three parameters of HMMs in (2.10) are:

1. State-transition probability distribution: It is represented by A = {ai,j}, where

ai,j = P (qt = j|qt−1 = i) 1 ≤ i, j ≤ N (2.12)

defines the probability of transition from state i to j at time t, qt is the state at time instant t

and N is the total number of states in the HMM.

2. Observation probability distribution: It is given by B = {bj(xt)}, in which

bj(xt) = p(xt|qt = j) (2.13)

defines the probability density of observation vectors in state j, j = 1, · · · , N .

3. The initial state distribution: It is represented by Π = {πi}, where

πi = P (q1 = i) 1 ≤ i ≤ N (2.14)

The set of parameters of the HMM (A, B and Π) is represented by Θa in (2.4).

As mentioned earlier, the hidden variables of the HMMs in the EM training are state sequence.

A description of EM for HMM training can be found in (Rabiner, 1989; Bourlard and Morgan, 1994;

Bilmes, 1998).

The two popular techniques used in the current ASR systems for modelling the emission prob-

abilities p(xt|qt), namely Gaussian mixture model (GMM) and artificial neural network (ANN), are

discussed in the next section.

HMM/GMM System

HMM/GMM systems are used extensively for ASR. They are also known as continuous HMMs as

the emission probability is computed by a mixture of Gaussians in these systems.

The emission probability density, p(xt|qt = j), in HMM/GMM systems is given by

bj(xt) =

Mj∑

m=1

cj,mN(xt; µj,m, Σj,m) (2.15)



where Mj is the number of mixture components in state j, cj,m is the weight of the mth component

such that
∑Mj

m=1 cj,m = 1, and N(xt; µj,m, Σj,m) is a multivariate Gaussian with µj,m and Σj,m as

mean vector and covariance matrix respectively, that is,

N(xt; µj,m, Σj,m) =
1√

(2π)d|Σj,m|
exp(−0.5(xt − µj,m)T Σ−1

j,m(xt − µj,m)) (2.16)

where d is the dimensionality of xt.

HMM/ANN System

In the typical ASR system illustrated in Fig. 2.1, for hybrid HMM/ANN systems, the density esti-

mation stage is performed by an ANN. In hybrid HMM/ANN systems, a multi-layered perceptron

(MLP) with single hidden layer is trained using back-propagation (McClelland et al., 1986; Bishop,

1995; Yegnanarayana, 1999). The input to the MLP are feature vectors, usually with a context of 4

frames on either side, that is 9 frames as input. Typically, the number of nodes in the output layer

of the MLP is equal to the number of classes (phonemes in the database) and each phoneme class is

represented by an HMM. The number of nodes in the hidden layer is generally kept more than the

number of nodes in the input or output layers (Bourlard and Morgan, 1994). When the MLP is used

as a classifier, typically the activation function for the nodes in the input layer is linear where as

for the nodes in hidden and output layers, the activation function is non-linear, such as sigmoid or

softmax. In HMM/ANN ASR systems, the output is typically softmax (Bourlard and Morgan, 1994)

and the training is done with one-hot-encoding. In one-hot-encoding, the desired output of the MLP

is 1 for the correct class and 0 for rest of the classes. Usually the training is done in batch mode and

increase in cross-validation error (Bishop, 1995) is used as a stopping criterion. The softmax output

ensures that the outputs of the MLP are posterior probability estimates for the phones given the

input data (Bourlard and Wellekens, 1989; Richard and Lippmann, 1991). The posterior estimates

are represented as:

P (qk|x
t+4
t−4) k = 1, · · · , K (2.17)

where t is the current frame index, xt+4
t−4 represents the input vector with a context of 4 frames on

either side (Bourlard and Morgan, 1994), and K is the number of phonemes.



These posterior estimates can be converted into scaled likelihoods by Bayes rule

p(xt+4
t−4|qk)

p(xt+4
t−4)

=
P (qk|x

t+4
t−4)

P (qk)
(2.18)

where P (qk) is the phoneme prior probability computed from the training data and p(xt+4
t−4) is the

likelihood of the data. Assuming that the likelihood of the data is same for all the classes, it can be

treated as a scaling factor. The scaled likelihoods thus obtained are treated as emission probabilities

and given to the HMM for Viterbi decoding. The HMMs used in hybrid systems usually have fixed

state-transition probabilities of 0.5. Further, each phone has a one state model and the minimum

duration of each phone is modelled by forcing one to three repetitions of the same state for each

phone (Robinson et al., 1996). The scaled likelihoods are provided as emission probabilities to the

state models.

In hybrid HMM/ANN systems, the ANN is trained for classification and it provides frame-level

phonetic discriminant learning. Given the input pattern, ANN outputs estimate posterior prob-

abilities of output classes when the network is trained for classification to minimize one of the

several common cost functions such as least mean square error or relative entropy (Bourlard and

Wellekens, 1989; Richard and Lippmann, 1991; Bourlard and Morgan, 1994). Additionally, a system

that estimates these posterior probabilities minimizes the error rate while maximizing discrimina-

tion between the correct output class and the competing classes (discriminant training). In practice,

ANN-based systems can be trained to generate good estimates of these ideal probabilities (one for

the correct class and zeros for the rest of the classes).

Moreover, ANNs can incorporate multiple constraints and find optimal combinations of con-

straints. Therefore, there is no need for strong assumptions about the statistical distributions of

the input features or about higher order correlation of the input data. In theory, the correlation can

be discovered automatically by the ANNs during training. This ability of ANNs to model higher

order correlation is very useful when dealing with features which have high correlation between

different components. In contrast, in HMM/GMM systems, we need to decorrelate the features first

as the usual assumption in the GMM is that the covariance matrix is diagonal. The assumption of

diagonal covariance matrix simplifies the estimation procedure. Further, it is difficult to reliably

estimate the correlation between different dimensions from a limited amount of training data.



2.1.3 Pattern Matching or Decoding

The third important component of an ASR system involves pattern matching. In a large vocabulary

ASR systems, pattern matching can be done at more than one stage, for example, at acoustical,

word and syntax levels.

In the typical ASR system shown in Fig. 2.1, while decoding, the lexical constraints are imposed

by a dictionary which contains words along with their corresponding pronunciation (phonetic tran-

scription). A word might be described by more than one phonetic transcription in the dictionary to

take care of pronunciation variants (Lucassen and Mercer, 1984).

Similarly, syntactic constraints are imposed by a language model where the probabilities of the

words, word pairs, word triplets and more are stored. The use of a language model is dependent

on the task in-hand. For instance, in a connected digit recognition task, a uniform language model

is sufficient as any digit can follow any digit. In contrast, a language model is complex for a con-

versational speech recognition tasks. In general, the language model is obtained from written text

data and is stored in terms of fixed probabilities. The language model is usually expressed in terms

of “n-grams”, where n describes the dependency of the current word on the past n-1 words. In a

large vocabulary ASR task, unigrams (n=1), bigrams (n=2) and trigrams (n=3) are the commonly

used language models. While using a particular n-gram model, in case sufficient statistics are not

available for a particular word sequence of length n, k-gram statistics are used instead of n-gram

statistics, where k < n. This is known as backed-off language modeling (Katz, 1987). As expected,

an n-gram language model is described by a Markov process of order n-1. For example, the bigram

model probabilities for words are computed by:

P (wr|wr−1) = N(wr, wr−1)/
∑

k

N(wk , wr−1) (2.19)

In the equation, N(·) is the count of word pairs, wk represents the kth word in the dictionary and

P (wr|wr−1) is the probability of word wr−1 being followed by word wr . The language model, rep-

resented by Θl in (2.3), comprises a set of n-gram probabilities discussed above, and is used to

incorporate the constraints of the language.



2.2 Noise Robustness in ASR

Speech can get affected by the channel through which it passes or the environment in which it

is produced and/or recorded. For instance, the channel imposes its characteristics in the form of

convolutional and additive noises and the environment can introduce additive or reverberant (which

is convolutive) noises to the speech. These undesirable changes in the speech signal can affect the

performance of an ASR system considerably.

The problem of robustness can be addressed at various stages of ASR. We will discuss a few of

them in this section:

1. Robust feature extraction: Features that are less affected by certain kinds of noises can be

extracted from the speech signal. For example, RASTA (Hermansky and Morgan, 1994) fea-

ture extraction uses filters to remove those components of the signal which do not follow the

dynamics of speech. Therefore, the feature gets less affected by stationary noises compared to

PLP or MFCC features. Similarly, phase-autocorrelation (PAC) features (Ikbal et al., 2003b)

are able to enhance the peaks of the spectrum and were shown to be less affected by additive

noise. In the same vein, the Mel-cepstrum modulation spectrum (MCMS) (Tyagi et al., 2003)

captures different dynamics of the Mel-cepstral features by projecting them on sine and cosine

bases to yield an improved performance under different noise conditions. Spectro-Temporal

Activity Pattern (STAP) features (Ikbal et al., 2004a) were suggested to capture the pattern

around the peaks of the spectrum and were shown to be less vulnerable to noisy conditions.

Each of these feature representations captures different characteristics of the speech signal.

However, a single feature representation might not perform well under all conditions. This

makes multi-stream a promising approach where the information from different feature repre-

sentations is combined to have more information and hence a better description of the speech

signal.

2. Feature normalization: Normalization techniques like cepstral mean (Furui, 1986) and vari-

ance normalization can help in reducing the mismatch caused by channel and additive noise

respectively. Additionally, techniques like histogram normalization (Molau et al., 2001) can

also help in reducing the mismatch between train and test features.

3. Spectral Subtraction: Spectral subtraction (Boll, 1979; Berouti et al., 1979; Lockwood and

Boudy, 1992; Ris and Dupont, 2001) is a popular approach to reduce the effect of additive



uncorrelated noise in a signal. In this technique, an estimate of the noise spectrum, usually

a time average of the spectrum in regions where only noise is present, is subtracted from the

spectrum of noisy signal.

4. Missing data approach: In this approach, it is assumed that noise affects only a few regions

in the spectro-temporal plane and it is possible to identify such regions. These regions are

treated as unavailable or unreliable and methods are suggested for the two possible conditions

to enhance the signal and recognition accuracy (Cooke et al., 2001). If it is assumed that the

noise affected regions are unavailable, they are marginalized out while doing the estimation.

In contrast, when it is assumed that the regions affected by noise are unreliable, they are

estimated from the reliable parts by conditioning.

The approach is hindered by the fact that it is always difficult to detect the reliable and unre-

liable parts with high accuracy in the presence of noise.

5. Better model generalization: Models can be made robust by training them on different condi-

tions (various noise types and levels (Hirsch and Pearce, 2000), different speaking styles (Lipp-

mann, 1987)) or adapting them to new test conditions using techniques such as maximum-

likelihood linear regression (Leggetter and Woodland, 1995). However, in practice, it is diffi-

cult to simulate all possible conditions and performance is affected for unseen conditions.

6. Multi-band combination: Inspired by Fletcher’s studies (Fletcher, 1953), in the multi-band

combination approach, the full-band spectrum is divided into smaller sub-bands and features

are computed from individual sub-bands. Separate classifiers are trained for each sub-band’s

features and the outputs of different classifiers are combined. If the noise is band-limited, only

certain sub-bands get corrupted and accordingly only the classifiers for those sub-bands are

affected. Though multi-band approaches work very well for band-limited noises, they perform

poorly for clean and white noise conditions (Bourlard and Dupont, 1996; Hermansky et al.,

1996).

Multi-band is a special case of multi-stream combination, and will be reviewed briefly in the

next chapter (Section 3.3).

In this thesis, the issue of robustness in ASR towards additive noise has been addressed, and

the multi-stream combination approach has been proposed to alleviate this problem. Many of the

techniques mentioned in this section, such as feature normalization and spectral subtraction, which



make the individual feature representations more robust, can be used directly to further improve

the performance of the multi-stream systems. In the next chapter, we discuss multi-stream combi-

nation systems and their issues.



Chapter 3

Multi-stream Combination

The use of information from more than one source to arrive at a decision is the basic concept of

multi-stream. Perhaps, the most common example of multi-stream combination observed in day-to-

day life is binaural hearing (hearing by two ears). Binaural hearing helps us in finding the direction

and distance of the sound sources. In addition, binaural hearing enables the auditory system to de-

tect certain sounds at much lower intensity levels compared to using only one ear (binaural masking

level difference) (Kock, 1950). Multi-stream combination can also exist across different modalities,

for instance, hearing and vision are two different senses and are complementary. Evidence from

both of them can be combined to arrive at a decision (McGurk and McDonald, 1976; Chen, 2001).

The rest of the chapter is organized as follows: in the next section, the motivation for multi-

stream combination for ASR will be presented. The issues of multi-stream ASR are discussed in

Section 3.2. In Sections 3.3 and 3.4, we review multi-band and multi-stream ASR respectively,

listing some of the important contributions in each field. In Section 3.5, full-combination multi-

stream (FCMS), a special case of multi-stream, is described. Finally, in Section 3.6, we explain the

setup and database used to carry out the experiments reported in this thesis.

3.1 Motivation

Multi-stream combination is one of the ways to improve the robustness of a system. Multi-stream

has been studied in various areas of pattern recognition. Multi-stream combination, classifier en-

sembles (Kuncheva, 2005), multiple expert systems, classifier fusion (Buxton and Langdon, 2001)
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and several other synonyms are frequently used to describe the class of systems where the out-

puts (classification decisions) of more than one classifier is combined to get an improved perfor-

mance (Poh and Bengio, 2005). The underlying principle of multi-stream combination is to obtain

a better estimate of the optimal decision rule by combining outputs of several classifiers having

complementary source of information.

As pointed out by Morgan et al. (1998), it is advantageous to combine as many sources of infor-

mation as possible in a recognition process with the condition that weaker and stronger information

sources get less and more importance respectively. The importance given to the decision of a classi-

fier is generally referred to as weight.

In state-of-the-art ASR systems, delta and double-delta cepstral features are appended to the

static cepstral features to include additional information, and thereby improve the performance (Fu-

rui, 1986). This is an example of multi-stream combination where the feature representations (fea-

ture streams) carrying different information are combined at the feature-level.

3.1.1 Multi-stream Processing in Human Speech Recognition

Audio-visual cues: McGurk effect

McGurk and McDonald (1976) reported that in human beings acoustic information is combined

with visual information at a sub-conscious level, and the perceived phoneme category is influenced

by lip movement. This particular phenomenon is known as McGurk effect. The McGurk effect

demonstrates how human beings use visual speech information and also the bimodal nature of

speech perception. Especially in noisy speech conditions, it has been shown that combining mouth

shape with acoustic data can improve the recognition performance of an ASR system (Dupont and

Luettin, 1998).

Hearing physiology

Evidence exists that multiple experts (specialized cells) are used in the first stage of central auditory

processing in the mammalian auditory system. In the cochlear nucleus, each fiber in the auditory

nerve splits and carries the same data by about seven different types of specialized cells. Each

of these cells have a very different characteristic response and the outputs from these cells are

combined at higher levels of processing (Pickles, 1998).



Multi-band processing

Multi-band processing was investigated by Fletcher (1953). His studies on speech perception to

improve the intelligibility of speech over telephone network under conditions of filtering and noise

support the idea of multi-stream processing. His work has been summarized in (Allen, 1994) and is

an important contribution towards understanding human speech recognition (HSR).

In his studies on phone1 articulation (empirical probability of correct recognition of sounds in

absence of any context) for various channel frequency responses and channel noises, Fletcher passed

the speech signal through low-pass and high-pass filters and did perceptual experiments on several

listeners. He found that the listening errors made in the low-pass filtered band are independent

of the listening errors made in the high-pass filtered band, and a phone is misrecognized only if a

listener makes an error in both the sub-bands (if any of the sub-band is recognized correctly, the

recognition will be correct). This is an important result which shows that the phones are processed

in independent frequency channels (articulation bands) and these independent estimates of the

speech sounds in each frequency band are merged “optimally” (in humans).

This relationship was later interpreted by Allen as, “we are listening to independent sets of

phone features in the two bands and processing them independently up to the point where they are

fused to produce the phone estimates” (Allen, 1994, Page 572).

The two band model was generalized to a multichannel articulation band model by Fletcher

(originally proposed by J. Q. Stewart) and is given as,

ε = ε1 · ε2 . . . εK (3.1)

where K is the number of independent articulation bands and εk is the error of kth band. This

model was referred to as Fletcher-Stewart multi-independent channel model of phone perception.

This is also referred to as the product of errors rule in the literature, for example Bourlard (1999).

This analysis of Fletcher on the independence of sub-bands is the basis of multi-band approaches

in ASR.

1A phone is the acoustical realization of a phoneme.



3.1.2 Engineering Aspects

From an engineering perspective, multi-stream systems could be a solution for designing fail-safe

systems. The redundancy which exists in multi-stream systems makes them more robust against

failures. Multi-stream systems can give reasonable performance in the case of failure of some

streams in the system. In short, multi-stream systems are useful from a reliability perspective.

Further, these systems may give an improved performance when all the classifiers trained on dif-

ferent feature streams work reliably and their outputs are combined optimally. We will discuss

more about it in Chapter 6.

The techniques which make the individual feature streams robust, such as spectral-subtraction,

CMS, variance normalization and VTLN, improve the performance of multi-stream systems further

when robust individual feature streams are used for combination.

Variance reduction

The outputs of a single classifier are typically affected by large variances. The goal of an ideal

multi-stream combination system is to reduce this variance and hence the confusion between the

classes (Bishop, 1999; Poh and Bengio, 2005).

In an ensemble of classifiers, if the errors (deviation from the true value) of the classifiers have

zero means and are uncorrelated, the combination of classifiers’ outputs can reduce the expected

square error by a factor equal to the number of classifiers in the ensemble (Bishop, 1999, Chapter

9). In practice, errors might not be uncorrelated and thus the reduction in error is considerably

smaller than the theoretical limit. This variance reduction usually results in a better performance

by combining the classifiers compared to the performance of a single classifier in the ensemble.

Oracle performance in multi-stream systems

In (Kuncheva, 2002), performance of several multi-stream combination rules was investigated for

a two class problem. It was reported that the error can be reduced close to zero if outputs of

a large number of classifiers are combined by an ‘oracle’. In the proposed oracle experiments, a

classification decision was considered to be correct if at least one of the classifiers had made the

correct classification. This is similar to Fletcher’s “product of errors rule” given by (3.1).

In (Shire and Chen, 2000), the MLP classifiers were trained on different feature representations

and the outputs of the classifiers were combined to study the performance of multi-stream ASR for



reverberant acoustic conditions. A frame-level oracle was used to pick the outputs of the classifier

that had the highest posterior probability for the correct class. It was shown that the performance

of the oracle was significantly better than the performance of the individual classifiers used in the

combination.

An oracle has also been employed to ascertain the improvement that can be gained while scoring

several hypotheses in a lattice in an ASR task (Roark et al., 1994) compared to using the single best

hypothesis. In ASR, a lattice contains several alternative paths which can be chosen while decoding

(the path of maximum-likelihood being the usual choice). The paths in a lattice could be viewed as

an example of multi-stream system where the combination is done at the decoder-level (discussed

in Section 3.2.1, Fig. 3.3). It was shown that the ‘oracle-path’ can reduce the word-error-rates on

large vocabulary Switchboard database by a significant margin.

In practice, it is not known how to design an oracle which can choose the “right” classifier or

the “right” path. Nevertheless, an oracle analysis can indicate the potential performance of multi-

stream systems and demonstrates the advantage of multi-stream systems over single-stream sys-

tems.

In Chapter 6, we have investigated an oracle test for multi-stream ASR setup. The proposed

oracle test does frame-level weighting where the outputs of the classifier which has the highest

posterior for the right phoneme class are chosen at every time instant for decoding (Shire and Chen,

2000). An analysis of the oracle reveals some interesting results which are discussed in detail in

Chapter 6.

3.2 Issues in Multi-stream ASR

3.2.1 Combination Level

The multi-stream combination can be performed at various stages. In feature-level combination (Fu-

rui, 1986; Okawa et al., 1998), different feature representations are concatenated (Fig. 3.1) and

a model is trained for the single concatenated feature vector stream. The most common exam-

ple of concatenation and modelling in ASR is appending of delta features to the static features

(ct, ∆ct, ∆∆ct)2. Feature-level combination is commonly known as early integration in the field of

machine learning.

2Discussed in detail in Section 2.1.1.
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Figure 3.2. Posterior (or likelihood) combination: Different feature representations are obtained from the speech signal
and modelled separately. The outputs of the models (either posteriors or likelihoods) are weighted and combined. The
combined outputs are decoded.

In posterior-level combination shown in Fig. 3.2 for hybrid HMM/ANN systems, different fea-

ture representations obtained from the speech signal are modelled separately and the outputs of

the models (MLP classifiers) are weighted and combined (Bourlard and Dupont, 1996; Hermansky

et al., 1996; Misra et al., 2003; Hagen and Morris, 2005). The combined outputs thus obtained are

used for decoding. Combination at the posterior-level is also known as late integration in the area

of machine learning.

In ROVER (Fiscus, 1997; Schwenk and Gauvain, 2000), the combination is done at the outputs

of the decoder (Fig. 3.3). In ROVER, first the text outputs obtained from different decoders are time
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Figure 3.3. Decoder output combination: Different feature representations obtained from the speech signal are mod-
elled and decoded separately by individual ASR systems. The decoded output (which is text) is combined with tech-
niques such as majority voting to get the final text output.



aligned and then weighted or unweighted majority voting is performed over the aligned outputs.

3.2.2 Features for Different Streams

An important task in multi-stream combination is to identify feature representations that carry

complementary information. When the outputs of the classifiers trained on such feature represen-

tations are combined correctly, the combined outputs yield fewer errors compared to the outputs of

individual classifiers used in the combination. In rest of the thesis, the term feature stream is used

to denote feature representation and the term stream is used to represent outputs of the classifier

trained on the feature representation.

In a multi-stream system, an improvement in performance can be achieved by combination only

if the error characteristics of the outputs of the classifiers trained on different feature streams are

different. In addition to this, for noise robustness, all the streams in the system should not undergo

the same degradation in presence of noise.

3.2.3 Weights for Different Streams

In order to combine the outputs of different classifiers at posterior or likelihood-level, weights need

to be assigned to the outputs of each classifier. Posterior-level combination was described in Sec-

tion 3.2.1. In rest of the thesis, the term weight is associated with posterior-level combination of

different classifiers.

The outputs of the classifiers trained on different feature representations must be assigned

importance in accordance with the reliability of the classifiers which might be dependent on noise

conditions, phoneme classes and time. Assigning appropriate weights to different streams is a

critical step in multi-stream systems and if the weights are not chosen properly, the combined

system might perform poorly.

The weights given to different streams (outputs of the classifiers) can be defined a-priori (static

weighting) or estimated at the time of testing (dynamic weighting). In static weighting, the relia-

bility of the streams is estimated on some development data. Static weighting may not work well

if testing conditions are different from the development data conditions. In contrast, in dynamic

weighting, the weights are computed at the time of testing from some reliability estimates of the

individual streams. In practice, the reliability of the streams might change over time. Therefore,

dynamic weighting is expected to perform better than static weighting.



In this work, we have studied a few dynamic weighting techniques which are reported in Chap-

ter 4.

3.2.4 Combination Method

There are several methods to combine the outputs of the classifiers, and the common ones include:

majority voting, max, min, sum and product rule (Kittler et al., 1998; Kirchhoff and Bilmes, 2000;

Kuncheva, 2002). The equations we present in the following paragraphs are for posterior combi-

nation since we have used HMM/ANN systems (described in Section 2.1.2) in our studies. Similar

equations were developed for likelihood combination (HMM/GMM systems) in (Hagen, 2001).

In the methods discussed below, K is the number of classes at the output of a classifier and I

is the number of classifiers in multi-stream combination setup. Classifier i is trained on feature

stream xi
t and xt = {x1

t , · · · , xI
t } is the set of all feature streams in the combination. It is assumed

that all the classifiers have the same number of output classes.

Majority voting

In majority voting, at the output of a classifier, the class that gets the highest posterior probability

is considered the right class. For I classifiers, a count is made of how many times a class is selected

as the right class. The counting is done for each class. The combined probability for a class is the

number of votes received by that class divided by the number of classifiers. The relevant equations

are:

P (qk|xt) =

∑I

i=1 δk,i

I
(3.2)

where xt is the set of all feature streams in the combination and

δk,i =





1 : if P (qk|x
i
t) = maxK

m=1 P (qm|xi
t)

0 : otherwise
(3.3)

is an element of a matrix of dimension K × I . The matrix has a single entry of one and the rest

zeros in each column. A one in the kth row of the ith column indicates that classifier i had the

highest probability for the class qk. In the above equation, xi
t represents the feature stream used

for classifier i.



Max rule

In the max rule, the posterior probability of a class is given by the maximum over the posterior

probabilities for the class from different classifiers.

P (qk|xt) =
maxI

i=1 P (qk|x
i
t)∑K

m=1 maxI
i=1 P (qk|xi

t)
(3.4)

Min rule

In the min rule, the posterior probability of a class is computed by the minimum over the posterior

probabilities for the class from different classifiers.

P (qk|xt) =
minI

i=1 P (qk|x
i
t)∑K

m=1 minI
i=1 P (qk|xi

t)
(3.5)

Sum rule

In the case of multiple classifiers with posterior probabilities P (qk|x
i
t), i = 1 · · · I , and xt = {x1

t , · · · , xI
t },

the combined output for the kth class can be decomposed as:

P (qk|xt) =

I∑

i=1

P (qk, bi|xt)

=
I∑

i=1

P (qk|bi, xt)P (bi|xt)

≈

I∑

i=1

wiP (qk|x
i
t) (3.6)

where wi = P (bi|xt) and
∑I

i=1 wi = 1. In the derivation of (3.6), we make the assumption that

events bi, denoting the occurrence of stream i, are mutually exclusive and exhaustive.



Product rule

In the case of the outputs of the classifiers being independent, we can develop the product rule as

follows (Hagen, 2001):

P (qk|xt) =
P (qk)

p(xt)
p(xt|qk)

=
P (qk)

p(xt)
p(x1

t , · · · , xI
t |qk)

≈ CP (qk)1−I

I∏

i=1

[
P (qk|x

i
t)
]

(3.7)

where C is a constant such that
∑K

k=1 P (qk|xt) = 1.

In the above equation, the weights for the outputs of each classifier is kept as 1. In the case of

the weights to classifiers’ outputs being different, the equation is modified to (Hagen, 2001):

P (qk|xt) ≈
P (qk)

p(xt)

I∏

i=1

[
p(xi

t|qk)
]wi

≈ CP (qk)1−
P

i
wi

I∏

i=1

[
P (qk|x

i
t)

wi

]
(3.8)

In (3.8), the weights need not sum to one and the normalization factor is used so that the combined

posteriors sum to 1 (
∑K

k=1 P (qk|xt) = 1).

Properties of combination methods

Majority voting is a hard combination method in which the outputs of the classifiers are converted

into ‘all zeros and single one’, and this output is used for combination. In comparison, the rest of the

combination methods are soft combination methods where the posterior outputs of the classifiers

are used for combination.

In the maximum rule and sum rule, the output probability is high for a class if any of the

classifiers used for the combination has a high probability for that class. In contrast, the minimum

rule and product rule yield a high output probability for a class only if all the classifiers used for

the combination have high probability for that class.

Also, the sum rule is a weighted arithmetic mean operation while the product rule is a weighted

geometric mean operation.



3.3 Multi-band Combination in ASR

Multi-band speech recognition, a special case of multi-stream combination, has been studied in

detail in the recent past, leading to some important contributions to the field of ASR. The approach

of multi-band ASR was motivated by Fletcher’s product of errors rule given by (3.1). In multi-band

approaches, the full-band spectrum is divided into sub-bands and separate models are trained for

features extracted from each sub-band. At the time of testing, outputs of the models (likelihoods

or posteriors) are weighted and combined before sending the combined outputs for decoding. The

multi-band approach is very useful in the case of band-limited noise where only a few of the sub-

bands get corrupted. At the combination stage, if the outputs of the models which are corrupted by

noise can be deemphasized, a better performance can be achieved compared to a full-band system.

A few important issues in multi-band systems are: a) how to define the sub-bands, b) what

features to extract from the sub-bands, c) at what level combination can be performed, and d) how

to combine the outputs. Some of the contributions made to multi-band ASR are listed in this section.

Multi-band combination has been studied in the framework of HMM/GMM systems (Cerisara,

1999; Okawa et al., 1998, 1999) as well as HMM/ANN systems (Mirghafori, 1999; Sharma, 1999;

Dupont, 2000; Glotin, 2000; Hagen, 2001).

In most of the studies, 4 sub-bands defined by critical bands were used for band division (Okawa

et al., 1999; Cerisara, 1999; Mirghafori, 1999; Hagen, 2001). In Hermansky et al. (1996) and Tibre-

wala and Hermansky (1997), the authors studied the effect of changing the number of sub-bands

(2, 4 and 7). Similarly, in Bourlard and Dupont (1996), the effect of the number of sub-bands was

studied for 3, 4 and 6 sub-bands. Increasing the number of sub-bands reduced the information con-

tent in each sub-band and the performance of individual sub-bands degraded. However, when the

outputs of the sub-band models were combined, no significant difference was observed between the

systems using 4 and 7 sub-bands (Tibrewala and Hermansky, 1997).

The feature representations used for the multi-band ASR included critical band energies (Her-

mansky et al., 1996; Bourlard and Dupont, 1996), linear prediction cepstral coefficients (LPCC)

(Bourlard and Dupont, 1996), J-RASTA-LPCC (Bourlard and Dupont, 1996), PLP (Hermansky

et al., 1996; Hagen, 2001) and MFCC (Hagen, 2001). In Hermansky et al. (1996), the authors

reported a better performance with PLP features compared to critical band energies.

In multi-band combination approaches, the features extracted from sub-bands were either mod-

elled jointly by a single model (feature combination) (Okawa et al., 1998) or modelled separately and



then the outputs of the models were combined (likelihood or posterior combination) (Okawa et al.,

1999; Cerisara, 1999; Mirghafori, 1999; Hagen, 2001). Combinations were tried at state-, phone-

and syllable-level by Bourlard and Dupont (1996), and no significant difference in performance was

reported among the three combining methods.

For combining the outputs of the models, different combination techniques such as SNR weight-

ing (Bourlard and Dupont, 1996; Bourlard et al., 1996; Dupont and Bourlard, 1997; Hermansky

et al., 1996; Okawa et al., 1998; Hagen, 2001) and MLP merging (Bourlard and Dupont, 1996;

Bourlard et al., 1996; Dupont and Bourlard, 1997; Hermansky et al., 1996; Cerisara, 1999; Mirghafori,

1999) were tried. The merging by MLP gave good performance for matched conditions. Voic-

ing (Berthommier and Glotin, 1999) and spatial localization (Glotin et al., 1999) cues were also ex-

plored for weighting in multi-band studies. Relative-frequency weighting was explored in (Bourlard

and Dupont, 1996; Hagen, 2001). In (Okawa et al., 1998, 1999), the authors investigated informa-

tion theoretic measures for combination.

An important finding of the multi-band studies was that an improved performance is achieved

if the full-band system is used along with the sub-band based systems (Cerisara, 1999; Mirghafori,

1999; Hagen, 2001). In (Tibrewala and Hermansky, 1997; Hagen, 2001; Glotin, 2000), full-combination

multi-stream (FCMS)3, an elegant way of combining the full-band system to sub-band systems was

suggested. In FCMS, all possible combinations of the sub-bands are considered and one model is

trained for each combination. It was reported that non-adjacent sub-bands carry useful and com-

plementary information which helps in improving the performance.

The issue of asynchrony between different sub-bands was investigated in (Cerisara et al., 2000;

Mirghafori, 1999). It was reported that, in spite of added computational complexity, releasing the

synchrony constraint did not give an improvement in performance (Mirghafori, 1999).

Discussion on multi-band ASR

Multi-band combination was found useful in the case of band-limited noise (Bourlard and Dupont,

1996; Hermansky et al., 1996; Tibrewala and Hermansky, 1997). However, for wide-band noise,

the scheme often failed to perform better than a full-band system and the combination led to a

degraded performance (Hagen, 2001; Tibrewala and Hermansky, 1997; Okawa et al., 1999). This is

counterintuitive to Fletcher’s product of errors rule given in (3.1). The reason for this contradiction

3FCMS is described in detail in Section 3.5.



between HSR and ASR is that Fletcher’s product of errors rule works for optimal combination (in

HSR), and in practice it is not known how to derive this optimal rule for ASR systems (Hermansky

et al., 1996).

Some of the limitations of multi-band approaches are:

1. Dividing the full-band into sub-bands and processing them separately has the adverse affect

that information content in each sub-band is reduced compared to the information content of

the full-band (Tibrewala and Hermansky, 1997). Moreover, the spectral correlation between

the sub-bands is lost while processing each sub-band separately. This loss of information

generally gave a reduced accuracy for sub-band recognizers or a combination of them in clean

speech (Hagen, 2001).

2. The noises present in an environment are often wide-band and, as discussed earlier, multi-

band systems have not yielded any improvement for speech corrupted by wide-band noises. In

fact, the performance was generally poor compared to a full-band recognizer (Tibrewala and

Hermansky, 1997; Okawa et al., 1999).

3. The choice of number of sub-bands and their positions is still an open issue in multi-band

systems. Usually no straightforward rule is available to define the best setup.

4. In multi-band studies, it has been shown by Hermansky et al. (1996) that cepstral features

yield better performance than critical band energy features. However, it is difficult to con-

clude which features must be extracted from each sub-band to obtain the best possible perfor-

mance (Hagen, 2001).

3.4 Multi-stream Combination in ASR

In the multi-stream approach, evidences from various sources of information are combined to

achieve a better performance. In general, in multi-stream combination, the information sources

may include the following:

1. Feature representations from different modalities, or

2. Different feature representations from the same modality, or



3. Different classifiers (classifiers having different architecture or the same architecture but with

a different number of parameters and/or initialization) trained on the same feature stream or

different feature streams.

In ASR, for example, the combination of PLP, MFCC and J-RASTA-PLP features was inves-

tigated in (Hagen et al., 2000). In (Hagen and Bourlard, 2000), the authors employed features

obtained from different time-scales for the combination. The multi-stream approach was used for

reverberant speech in (Shire, 2001) where two models were trained for different noise conditions

and their outputs were combined at the time of testing. Multi-stream combination was also pursued

in audio-visual ASR where visual features derived from lip movement were combined with audio

features (Tomlinson et al., 1996; Dupont and Luettin, 1998; Heckmann et al., 2002; Bengio, 2003).

In (Bengio, 2003), asynchrony between the streams when streams are from different modalities was

explored.

In this section, we discuss a few of the contributions made to multi-stream combination for the

ASR task.

Feature representations in multi-stream ASR

In (Antoniou and Reynolds, 2000), the authors used different feature representations (MFCC, PLP

and LPC) to train separate MLPs for each phoneme class and the outputs of these MLPs were

combined using another set of MLPs. Similarly, PLP, J-RASTA-PLP and MFCC features were

investigated for multi-stream studies in (Christensen et al., 2000; Hagen, 2001), where separate

MLPs were trained for each feature representation (HMM/ANN system) and outputs of the MLPs

were combined. New features such as phase-autocorrelation (PAC) (Ikbal et al., 2003b,a), spectro-

temporal activity pattern (STAP) (Ikbal et al., 2004a), modulation-filtered spectrogram4 (Wu et al.,

1998a,b; Kirchhoff, 1998; Hermansky and Sharma, 1998; Janin et al., 1999; Shire, 2001), articula-

tory features (place and manner of articulation) (Kirchhoff, 1998) and TempoRAl Patterns5 (Sharma

et al., 2000) have also been studied in the framework of multi-stream ASR. Features obtained from

different time-scales (Hagen and Morris, 2000; Hagen and Bourlard, 2000) were also explored. It

was observed that the feature representations considered for combination were the primary rea-

son for improved performance in multi-stream combination compared to the size or initialization

of the neural network model (Antoniou and Reynolds, 2000; Christensen et al., 2000). It indicates
4MSG (Greenberg and Kingsbury, 1997).
5TRAPs (Hermansky and Sharma, 1998).



that each feature representation captures different characteristics of the speech signal and hence

different feature representations carry some complementary information.

Neural network size and initialization in multi-stream ASR

The effect of the size and initialization of neural network was studied in (Janin et al., 1999; Anto-

niou and Reynolds, 2000; Christensen et al., 2000). The conclusion of the studies was that size and

initialization of the neural network were less important in improving the performance compared to

different feature representations used for training the networks. A similar observation is reported

in Section 6.2.2 of this thesis where two MLPs of different sizes are trained on the same feature

stream and the outputs of the MLPs are combined by an oracle.

In (Zhu et al., 2005a), the authors studied 4-layered MLPs in hybrid HMM/ANN systems and

combined the posterior outputs of different MLPs to improve the performance in a large vocabulary

conversational ASR task.

Multi-condition training in multi-stream ASR

Multi-condition training in the framework of multi-stream combination for reverberant speech was

investigated in (Shire and Chen, 2000). For the same feature representation, one MLP was trained

for each environmental condition. RASTA-PLP and RASTA-PLP with different linear-discriminant

analysis (LDA) filters were used as two feature streams to carry out the tests. Single-stream and

multi-stream combination setups were studied. For multi-stream combination, the posterior out-

puts of the MLPs trained on different conditions for the same feature representation were merged

at the frame-level. It was reported that training on one condition and testing on the other degraded

the performance. Also, combining the outputs of the MLPs (one trained on the clean condition and

two others on noisy conditions but at different levels) gave a performance which was inbetween

the performance of the matched condition and mismatched conditions. In the study, the average,

log average and MLP mergers were investigated to combine the posterior outputs of different MLP

classifiers (Section 3.2.1, Fig. 3.2). It was reported that RASTA-PLP performed well for less noisy

conditions and RASTA-PLP with LDA filters gave better performance for high noise conditions.

In (Shire, 2001), the authors used two different feature representations for the multi-stream

setup. PLP and MSG (Greenberg and Kingsbury, 1997) features were considered for combination,

training one MLP for each feature representation. Also, for each feature representation, one sepa-



rate MLP was trained for each noise condition. The outputs of MLPs trained on different feature

representations were combined. The authors reported a better performance on mismatched con-

ditions and slightly inferior performance on matched conditions compared to the baseline systems

trained only on matched conditions.

Tandem system for multi-stream

In (Sharma et al., 2000), PLP, RASTA-PLP-like features with LDA, MSG and TRAP (Hermansky

and Sharma, 1998) were considered as feature streams. Except PLP features, which are short-time

features, the rest of the features are obtained over 1 sec windows to have complementary informa-

tion between the streams considered for combination. An MLP was trained for each feature stream

and the outputs of the MLPs before the softmax nonlinearity were obtained (Hermansky et al.,

2000)6. The outputs of the MLPs trained on different feature streams were combined by averaging

(Section 3.2.4, (3.6), sum rule with equal weights). The combined output was then decorrelated by

principal component analysis (PCA) and given as a feature vector to an HMM/GMM system. Sev-

eral combinations of feature streams were tested, and an improved performance was achieved on

the AURORA (Hirsch and Pearce, 2000) task compared to the baseline MFCC features.

Using the Tandem system, our partners in the Defense Advanced Research Projects Agency

(DARPA) Effective, Affordable, Reusable Speech-to-Text (EARS) project at International Computer

Science Institute (ICSI), Berkeley, studied multi-stream combination for combining several fea-

ture streams for a large vocabulary conversational speech recognition task (Zhu et al., 2004; Chen

et al., 2004; Zhu et al., 2005a,b). In these studies, the outputs of MLPs trained on separate fea-

ture streams were combined by several weighting methods, including the inverse entropy weight-

ing (Misra et al., 2003) explained in Section 4.2 of this thesis. The feature streams used were short-

time PLP features and a variation of long-term TRAP features, and an improved performance was

reported on the task using inverse entropy weighting method.

In (Ikbal et al., 2004c) and (Misra and Bourlard, 2005), the authors reported an improved per-

formance using PAC (Ikbal et al., 2003b) and spectral entropy features (Misra et al., 2004, 2005a)

respectively, in a Tandem setup. The spectral entropy features are described later in this thesis in

Section 5.2

6The Tandem framework is explained in detail in Chapter 8.



Combination level

In (Kirchhoff et al., 2000), the combination was considered at three levels, the feature-, state- and

word-level. The state-level combination yielded the best performance for a large vocabulary ASR

task using an HMM/GMM system. In the HMM/ANN framework, the authors reported the combi-

nation of the output posteriors of the MLPs to be better than feature-level combination (Kirchhoff

and Bilmes, 2000).

In (Wu et al., 1998a,b), the authors studied frame-, syllable- and utterance-level combinations.

In frame-level combination, the posteriors at the output of the MLPs were multiplied. HMM-

recombination was utilized to do syllable-level combination, and for utterance-level combination,

merging and rescoring was carried out on N -best list. The combination at syllable-level gave the

best performance, closely followed by frame-level combination.

In (Ellis and Bilmes, 2000), feature-level and posterior-level combinations were analyzed. It

was argued that conditional mutual information (CMI) between the feature streams, given the

knowledge of the correct class, can estimate the amount of information content common in the two

feature streams. The authors hypothesized that if the CMI between two feature streams was high,

they were better suited for feature-level combination. The experiments on the Aurora database

with matched conditions and multi-condition training could support this conjecture only weakly.

A consistent relationship could not be established between higher CMI and better performance

improvement by feature-level combination. The authors found that combination at the posterior-

level was more suitable for feature streams which were very different. Further, the best results

were obtained by a mix of feature and posterior-level combinations.

Studies on audio-visual ASR

In the recent past, several positive contributions have been made to the field of audio-visual ASR (Tom-

linson et al., 1996; Dupont and Luettin, 1998; Rogozan and Deléglise, 1998; Teissier et al., 1999;

Glotin and Berthommier, 2000; Heckmann et al., 2001, 2002; Bengio, 2003). The studies pointed

out that combination of features from audio and visual streams make the ASR systems more ro-

bust. Especially in presence of noise, when the audio stream gets heavily corrupted, combining

the visual stream can lead to a much better performance. The audio stream in most of the studies

was represented by cepstral features and information from the shape of the lips was used as visual

features.



Discussion on multi-stream ASR

The main observations of the studies on multi-stream combination are as follows:

1. The choice of feature streams considered for combination is very important, and the feature

streams must carry complementary information to yield an improved performance when the

outputs of the classifiers trained on the feature streams are combined.

2. Weights chosen and combining strategy play an important role.

3. Posterior and state-level combinations usually work better than feature-level combination.

4. In HMM/ANN systems, the size of the network (number of parameters) does not play an

important role. The general observation is that if the network size is reasonable, changing

its size does not alter the performance significantly. The feature representations and the

methods considered for combination are the most important factors in improving the ASR

performance (Janin et al., 1999; Antoniou and Reynolds, 2000; Christensen et al., 2000).

3.5 Full-combination Multi-stream ASR

In full-combination multi-stream (FCMS) ASR, more than one feature representation is extracted

from the speech signal and every possible combination of the feature representations is treated as

a separate feature stream (Morris et al., 2001; Hagen and Morris, 2005). Fig. 3.4 illustrates FCMS

framework for hybrid HMM/ANN systems. In the figure, one multi-layered perceptron (MLP) with

single hidden layer is trained for each such feature stream. In (Hagen and Morris, 2000; Misra

et al., 2003), the authors used cepstral coefficients, delta cepstral coefficients and delta-delta cep-

stral coefficients as separate feature streams. An improvement over simple concatenation of the

three feature streams was observed when these feature streams were used in FCMS.

3.6 Database and the Experimental Setup

In Chapters 4, 5, 6 and 7 of this thesis, the results are reported on the Numbers95 (Cole et al.,

1995) connected digit task. Results on a large vocabulary conversational telephone speech (CTS)

database are reported in Chapter 8, and the CTS database is described in the same chapter.
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Figure 3.4. Full-combination multi-stream for a hybrid HMM/ANN system: All possible combinations of the two feature
representations are treated as separate feature streams and an MLP is trained for each feature stream. The posteriors
at the output of the MLPs are weighted and combined. The combined posteriors thus obtained are passed to an HMM
decoder to generate text output.

3.6.1 Numbers95 Database

Numbers95 contains digit strings spoken in US English over a telephone channel and is a small

vocabulary database. There are 30 word types in the database modelled by 27 context-independent

phones. The training set consists of 3330 sentences (2996 sentences were used for training the MLP

and 304 for cross-validation) and 2250 sentences were used for testing. Training was performed on

clean speech only. The lexicon had a single pronunciation per word.

In this thesis, to study robustness towards additive noise, the factory and lynx noise data from

the Noisex92 (Varga et al., 1992) database was added to the clean speech test utterances of the

Numbers95 database at different SNRs. Factory noise is a wide-band noise recorded in a factory

environment while lynx noise is collected from a running helicopter environment. In addition, we

also investigated the ASR performance in presence of additive car noise (provided by Daimler Benz).

The car noise was collected inside a car running at 120 km/h with closed windows.

3.6.2 System Details

We used a hybrid HMM/ANN system for our multi-stream studies presented in Chapters 4, 5 and 6.

The hybrid system is preferred for the following reasons:

1. Discriminative training is possible in the HMM/ANN architecture.

2. The outputs of the MLP in a hybrid system are estimate of posterior probabilities for the



classes and each of them ranges between 0 and 1 (for each frame, the sum of output posterior

probabilities is 1). The posteriors give an indication of how confident the MLP classifier is

about a particular class. In contrast, the likelihoods of an HMM/GMM system are dependent

upon the dimension of the input feature vector and do not have an upper bound. In multi-

stream ASR, it is easier to combine the posterior probabilities that are constrained between 0

and 1 compared to likelihoods that have a high dynamic range.

3. Correlation between different components of the feature space can be learned by an MLP,

therefore no strong assumption about the statistical distribution of the acoustic space is re-

quired. In contrast, the features need to be decorrelated in HMM/GMM systems because of

the usual assumption of diagonal covariance matrix.

4. In the case of less data, better robustness can be achieved by an HMM/ANN system (Bourlard

and Morgan, 1994).

In our studies, the input to the MLP is 9 frames of feature vectors (4 consecutive frames on either

side of the center frame) and the targets of the MLP are phoneme labels (Bourlard and Morgan,

1994). One-hot-encoding has been used for training the MLP. We worked with context-independent

phone models, that is, there was one output node for each phoneme (or class) and the number of

nodes in the outer layer was same as the number of phonemes. The activation function for nodes

in the output layer was softmax. The hidden layer had a number of nodes proportional to the input

feature vector dimension7.

A Viterbi decoder was used for generating the output text sequences. The HMM for each context-

independent phone had a single state model. The minimum duration of each phone was enforced by

repeating 1 to 3 states of the same model with a transition probability of 0.5 to the same state and

0.5 to the next state. The posteriors obtained at the output of the MLP were divided by the prior

probability of the respective phonemes, and the obtained scaled likelihoods were used as emission

probabilities in the HMMs.

In the Numbers95 ASR task, where any number can follow any other number, a uniform lan-

guage model having equal probability for all possible word transitions is sufficient. The phone

deletion penalty factor was found empirically for the clean test conditions for every setup such that

the number of insertions was same as the number of deletions. This factor was not changed while

7If the number of nodes are reasonable, changing them does not change the performance of the system significantly (Janin
et al., 1999; Antoniou and Reynolds, 2000; Christensen et al., 2000).



doing experiments on noisy conditions for the same setup.

In Chapter 7, we introduce the Tandem system. The MLP of the Tandem system was the same

as that of the hybrid system. The HMM/GMM part of the Tandem system consists of 80 context-

dependent phones with 3 left-to-right states per context-dependent phone. For each state, emission

probabilities were estimated by a mixture of 12 Gaussians. We used HTK (Young et al., 1997) for

the HMM/GMM system.

3.6.3 Performance Evaluation: Statistical Significance Test

We used the test suggested in (Bisani and Ney, 2004) to measure the statistical significance of the

difference between the performance of two speech recognizers. In this test, the total number of

word errors (insertions, substitutions and deletions) of both the recognizers are obtained for each

test utterance. The difference between the errors by two recognizers are listed for each utterance

along with the total number of words in the utterance. Resampling this data (for each utterance:

difference of errors vs number of words in the utterance) several times using bootstrap, we obtain

an estimate of the difference in average errors of the two recognizers for each resampling. A distri-

bution of average errors is plotted and depending upon where 0 average error difference point lies,

the statistical significance between the errors of two speech recognizers is determined.





Chapter 4

Multi-stream ASR: Weighting

Techniques

In a multi-stream system, a stream (outputs of the classifier) should be assigned a weight according

to the relative reliability of its information content. A stream which is more reliable should get more

weight and vice-versa. The ideal system would be the one where the “right” stream gets a weight

of 1 and rest of the streams get a weight of 0. However, in practical situations, it is not possible to

judge which stream is “right”. Thus, assigning proper weights to different streams is an integral

and important issue in multi-stream systems.

In a multi-stream setup, we can assign weights to streams according to one of the following

criteria:

1. same weight to all the classes of a particular classifier i which changes with time t (wi
t), or

2. different weights to different classes k of every classifier (wi
k), or

3. different weights to different classes of every classifier which change with time (wi
t,k).

In the work reported here, we have investigated examples of all three weighting strategies men-

tioned above.

In the present chapter, we propose and investigate some weighting techniques for combining

different streams. The individual feature representations considered for multi-stream combination

in this chapter are 13 PLP-derived cepstral coefficients (c), 13 delta cepstral coefficients (∆c) and
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13 delta-delta cepstral coefficients (∆∆c). These three individual feature representations give rise

to seven possible feature streams in a full-combination multi-stream (FCMS)1 setup (Misra et al.,

2003). One MLP classifier was trained for each feature stream.

The remaining chapter is organized as follows: in Section 4.1, we present motivation for maximum-

posterior (MP) weighting, its implementation and the results obtained by it. Inverse entropy

weighting and its details are presented in Section 4.2. Maximum-likelihood (ML) weighting is

discussed in Section 4.3, followed by a summary of the chapter.

4.1 Maximum-Posterior (MP) Weighting

4.1.1 Motivation

In general, an MLP which is well trained in classification mode outputs a high posterior probability

for one class and low posterior probabilities for the rest of the classes. This estimate of posterior

probability for a phoneme, given the input feature, can be treated as a frame-level confidence mea-

sure (Bourlard and Morgan, 1994; Robinson et al., 2002). At the output of the MLP, we can find out

which class has got the highest posterior probability and what that value is (maximum posterior

probability, P).

j = arg max
k

{P (qk|xt, θ)} (4.1)

P = max
k

P (qk|xt, θ), k = 1, · · · , K (4.2)

where qk is the class (typically context-independent phone in HMM/ANN based ASR), xt is the input

feature vector to the MLP at time instant t, θ is the parameter set of the MLP and K is the total

number of classes at the output of the MLP.

Fig. 4.1 illustrates the empirical relationship between maximum posterior probability and num-

ber of frames correctly classified for clean as well as different noisy test conditions. The noise condi-

tions are simulated by adding factory noise from the Noisex92 database to the test utterances of the

Numbers95 database and are represented by SNR12 and SNR6 for signal-to-noise ratio (SNR) of

12 dB and 6 dB respectively. In Fig. 4.1(a), we observe that a large number of frames are classified

correctly when the maximum posterior probability is high and, when maximum posterior probabil-

ity is low, only a few frames are correctly classified. Also, the curve has a peak for high maximum
1FCMS was described in Section 3.5.
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Figure 4.1. Empirical relationship between maximum-posterior probability at the output of an MLP and: (a) the number
of frames correctly classified, (b) the percentage of frames correctly classified. The plot is for an MLP trained on clean
PLP features and for the following test conditions: Clean (—-), SNR12 (-.-.) and SNR6 (- - -). The database for training
and testing is Numbers95 and noise conditions are simulated by adding factory noise from the Noisex92 database.

posterior probability indicating that a significant percentage of the frames have high maximum

posterior probability. However, this figure does not reveal the complete information as the total

number of frames for a particular maximum posterior probability is not known. Fig. 4.1(b) shows

how maximum posterior probability is related to percentage correct classification. The percentage

correct classification is obtained by dividing the number of frames correctly classified by the total

number of frames for each maximum posterior probability value. We see that an approximately lin-

ear relationship exists over a wide region between maximum posterior probability and percentage

correct classification. A similar relationship between posterior probability estimates at the output

of the MLP and percentage correct classification was shown in Bourlard and Morgan (1994). The

unexpected peak for noise at SNR6 for low value of maximum posterior probability is because there

is only 1 frame at that value and that frame is correctly classified.

In (Robinson et al., 2002), the authors estimated the log of the posteriors and then averaged it

over time for the phoneme and word durations. Robinson et al. called the estimates “acoustic con-

fidence measures” and used them for pronunciation modelling, searching the lattice and combining



the outputs of the decoders2.

Motivated by the relationship between maximum posterior probability and percentage correct

classification, we suggest a weighting technique such that the weight to the outputs of an MLP

classifier (stream) is proportional to its maximum posterior probability.

4.1.2 Implementation

For each time frame t, the maximum posterior probability is found for every feature stream i at the

output of its MLP

P
i
t = max

k
P (qk|x

i
t, θi), k = 1, · · · , K (4.3)

where K is the number of output classes or phonemes, xi
t is the input acoustic feature vector for

the ith MLP classifier for the tth frame, θi is the parameter set of the ith MLP, and P (qk|x
i
t, θi) is the

posterior probability estimate for the kth class by the ith MLP.

Weight, wi
t, for the ith MLP classifier is computed as

wi
t =

P i
t∑I

j=1 P
j
t

(4.4)

where I is the total number of classifiers considered for combination.

As discussed in Section 3.2.4, the sum rule (3.6) or the product rule (3.8) can be applied to

combine the weighted outputs of different classifiers.

A variation of maximum-posterior (MP) weighting could be to select the stream that has the

maximum posterior probability among all the streams at each time frame t.

j = argmax
i

{
P

i
t

}
(4.5)

We refer to this weighting as Maximum MP.

4.1.3 Results

The results of the MP weighting and its variation (Maximum MP) are presented in Table 4.1 in

terms of word error rates (WERs). We observe that MP weighting does not help in improving the

2Using ROVER (Fiscus, 1997)



Word Error Rates for Maximum-Posterior Weighting

Feature Clean SNR12 SNR6 SNR0
c 12.5 21.3 35.3 57.8
∆c 15.0 23.7 34.9 56.1
∆∆c 15.8 22.4 36.3 60.0
c,∆c 11.0 19.0 31.1 52.7
c,∆∆c 10.7 18.0 30.0 52.3
∆c,∆∆c 12.6 19.3 30.7 51.7
c,∆c,∆∆c (Baseline) 10.0 17.7 29.6 51.0
Sum Rule
Equal Weight 11.7 18.4 30.1 50.8
MP 11.2 17.6 29.4 50.0
Product Rule
Equal Weight 10.2 16.4∗ 28.5 50.1
MP 10.0 16.1∗ 27.8∗ 49.0∗

Maximum MP 10.1 16.3∗ 27.5∗ 48.7∗

Table 4.1. Word Error Rates (WERs) in % for the 7 possible PLP streams and their combination by MP weighting. c,
∆c and ∆∆c represent static, delta and delta-delta features respectively. The noise conditions are simulated by
adding factory noise from the Noisex92 database at different SNRs to the utterances of the Numbers95 database.
SNR12, SNR6 and SNR0 represent the SNR of 12, 6 and 0 dBs respectively. The numbers in bold show the best per-
formance and ∗ indicates that the improvement in performance compared to the baseline system is significant.

performance when combined by the sum rule, but the product rule gives an improvement in perfor-

mance. Maximum MP weighting, where we choose the stream having highest posterior probability,

also helps in improving the performance. The MP with the product rule and the Maximum MP

methods yield similar improvements in performance and the improvement is more for low SNR

cases.

Though the improvement in performance is statistically significant3 in a few cases, it is not very

high. A possible reason for this could be that the feature streams used for training the classifiers

are not carrying enough complementary information to yield an improved performance4. Neverthe-

less, even such a simple weighting improves the relative average WER performance over the PLP

baseline system5 by 4.7%.

In Table 4.1, performance is also shown for the case of equal weighting. The improvement by

equal weighting is observed to be less compared to that by MP weighting. Still, equal weighting in

the case of the product rule gives a relative average WER improvement of 2.7% over the baseline

PLP system, showing the advantage of a multi-stream system over a single-stream system. It is

3Statistical significance test used in this work was explained in Section 3.6.3.
4In Section 5.2.5 (Page 80), Section 6.2.2 (Page 89) and Appendix D, we compare the performance of different

streams/feature streams in a multi-stream setup and analyze the complementarity of streams/feature streams.
5In this thesis, baseline PLP features are 39 dimensional with 13∆c and 13∆∆c concatenated to 13c.



interesting to note that modelling the feature streams separately and combining the outputs of

the models (MLPs in HMM/ANN framework) with simple weights can bring an improvement over

a baseline system where the feature streams are concatenated first and then modelled (referred

as feature-level combination or early integration in Section 3.2.1). The result that posterior-level

combination is better compared to feature-level combination was reported in (Kirchhoff and Bilmes,

2000) as well.

The important results of the study can be summarized as follows:

1. Combination by the sum rule gave poor results compared to combination by the product rule.

2. We observed that posterior-level combination (late integration) gives better performance than

feature-level combination (early integration). A similar observation was reported in (Kirchhoff

and Bilmes, 2000)

3. In posterior-level combination using the product rule, equal weights and MP weights yielded

a relative average WER improvement of 2.7% and 4.7% respectively, over the baseline.

4. The improvements obtained by posterior-level combination were significant in few cases, but

the average improvement was low. The reason for this could be that the feature representa-

tions used for combination did not have enough complementary information. In Section 6.2.2,

we use an oracle test to indicate the complementarity of several feature streams in a multi-

stream system. The oracle test indicates that the 7 PLP feature streams carry less comple-

mentary information compared to RASTA-PLP features and spectral entropy features (dis-

cussed later in this thesis in Section 5.2).

4.2 Inverse Entropy Weighting

4.2.1 Motivation

Entropy is used in information theory to measure the randomness or uncertainty of a process that

has several possible outcomes (Shannon and Weaver, 1949). The outcome of a completely certain

process has a probability of 1 for one event and 0 for the rest of the events. Such a process has zero

entropy. In contrast, the outcome of a completely unpredictable process has equal probabilities for

all the events and has maximum entropy. So entropy can tell us about the degree of uncertainty in

a process.



We can measure entropy at the output of an MLP classifier from the estimates of its output a

posteriori probabilities. The entropy at the output of the ith MLP classifier for the tth frame, hi
t, is

computed in the following way,

hi
t = −

K∑

k=1

P (qk|x
i
t, θi) · log2 P (qk|x

i
t, θi) (4.6)

where K is the number of output classes (states or phones in an HMM/ANN system) in the MLP,

xi
t is the input acoustic feature vector for the ith MLP classifier for the tth frame, and θi is the

parameter set of the ith MLP classifier.
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Figure 4.2. Plot of normalised entropy vs probability that the correct class is selected. The plot is for the MLP trained
on clean PLP features and for the following test conditions: Clean (—-), SNR12 (-.-.) and SNR6 (- - -). The database
for training and testing is Numbers95 and noise conditions are simulated by adding factory noise from the Noisex92
database to the test data.

Fig. 4.2 shows the inverse relation between the normalized entropy at the output of an MLP

classifier and the percentage correct classification. The normalized entropy is the entropy at the

output of the classifier divided by the maximum possible entropy (log2 K for the number of classes

being K). The figure shows that percentage correct classification is high for low entropy and vice-

versa, that is, an MLP classifier is more reliable when the entropy at its output is low and is less

reliable when its output entropy is high.
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In our study, we observed that if an MLP has been trained on clean speech, the average en-

tropy (averaged over all the frames) at the output of the MLP increases in the case of noisy speech

(Fig. 4.3). This indicates that for noisy speech, the discriminatory power of the MLP decreases, and

the a posteriori probabilities tend to become more uniform. This mismatch between the training

and testing conditions is reflected through the entropy at the output of an MLP. We have used this

information in our FCMS approach for weighting the streams (outputs of different MLP classifiers).

At the time of testing, the MLP classifiers associated with the feature streams that are more

corrupted by noise will face more mismatched conditions. Consequently, their respective output

entropies will increase indicating that the a posteriori probabilities are approaching equal proba-

bilities for all the classes. The MLP classifiers having high entropy are less discriminatory, therefore

the outputs of such classifiers should be weighted less. Similarly, the MLP classifiers having low

entropy will have higher discrimination among classes and their outputs should be assigned more

weight.

It needs to be emphasized that though it is possible that a frame might be wrongly classified and

has low output entropy also, Fig. 4.2 illustrates that such cases are in a minority. Further, entropy



is used as a statistical measure, that is, it is correct most of the time. It might not be possible for

any single statistical measure to define the “oracle selection” described in Chapter 6.

In the framework of multi-band ASR systems, a similar concept of entropy weighting was re-

ported in (Okawa et al., 1998). The authors computed entropy from normalized likelihood in

HMM/GMM systems to weight the likelihoods of different streams in a multi-band system. In a

similar study on audio-visual ASR, features were obtained from both the modalities and one MLP

was trained for each feature representation. Entropy estimates at the output of the MLPs were

employed as a measure to weight the posterior outputs of different MLPs. Furthermore, the idea of

entropy at the output of an MLP was explored to discriminate between speech and music in (Ajmera

et al., 2003). In their work, the authors reported that an MLP trained on speech gives low entropy

at the time of testing for speech and high entropy for music. In an internal email communication of

the Thematic Indexing of Spoken Language (THISL) project, correlation between average entropy

at the output of an MLP and WER was reported6. The author observed that most often WER was

high when average entropy was high and WER was low when entropy was low.

4.2.2 Implementation

To achieve the idea of giving more weight to the MLP outputs which have low output entropy and

vice-versa, the idea of inverse entropy weighting is investigated. The weight assigned to the outputs

of the ith MLP classifier, wi
t, is given by,

wi
t =

1/hi
t∑I

j=1 1/hj
t

(4.7)

where I is the total number of classifiers considered for combination.

The inverse entropy weights, wi
t, can be applied to the sum rule (3.6) as well as the product

rule (3.8) to combine posterior outputs of different MLP classifiers.

4.2.3 Variations of Inverse Entropy Weighting

Inverse entropy weighting with static threshold (IEWST)

In this variation, a fixed maximum threshold is chosen for the entropy (empirically optimized for

clean speech and set to 1.0 in our studies). If the entropy of a particular classifier for a frame is
6E-mail of Daniel P. W. Ellis, 26 January 2000, THISL project



more than the threshold, the outputs of that classifier are penalized by a static weight proportional

to 1
10000 (other values of static weight gave similar performance). For the same frame, the outputs

of the classifiers with entropy lower than the threshold are weighted inversely proportional to their

respective entropies. The modified equations for IEWST are:

h̃i
t =





10000 : hi
t > 1.0

hi
t : hi

t ≤ 1.0
(4.8)

wi
t =

1/h̃i
t∑I

j=1 1/h̃j
t

(4.9)

Inverse entropy weighting with average entropy at each frame-level as threshold (IEWAT)

In this weighting scheme, the average entropy of all the classifiers for a frame is calculated by the

equation,

h̄t =

∑I

i=1 hi
t

I
(4.10)

This average entropy is used as a dynamic threshold for the frame and outputs of all the classifiers

having entropy greater than the threshold are assigned a weight proportional to 1
10000 , whereas the

outputs of the classifiers having entropy lower than the threshold are weighted inversely propor-

tional to their respective entropies. The equations in case of IEWAT are:

ĥi
t =





10000 : hi
t > h̄t

hi
t : hi

t ≤ h̄t

(4.11)

wi
t =

1/ĥi
t∑I

j=1 1/ĥj
t

(4.12)

Minimum entropy criterion

In this approach, at every time instant, the outputs of the classifier that has the minimum entropy

are chosen and used for decoding while the outputs of the rest of the classifiers are ignored. The

modified equations in this case are:

P̂ (qk|xt, Θ) = P (qk|x
j
t , θj) (4.13)



where Θ = {θi, · · · , θI}, I is the total number of feature streams (and MLP classifiers) and xt =

{xi
t, · · · , xI

t }, such that

j = argmin
i

{
hi

t

}
(4.14)

In essence, minimum entropy criterion is a 1/0 weighting, where the outputs of the MLP classi-

fier having least entropy get a weight of 1 and the outputs of rest of the classifiers are assigned a

weight of 0.

4.2.4 Results

Table 4.2 shows the results for different variations of inverse entropy weighting suggested in this

thesis. In the table, IEWST and IEWAT represent inverse entropy weighting with static threshold

and inverse entropy weighting with average entropy at each frame as threshold respectively. The re-

WERs for Inverse Entropy Weighting

Feature Clean SNR12 SNR6 SNR0
c, ∆c, ∆∆c (Baseline) 10.0 17.7 29.6 51.0
Sum Rule
IEWST 10.6 17.2 28.8 49.8
IEWAT 10.0 16.2∗ 27.4∗ 48.3∗

Product Rule
IEWST 9.7 16.0∗ 27.4∗ 49.0∗

IEWAT 9.7 15.7∗ 27.3∗ 48.9∗

Minimum Entropy 10.0 16.2∗ 27.7∗ 48.7∗

Table 4.2. WERs in % for the baseline PLP features and combination of the 7 PLP streams by inverse entropy
weighting. c, ∆c and ∆∆c represent static, delta and delta-delta features respectively. The noise conditions
are simulated by adding factory noise from the Noisex92 database at different SNRs to the utterances of the
Numbers95 database. The numbers in bold show the best performance and ∗ indicates that the improvement in
performance as compared to the baseline system is significant.

sults once again show that the product rule gives slightly better performance compared to the sum

rule. Moreover, among all the possible variations of inverse entropy suggested in this thesis, the av-

erage entropy weighting (IEWAT) works the best. The relative average WER improvement over the

baseline by this method is 6.6%. As mentioned before, the reason for this small improvement could

be that the individual feature streams used to train the MLPs do not have enough complementary

information to yield a better performance when outputs of the MLPs are combined.



4.2.5 Relationship between MP and Inverse Entropy Weightings

In the experimental studies presented in Tables 4.1 and 4.2, we observed that MP and inverse

entropy weighting gave a relative average WER improvement of 4.7% and 6.6% respectively. MP

weighting and inverse entropy weighting are closely related except for the fact that MP weighting

relies only on the maximum posterior probability value while inverse entropy weighting captures

the relation among all the posterior probabilities. Entropy, which has information about the output

distribution, is a better estimate of the classifier’s reliability, and this could be the reason why

inverse entropy performs better than MP weighting.

In this section, we analyze the relationship between entropy and the maximum posterior proba-

bility when the maximum posterior probability ≈ 1 (which is generally the case at the output of an

MLP, as shown in Fig. 4.1 (a)).

h = −

K∑

k=1

P (qk|xn) log P (qk|xn)

= −P (qj |xn) log P (qj |xn) −

K∑

k=1,6=j

P (qk|xn) log P (qk|xn)

[
P (qj |xn) = max

k
P (qk|xn); P (qj |xn) ≈ 1

]

≈ −(1 − y) log(1 − y)

[
P (qj |xn) = 1 − y; K >> 2; qk ≈ 0

]

≈ −(1 − y)(−y − y2/2− y3/3)

[
truncating the Taylor series

]

≈ y

[
y ≈ 0 and neglecting higher power of y

]

≈ 1 − P (qj |xn) (4.15)

It is observed that the relationship between maximum posterior probability (≈ 1) and entropy is

linear and inverse. But the relationship holds under the assumptions that K (number of classes)

is large and one of the classes has posterior probability close to 1 (the rest of the classes have

posterior probability close to 0). The empirical and the approximate relationship given by (4.15)

between maximum posterior probability and entropy is shown in Fig. 4.4 for K = 27. We have

used the MLP trained on the Numbers95 database to plot the empirical curve. For the values of

maximum posterior probability between 0.7 and 0.99, the approximate curve closely follows the

empirical curve. It shows that MP and inverse entropy weighting methods are closely related.

The two weighting methods discussed above, namely MP and inverse entropy, are of the kind wi
t

where the same weight is given to all the classes at the output of a classifier and the weight changes
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with time.

4.2.6 Discussion: Entropy at a Classifier Output

In Shannon and Weaver (1949, Page 19), we find the following statement:

Suppose for the moment that one knows that a certain signal symbol has actually been received.

Then each message symbol takes on a certain probability – relatively large for the symbol identical

with or the symbols similar to the one received, and relatively small for all others. Using this set of

probabilities, one calculates a tentative entropy value. This is the message entropy on the assumption

of a definite known received or signal symbol. Under any good conditions its value is low, since the

probabilities involved are not spread around rather evenly on the various cases, but are heavily

loaded on one or a few cases. Its value would be zero in any case where noise was completely absent,

for then, the signal symbol being known, all message probabilities would be zero except for one

symbol (namely the one received), which would have a probability of unity.

We can consider a trained MLP as a channel with feature representation (extracted from signal)

as input and probabilities for each class at its output. An MLP trained using cross-validation

data as stopping criterion does not give 100% correct classification even for the training data, and

acts like a noisy channel. Entropy at the output of an MLP indicates how good the classification



abilities of the MLP are for a given input. An MLP whose input feature representation is less noisy

will have lower entropy at its output compared to another MLP which has a feature representation

more affected by noise at its input.

Based on this principle, inverse entropy seems to be a good weighting method and experimental

results confirm this reasoning. This observation is further supported in Section 6.2.3 where we

investigate the relationship between “oracle selection” and inverse entropy weighting.

4.3 Maximum Likelihood (ML) Weighting

4.3.1 Motivation

The idea of the ML weighting originates from the expectation maximization (EM) algorithm used

for training Gaussian mixture models (GMMs) and hidden Markov models (HMMs). In the EM

algorithm, we try to maximize the likelihood of the data and in the process estimate the hidden

parameters of the models which will maximize the likelihood.

Based on the same principle, in ML weighting, the goal is to find the weights assigned to each

stream (outputs of the classifier) such that the likelihood of the combined data increases. In the ML

weighting proposed in this thesis, we increase the likelihood of the test data and we do not have

any segment information (phoneme labels) available for the data.

At this juncture, we would like to compare the proposed ML weighting with common ML ap-

proaches used for training or adaptation.

1. It is different from the ASR training approach discussed in Chapter 2 where the training data

is provided along with its segmental information. The iterative Baum-Welch algorithm (Baum

et al., 1970) is applied to train the HMM parameters such that the likelihood of the training

data is increased from one iteration to another.

2. It is different from techniques used for model adaptation. In maximum-likelihood linear re-

gression (MLLR) (Leggetter and Woodland, 1995), trained models are tested on some devel-

opment data and the segmentation of the development data is obtained. Based on some con-

fidence measure, the correctness of the segmentation is established. The segments which are

recognized with high confidence are used to adapt the trained model. The adaptation proce-

dure is similar to ML training employed for training the ASR models. The models are adapted



(only the means of the Gaussians are modified) such that the likelihood of the development

data is increased. The adapted models are used for ASR.

Though ASR training as well as MLLR adaptation increase the likelihood of the data, they are

different from the ML weighting suggested for multi-stream combination in this thesis. In our case,

test data is employed for finding the weights (hidden parameters of ML weighting) given to outputs

of different classifiers such that the likelihood of the test data is increased. It is expected that the

combined data with higher likelihood will yield better discrimination between the classes.

4.3.2 Derivation

EM for Multi-stream ASR: HMM Framework

An HMM has three parts, Initial parameters. Emission parameters and Transition parameters.

The corresponding equation to compute the likelihood of the HMM, given the data, is:

p(X, Q|θ) =

K∏

k=1

P (q1 = k)zk,1

T∏

t=1

K∏

k=1

[( I∏

i=1

p(xt, bi|qt = k, θi)
zi,k,t

)

K∏

m=1

P (qt = k|qt−1 = m)zk,t·zm,t−1

]
(4.16)

In (4.16), the first term is initial-state probabilities, the second term is emission probabilities, and

the last one is transition-state probabilities. In the above equation, X represents the feature vec-

tor sequence obtained from test utterance, Q is the set of all possible state sequences in a fully

connected HMM, θ is the set of parameters of the model, bi is the indicator variable to represent dif-

ferent classifiers, θi is the set of MLP parameters for classifier i, K is the number of states (phones

or classes in HMM/ANN system), I is the total number of classifiers and T is the number of frames

in the utterance. zk,1, zi,k,t and zm,t−1 are the indicator variables for initial-state probabilities, emis-

sion probabilities and state-transition probabilities respectively, and can take the value of either 0

or 1 depending on whether the event occurs or not.



In (4.16), the second term (related to emission probabilities) can be expanded as,

p(X, Q|θ) =
K∏

k=1

P (q1 = k)zk,1

T∏

t=1

K∏

k=1

[( I∏

i=1

[
P (bi|qt = k, θi) p(xt|bi, qt = k, θi)

]zi,k,t
)

K∏

m=1

P (qt = k|qt−1 = m)zk,t·zm,t−1

]
(4.17)

The second term now suggests that the emission probabilities (scaled likelihoods in our HMM/ANN

case) from individual classifiers, p(xt|bi, qt = k, θi), are weighted to give the combined likelihood.

The weights (hidden parameters of ML) are given by P (bi|qt = k, θi), and the aim of ML weighting

is to find the weights that maximize the combined likelihood.

Taking log on both the sides,

log p(X, Q|θ) =

K∑

k=1

zk,1 log P (q1 = k) +

T∑

t=1

K∑

k=1

I∑

i=1

zi,k,t

[
log p(xt|bi, qt = k, θi) + log P (bi|qt = k, θi)

]
+

T∑

t=1

K∑

k=1

K∑

m=1

zk,t · zm,t−1 log P (qt = k|qt−1 = m) (4.18)

Instead of solving (4.18), we can define an auxiliary function A(θ, θs) as,

A(θ, θs) = EQ

[
log p(X, Q|θ)|X, θs)

]
(4.19)

where, EQ [·] is the expectation over Q. We can show that if A is maximized, it leads to maximization

in likelihood of p(X |θs+1)7, that is,

θs+1 = argmax
θ

{A(θ, θs)} (4.20)

7See Appendix A for proof.



The auxiliary equation for (4.18) is given by,

A(θ, θs) =
K∑

k=1

EQ[zk,1|X, θs] log P (q1 = k) +

T∑

t=1

K∑

k=1

I∑

i=1

EQ

[
zi,k,t|X, θs

][
log p(xt|bi, qt = k, θi) + log P (bi|qt = k, θi)

]
+

T∑

t=1

K∑

k=1

K∑

m=1

EQ[zk,t · zm,t−1|X, θs] log P (qt = k|qt−1 = m) (4.21)

As mentioned earlier, we want to combine the emission probabilities to maximize the likelihood. In

order to achieve that, we are required to solve the second term of (4.21) which has three parts in it,

the posterior part
(
EQ

[
zi,k,t|X, θs

])
, emission probability part

(
log p(xt|bi, qt = k, θi)

)
and the weight

part
(
log P (bi|qt = k, θi)

)
.

First, we will compute the posterior for the second term (EQ

[
zi,k,t|X, θs

]
. Also, we replace the

sum of the first and last term in (4.21) by a constant, Constant.

Forward and Backward variables

Before computing the posterior, we will introduce two variables from the HMM theory, forward

variable given by α and backward variable given by β. In the following derivation8, the parameter

θi has been dropped for convenience and Markov model is assumed to be of order 1.

α(k, t) is defined as the likelihood of having generated the sequence xt
1 = {x1, · · · , xt} and being

in state k at time instant t. It is given by,

α(k, t) = p(xt
1, qt = k)

≈

(
I∑

i=1

p(xt|bi, qt = k) P (bi|qt = k)

) (
K∑

m=1

P (qt = k|qt−1 = m) α(m, t − 1)

)
(4.22)

β(k, t) is defined as probability to generate the rest of the sequence xT
t+1 = {xt+1, · · · , xT } given

that we are in state k at time instant t. It is given by,

β(k, t) = p(xT
t+1|qt = k)

≈

K∑

m=1

(
I∑

i=1

p(xt+1|bi, qt+1 = m) P (bi|qt+1 = m)

)
β(m, t + 1) P (qt+1 = m|qt = k) (4.23)

8Refer to Appendix B for the derivation.



Estimation Step: Compute the posterior

Using (4.22) and (4.23), we can estimate zi,k,t as follows:

EQ[zi,k,t|X, θs] = P (qt = k, bi|X, θs) (4.24)

= P (qt = k|X, θs) P (bi|qt = k, X, θs)

=
p(qt = k, xT

1 )

p(xT
1 )

P (bi|qt = k, X, θs)

=
p(xt

1, qt = k)p(xT
t+1|qt = k)

p(xT
1 )

P (bi|qt = k, X, θs)

=
α(k, t)β(k, t)
∑K

m=1 α(m, T )
P (bi|qt = k, X, θs) (4.25)

In the equation, X is the whole data and θs is the set of parameters of the models.

Maximization Step: Compute the weights

From (4.21), replacing the sum of first and the last term by Constant

A(θ, θs) = Constant +

T∑

t=1

K∑

k=1

I∑

i=1

P (qt = k, bi|X, θs)
[
log p(xt|bi, qt = k, θi)

+ logP (bi|qt = k, θi)
]

(4.26)

In (4.26), we need to find the weights which will maximize the likelihood of the auxiliary func-

tion. Therefore, we differentiate A(θ, θs) with respect to P (bi|qt = k, θ), with the constraint that
∑I

i=1 wi
k =

∑I

i=1 P (bi|qt = k, θi) = 1, ∀ k.

∂

∂P (bi|qt = k, θi)

[
T∑

t=1

K∑

k=1

I∑

i=1

P (qt = k, bi|X, θs)
[
log p(xt|bi, qt = k, θi) +

log P (bi|qt = k, θi)
]

+ λ(
I∑

i=1

P (bi|qt = k, θi) − 1)

]
= 0 (4.27)

In (4.27), λ is the Lagrange multiplier required to satisfy the constraint
∑I

i=1 P (bi|qt = k, θi) = 1.

Solving (4.27), we get

T∑

t=1

P (qt = k, bi|X, θs)
1

P (bi|qt = k, θi)
+ λ = 0 (4.28)



Summing both the variables over all i, we get λ = −
∑I

i=1

∑T

t=1 P (qt = k, bi|X, θs). Substituting λ

back in (4.28), we get,

P (bi|qt = k, θi) =

∑T

t=1 P (qt = k, bi|X, θs)
∑I

i=1

∑T

t=1 P (qt = k, bi|X, θs)
(4.29)

=

∑T

t=1
α(k,t)β(k,t)

P

K
m=1

α(m,T )
· P (bi|qt = k, X, θs)

∑I

i=1

∑T

t=1
α(k,t)β(k,t)

P

K
m=1

α(m,T )
· P (bi|qt = k, X, θs)

(4.30)

In the derivation, (4.30) is obtained by substituting (4.25) in (4.29). Still, P (bi|qt = k, X, θs) cannot

be solved directly. We modify it in terms of known variables as follows:

P (bi|qt = k, X, θs) =
p(X |bi, qt = k, θs) P (bi, qt = k, θs)

p(qt = k, X, θs)
(4.31)

Making the assumption of HMM that the emission probability at time instant t depends only on the

state of HMM at that instant, that is, p(xt|qt = k) is independent of any other variable, p(X |bi, qt =

k, θs) = p(xt|bi, qt = k, θs).

P (bi|qt = k, X, θs) ≈
p(xt|bi, qt = k, θs) P (bi, qt = k, θs)

∑J

j=1 p(X, bj , qt = k, θs)

≈
p(xt|bi, qt = k, θs) P (bi|qt = k, θs)

∑J

j=1 p(xt|bj , qt = k, θs)P (bj |qt = k, θs)

≈
P (qt = k|xt, bi, θ

s) p(xt|bi,θ
s)

P (qt=k|bi,θs) P (bi|qt = k, θs)
∑J

j=1 P (qt = k|xt, bj , θs)
p(xt|bj ,θs)

P (qt=k|bj ,θs) P (bj |qt = k, θs)
(4.32)

Now we make the following assumptions: P (qt = k|bi) is independent of bi (phoneme prior prob-

ability is independent of classifier), p(xt|bi) is independent of bi (likelihood of observation at time

instant t is independent of classifier). Using these assumptions, (4.32) gets simplified to:

P (bi|qt = k, X, θs) ≈
P (qt = k|xt, bi, θ

s) · P (bi|qt = k, θs)
∑I

j=1 P (qt = k|xt, bj , θs) · P (bj |qt = k, θs)
(4.33)

= wi
k (4.34)

Depending on the temporal context used to estimate the weights, we can have either an on-line

(different weights for each class at the output of a classifier and weights change with time, wi
k,t)

or an off-line (different weights for each class at the output of a classifier, wi
k) implementation. In

the present study, the on-line estimate was done on a per-utterance basis (a set of weights was

estimated for each utterance) and the off-line estimate was performed on all the utterances in the



test database (a single set of weights was estimated for all the test utterances in the database).

The dilemma of EM is evident in ML weighting. While a smaller temporal context can capture

the finer dynamics of the streams, estimates of the weights in the absence of large amounts of data

are not reliable in this case. On the other hand, while a larger temporal context (having more data)

gives better weight estimates, it loses the finer dynamics of the streams.

4.3.3 Results and Discussion

In this setup, the outputs of the MLPs trained on the 7 PLP feature streams were used for the

combination (FCMS). In Fig. 4.5, the average likelihood per utterance is shown for the first 9 iter-

ations (starting with uniform weights in the 0th iteration). As expected, the likelihood of the test

data increases from one iteration to another. The values are high because instead of working with

likelihoods, we worked with scaled likelihoods obtained by dividing the posterior estimates of the

phoneme classes at the output of the MLPs by their prior probabilities.
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Figure 4.5. ML Weighting (Batch Mode): Evolution of average likelihood per utterance from one iteration to another.

In Fig. 4.6, we show the evolution of the weights from one iteration to another for the batch-

mode (off-line) method of weight estimation by ML. The outputs of the MLPs trained on 7 PLP

feature streams were combined and each MLP classifier had 27 phoneme classes. We started with

equal weights for each class in each classifier (similar results were obtained for initialization with
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Figure 4.6. ML Weighting (Batch Mode): Evolution of weights for first three iterations.

inverse entropy weights) such that
∑I

i=1 wi,k = 1 (the sum of the weights for a particular class over

all the classifiers is 1), where k = 1, · · · , K, and K the number of phoneme classes at the output

of the MLP classifiers. The weight evolution is shown for the first two iterations. We observe that

individual classifiers give different importance to various phoneme classes. This is reasonable that

the classifiers used in the combination have unequal importance for different phonemes.

The WER for the on-line and off-line ML weighting are shown in Table 4.3. The performance

of the ML weighting is inferior compared to the baseline system and does not change from one

iteration to another. An analysis of the results shows that the off-line ML weighting is slightly

better than the on-line ML weighting.

Though we could combine the streams (outputs of different classifiers) in such a manner that

likelihood increased from one iteration to another, we could not achieve a better discrimination



WERs for ML Weighting

On-line ML weighting Off-line ML weighting
Iterations Clean SNR12 SNR6 SNR0 Clean SNR12 SNR6 SNR0
0 11.7 18.4 30.1 50.8 11.7 18.4 30.1 50.8
1 12.1 19.2 30.8 51.2 11.6 18.4 30.3 51.5
2 12.3 19.5 31.2 51.4 11.5 18.4 30.6 51.7
3 12.4 19.7 31.6 51.5 11.5 18.4 30.4 51.7
4 12.4 19.7 31.3 51.4 11.5 18.4 30.5 51.7
5 12.4 19.8 31.2 51.4 11.5 18.4 30.7 51.7

Table 4.3. WERs in % for the 7 possible PLP feature streams combined by ML weighting. The noise conditions
are simulated by adding factory noise from the Noisex92 database at different SNRs to the utterances of the
Numbers95 database. Iteration 0 corresponds to equal weighting.

between the classes. The following is the possible explanation for these results:

1. When we increase the likelihood, in the absence of a target, we do not necessarily achieve a

better discrimination. In EM training for HMM, we have explicit targets (either sentences,

words or phonemes) for which we increase the likelihood. Explicit targets improve the dis-

crimination between the classes9.

2. The test data is same as the adaptation data. In approaches like MLLR, models are adapted

on development data (either the transcription for the development data exists or is obtained

first) and then the performance is evaluated on test data. In our case, we estimated the

weights from the test data itself.

Another drawback of the ML weighting is its high computational cost. The iterative nature of

the EM procedure for estimating weights requires time (computational cost) which is an order of

magnitude more than the time taken by techniques like MP and inverse entropy weighting.

4.4 Summary

In this chapter, we studied three weighting techniques to combine streams in an FCMS setup.

The two computationally simple techniques, namely MP and inverse entropy weightings, gave good

improvements in performance. In contrast, computationally expensive ML weighting performed

below expectation.

The conclusions of this study on weighting techniques are:
9In a strict sense, it is generative training. While training the models of one class, negative examples from other classes

are not used.



1. Late integration (combination at posterior-level) performed better than early integration (com-

bination at feature-level).

2. ML weighting gave a lower performance when the outputs of the MLPs trained on the 7 PLP

feature streams were combined in the FCMS setup. MP weighting gave 4.7% relative average

WER improvement on the same task and inverse entropy weighting yielded a relative average

WER improvement of 6.6%.

3. The two methods of combination, namely the sum and product rules, yielded similar improve-

ment in performance, and the product rule performed slightly better than the sum rule in

almost all the cases.

4. The variation of inverse entropy weighting, where at each time frame the average entropy

obtained from different classifiers was used as a dynamic threshold (IEWAT), gave the best

performance.

Even though we obtained an improved performance by MP and inverse entropy weighting tech-

niques, the improvement in performance was relatively low. The possible reason for this can be

attributed to the fact that the individual feature streams used to train the classifiers were not

carrying enough complementary information10. This highlights the issue that besides weighting

techniques, the feature streams also need careful consideration.

In the next chapter, we propose and investigate new features in an FCMS setup which may

carry complementary information to PLP features. The IEWAT method is used for combining the

streams as it gave the best performance in the studies reported in the present chapter. The issue

of complementarity of the feature streams is further discussed in Chapter 6, where we observe the

oracle performance and illustrate its relationship with inverse entropy weighting.

10Refer to Section 5.2.5 for a comparison where the outputs of classifiers trained on a different set of 7 feature streams are
combined by inverse entropy weighting method.





Chapter 5

Features in Multi-stream ASR

In Section 3.4, for posterior-level combination, we discussed several methods of generating multi-

stream systems. It was mentioned that using different feature representations to train separate

classifiers and combining the outputs of the classifiers (streams) is one type of multi-stream frame-

work.

Multi-stream combination using several feature representations can improve the performance

only if the different feature streams carry complementary information. Also, the more complemen-

tary information the feature streams carry, the better the improvement in the performance can be

expected by combining the outputs of classifiers trained on such feature streams.

In the present chapter, we use PLP derived cepstral coefficients (c, ∆c, ∆∆c) as the baseline

features and explore additional feature streams which, when combined with PLP features, might

improve the performance of an ASR system. Following is the organization of rest of the chapter: in

Section 5.1, fundamental frequency (F0) feature is introduced as an additional feature in the multi-

stream setup and motivation and the experimental results for the same are presented. Spectral

entropy features are proposed in Section 5.2, and we discuss the results when the spectral entropy

features are used along with PLP features. We conclude the chapter with a short summary.

5.1 Fundamental Frequency Feature

PLP features capture the characteristics of vocal tract (system information) and may not carry

the characteristics of excitation signal (source information). However, source features might also
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carry important information which is complementary to the PLP features. Fundamental frequency,

the periodicity of the speech signal, is a source feature and carries several important information.

Fundamental frequency relates closely to the pitch frequency, a perceptual phenomenon, and is

often used as a measure for pitch frequency. In this thesis, we have used the term pitch frequency

for fundamental frequency.

The following are some of the important information present in the pitch frequency feature:

1. Voicing/unvoicing: Pitch is perceived for those speech signals which have periodicity in them.

Periodicity in the signal exists because of periodicity of the excitation signal, which in turn

occurs due to opening and closing of the vocal-folds while producing voiced sounds. Therefore,

the presence or absence of pitch frequency can be a good indicator of whether a particular

sound is voiced or unvoiced.

2. Gender: In males, typically the time difference between two consecutive excitations is larger

compared to that for females. Therefore, the pitch frequency of males is typically lower than

that of females.

3. Emotional state of the speaker: In case of emotional stress, generally the rate of opening and

closing of the vocal-folds gets affected. In turn, this changes the pitch frequency of the speaker.

Including pitch frequency as a feature in ASR might be helpful in distinguishing between voiced

and unvoiced sounds as well as gender of the speakers. However, it has been observed earlier that

pitch frequency feature, when appended to the cepstral features, does not give an improvement in

the ASR performance (Fujinaga et al., 2001). The possible reasons for this could be:

1. It is difficult to estimate the pitch frequency reliably

2. The information that the pitch frequency carries is already present in some parts of the cep-

stral features

3. The pitch frequency feature of dimension 1 gets submerged in the cepstral features of higher

dimension, unable to show its usefulness.

4. The information present in pitch frequency cannot be exploited by frame-based Markov model,

like the HMM, because the “units of information” of pitch frequency are suprasegmental.

The possibility that pitch frequency estimates are error prone is true (Bagshaw et al., 1993), espe-

cially in noisy environments. Moreover, cepstral features do carry voicing information to a certain



extent in the form of energy of the spectral envelope, but gender information is not present in them

(cepstral features are obtained from a smoothed spectral envelope, and the pitch frequency infor-

mation present in the original spectrum is lost in the smooth spectrum). Finally, it is possible that

pitch frequency is not a very useful feature for ASR and is unable to contribute significantly when

appended to the cepstral features (pitch frequency is a single dimensional feature vector while the

dimension of cepstral features is typically much higher1).

Recently, it has been shown that proper integration of a pitch frequency feature (either by

marginalization or by appending) (Doss et al., 2003; Doss, 2005) can yield an improvement in the

performance of ASR systems. In marginalization of pitch feature, separate models were trained

for males and females. During testing, the outputs of the models were merged to get the combined

output (Doss et al., 2003). Gender-dependent modelling (Konig et al., 1991), where separate models

are created for male and female speakers, has also helped in improving the performance of ASR

systems. In (Lei et al., 2005), the authors showed that appending the pitch frequency feature and

its derivative can improve ASR performance for the Chinese language. Motivated by these findings,

we studied the pitch frequency feature in the framework of multi-stream combination.

In the work reported in the following section, we analyze the pitch frequency feature and inves-

tigate whether and how the pitch frequency feature can be incorporated in an ASR system so as to

get an improvement in the performance. In turn, we also investigate the validity of the four reasons

listed above as to why the appending of pitch frequency feature to the cepstral features usually does

not improve the ASR performance.

5.1.1 Implementation

We extracted the pitch frequency feature from the speech signal by using a simplified inverse filter

transform (SIFT) method (Markel, 1972). The steps of the SIFT algorithm are shown in Fig. 5.1.

The speech signal is passed through a low-pass finite impulse response (FIR) filter with cut-off fre-

quency of 1 KHz and then it is down-sampled. The filtered signal undergoes low order LP analysis

(4 to 6) and the residual signal is obtained. In auto-correlation of the residual signal, the position of

the first peak (in number of samples) is identified as the pitch period. In this study, the search for

the pitch period is restricted between sample numbers 20(= 8000/400) and 115(≈ 8000/70), which

correspond with the pitch frequencies between 400 and 70 Hz respectively. The value 8000 men-

1PLP feature vector dimension is 39 in the present studies.
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Figure 5.1. SIFT algorithm for extracting pitch frequency.

tioned above corresponds to the sampling frequency of the speech signal (in Hz). Pitch frequency is

obtained by dividing the sampling frequency of the signal by the pitch period (in samples). Only the

frames which had high residual energy were considered as voiced frames and pitch frequency was

extracted for them. The pitch frequency contour obtained for the speech utterance was smoothened

by median filtering to remove isolated jumps from voiced to unvoiced and vice-versa.

The pitch frequency feature being one dimensional may not be useful as an individual feature

stream in multi-stream framework. In fact, one dimensional pitch frequency feature yielded a poor

performance (a WER of 93.7%) when used in the hybrid system. Therefore, we used the pitch

frequency in the FCMS framework along with PLP features in the following way: as in the previous

chapter, there were 7 PLP feature streams (c, ∆c, ∆∆c and their all possible combinations). Pitch

frequency was appended to each of the 7 feature streams and a separate MLP was trained for

each feature stream. The problem of the pitch frequency feature being submerged in the PLP

features of higher dimension is reduced by appending the pitch frequency to the feature streams of

lower dimension. The pitch frequency feature is used 7 times, but with lower dimensional feature

vectors (the dimensionality of the 7 streams are 13, 13, 13, 26, 26, 26 and 39). It is different from

appending the pitch frequency to a single feature stream 7 times to have enhanced contribution

of pitch frequency2. Still, the problem of unreliable pitch frequency feature estimation cannot be

overcome by this method. By appending the pitch frequency feature to all the 7 PLP feature streams

in FCMS framework, we may also find out if the information carried by the pitch frequency feature

is confined to some specific part of the baseline PLP feature vector.

2In such a case, the replicas of the feature do not carry ant additional information and hence may not improve the
performance.



5.1.2 Results

Feature Clean SNR12 SNR6 SNR0
c, Pitch 12.5 (0.0) 21.3 (-0.3) 35.3 (-0.4) 57.8 (-0.3)
∆c, Pitch 15.0 (1.7) 23.7 (1.7) 34.9 (0.6) 56.1 (1.0)
∆∆c, Pitch 15.8 (1.2) 22.4 (-0.3) 36.3 (0.5) 60.0 (0.8)
c, ∆c, Pitch 11.0 (-0.2) 19.0 (-0.4) 31.1 (-0.8) 52.7 (-0.1)
c, ∆∆c, Pitch 10.7 (0.0) 18.0 (-0.4) 30.0 (-0.8) 52.3 (0.4)
∆c, ∆∆c, Pitch 12.6 (1.1) 19.3 (0.5) 30.7 (0.6) 51.7 (-0.7)
c, ∆c, ∆∆c, Pitch 10.0 (-0.4) 17.7 (0.1) 29.6 (-0.2) 51.0 (-0.1)
IEWAT (Sum Rule) 10.0 (0.3) 16.2 (-0.1) 27.4 (-0.7) 48.3 (-1.0)
IEWAT (Product Rule) 9.7 (0.0) 15.7 (-0.6) 27.3 (-0.4) 48.9 (-0.1)

Table 5.1. The baseline results and in brackets (absolute change in % WERs) for the 7 possible PLP streams ap-
pended with the pitch frequency feature and their combination by inverse entropy weighting in an FCMS frame-
work. Results of Table 4.1 (Page 47) are used as a baseline. A + change indicates improved performance and a
- change shows degraded performance. c, ∆c and ∆∆c represent static, delta and delta-delta features respec-
tively. The Numbers95 database corrupted by factory noise from the Noisex92 database at different SNRs is used
for running the experiments.

In this section, we present the results of the pitch frequency feature in an FCMS setup as de-

scribed in the previous section. Pitch frequency is normalized by dividing it by 400 Hz, the highest

value of the pitch frequency assumed in the SIFT algorithm while searching for the peak in the

residual of the autocorrelation. We observe that pitch frequency feature being appended to the

standard PLP features does not improve the system’s performance (row 7: c, ∆c, ∆∆c, Pitch). In

fact, either there is no improvement or a drop in absolute performance. Another interesting obser-

vation is that appending the pitch feature to any feature stream where static features are present

(rows 1, 4, 5 and 7) generally hurts the performance. When we compare this with the situation

when pitch feature is appended to the feature streams having dynamic PLP features only (rows 2,

3 and 6), there is generally a slight improvement in the performance. Though these degradations

or improvements are not significant, they still present a trend. A simple conclusion could be that

in the presence of static features, we do not observe an improvement in the performance. The rea-

son for this behavior could be: the information that the pitch feature carries is present in some

form in the static features. In general, the pitch frequency is estimated for the frames having high

energy (voiced frame) and the information about the energy of the frame is present in the cepstral-

coefficient of order 0. So it is possible that the information present in the pitch frequency feature is

already represented by the 0th order cepstral-coefficient in the static features (c).

In the framework of FCMS, we get a slight improvement in the performance of the system for

clean speech. There is no improvement in the performance for noisy speech and the reason can be



attributed to a) pitch frequency estimate is not robust for noisy speech, and/or b) pitch feature is

not useful for ASR even in the FCMS framework.

To understand this aspect, we did an experiment where we appended the pitch frequency feature

obtained from clean speech to the PLP features obtained from noisy speech to run the experiments

on noisy test conditions (Table 5.2).

Feature Clean SNR12 SNR6 SNR0
c, Pitch 0.0 0.1 0.4 1.0
∆c, Pitch 1.7 3.2 4.0 3.7
∆∆c, Pitch 1.2 1.4 4.4 6.4
c, ∆c, Pitch -0.2 0.1 0.1 0.6
c, ∆∆c, Pitch 0.0 0.0 0.3 1.1
∆c, ∆∆c, Pitch 1.1 1.7 3.4 4.2
c, ∆c, ∆∆c, Pitch -0.4 0.6 0.6 0.8
IEWAT (Sum Rule) 0.3 1.0 1.3 1.9
IEWAT (Product Rule) 0.0 0.6 1.4 2.7

Table 5.2. Absolute change in % WERs for the 7 possible PLP streams appended with the pitch frequency feature
from clean speech. Also their combination by the inverse entropy weighting in the FCMS framework. Results
of Table 4.1 (Page 47) are used for computing the difference. A + change indicates improved performance
and a - change shows degraded performance. c, ∆c and ∆∆c represent static, delta and delta-delta features
respectively. The Numbers95 database corrupted by factory noise from the Noisex92 database at different SNRs
is used for running the experiments.

We observe some interesting trends which need further discussion.

1. Appending the clean pitch frequency feature to the static features or to a feature stream

having static features (rows 1, 4, 5 and 7) improves the performance slightly. In contrast, the

feature streams without static features (rows 2, 3 and 6) show a better improvement when the

pitch frequency feature is appended to them. The trend is consistent and easily noticeable.

It strengthens our previous conjecture that static features already carry the pitch frequency

information in some form. It also confirms that appending the pitch frequency feature to the

standard PLP features (row 7: c, ∆c, ∆∆c, Pitch), even if the pitch frequency estimate is

reliable, does not improve the ASR performance.

2. The improvement in the results by appending the pitch frequency feature (compare Tables 5.1

and 5.2) obtained from clean speech confirms that the pitch frequency estimate is not robust

for noisy speech. Improvement in performance for feature streams having only dynamic fea-

tures (rows 3, 4, and 6) is consistent and significant.

3. If the pitch frequency estimate is robust (Table 5.2), we notice an improvement in performance



of the FCMS ASR system. Considering the fact that the pitch frequency feature is a single

dimensional feature, improvement in performance is worth reporting. Also, the potential of

the pitch frequency feature could be realized in the proposed FCMS setup.

In this study, we observed that appending the pitch frequency feature to PLP cepstral features

in ASR may not be a correct approach as the static PLP features carry similar information. In the

proposed FCMS setup, though the pitch frequency feature helped in clean speech, in the absence of

a robust pitch estimation method, it could not yield a better performance for noisy test conditions.

Robustness of the pitch frequency feature is an issue and we need better methods to estimate the

pitch frequency feature reliably.

We observed that if the pitch feature can be estimated reliably, the proposed FCMS method

using the pitch frequency feature can improve the ASR performance. In this method, the feature

streams with dynamic cepstral features improve their individual performance when pitch feature

is appended to them. Use of better individual feature streams led to a better performance when the

outputs of the classifiers trained on them were combined. Also, the improvement by including the

pitch frequency feature of dimension one is considerable and it could be worthwhile to investigate

the feature further.

5.2 Multi-band Spectral Entropy Features

5.2.1 Motivation

In STFT spectra of speech, we observe distinct peaks and the position of these peaks (formants)

in the spectra are dependent on the phoneme under consideration. Generally, the formants are

considered important for robust speech recognition (McCandless, 1974; Moore, 1997; Welling and

Ney, 1998; Strope and Alwan, 1998). In additive noise conditions, typically the formants of the

spectrum are less affected than other parts of the spectrum. In (Padmanabhan, 2000) the author

tried to use the location of spectral peaks as an additional feature in ASR. In the framework of

HMM2 (Weber et al., 2003), the authors extracted robust features from the spectrum and showed

that they closely follow the formants in the spectrogram. Similarly, in (Ikbal et al., 2004a), the

authors suggested spectro-temporal activity pattern (STAP) features centered around the spectral

peaks for robust ASR. Instead of picking the formants or their position, in (Ikbal et al., 2003a,

2004b) the authors used a non-linear transformation to enhance the peaks of the spectrum. In



all these approaches, the goal was to have a robust feature extraction method having information

about the formants of the spectrum, as formants are considered to be less affected by noise.

Entropy can be used to capture the “peakiness” of a probability mass function (PMF). A PMF

with sharp peaks will have low entropy while a PMF with flat distribution will have high entropy. In

their work, Niyogi and Sondhi (2002) investigated the detection of stop-consonants for event-based

ASR (different features for different phoneme classes instead of the usual approach of the same

features for all phoneme classes). In the study, the spectral entropy rate was used to measure the

spectral flatness and explored as one of the features for detecting stop-consonants in continuous

speech. In their study, the spectral entropy rate was computed from STFT of the speech signal,

assuming the signal to be normally distributed in the time domain (Papoulis, 1991, Page 568).

In a similar endeavour, sub-band spectral entropy was used for voice activity detection across

bands (McClellan and Gibson, 1997). The authors pointed out that spectral entropy can measure

the flatness of sub-band spectrum. In (McClellan and Gibson, 1997), the authors used spectral

entropy for deriving mode and rate allocation cues for a variable-rate code-excited linear prediction

(CELP) coder.

On similar lines, the central idea in (Misra et al., 2004, 2005a; Misra and Bourlard, 2005) while

using multi-resolution spectral entropy as a feature was to capture the peaks of the spectrum and

their location. To compute entropy of a spectrum, we converted the spectrum into a PMF-like

function by normalizing it.

xi =
Xi∑N

j=1 Xj

for i = 1 to N (5.1)

where Xi is the energy of ith frequency component of the spectrum, x = (x1, · · · , xN ) is the PMF

of the spectrum and N is the number of points in the spectrum (the order of the STFT). Spectral

entropy for each frame is computed from x as:

H = −

N∑

i=1

xi log2 xi (5.2)

Fig. 5.2(b) shows the spectral entropy contour computed on a full-band spectrum for clean speech.

We observe that speech sound segments, usually characterized by distinct spectral peaks, have

lower spectral entropy compared to silence segments. Therefore spectral entropy computed on the

full-band can be used as an estimate for speech/silence detection. In presence of noise, the formants
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Figure 5.2. Entropy computed from the full-band spectrum. (a) A clean speech waveform from the Numbers95
database, (b) Spectral entropy contour for the clean speech waveform, (c) Speech waveform corrupted by fac-
tory noise at 6 dB SNR, and (d) Spectral entropy contour for the speech waveform corrupted by factory noise at 6 dB
SNR. Factory noise is taken from the Noisex92 database and added to the clean speech waveform.

are less affected compared to the other parts of the spectrum. So we can assume that entropy of

the spectrum, if used for speech/silence detection, will be robust to noise, and indeed it appears to

be true as observed in Fig. 5.2(d). Though the dynamic range of the spectral entropy contour is

reduced in the presence of noise, it retains its discriminatory property. In (Shen et al., 1998; Huang

and Yang, 2000; Subramanya et al., 2005), the authors successfully used spectral entropy for end

point detection of speech in noisy environmental conditions.

5.2.2 Multi-band/Multi-resolution Spectral Entropy

The full-band spectral entropy feature can capture only the gross peakiness of the spectrum but not

the position of the formants. In (Misra et al., 2004, 2005a), we suggested multi-resolution/multi-

band spectral entropy features. The main motivation behind this was to identify the presence or

absence of spectral peaks in each sub-band and use that as a pattern. To estimate multi-band



spectral entropy features, we divided the spectrum into sub-bands and computed the entropy of

each sub-band.

Non-overlapping sub-bands

In the beginning, we used non-overlapping sub-bands to extract multi-band spectral entropy fea-

tures. The normalized STFT spectrum was divided into J non-overlapping sub-bands of equal size.

Entropy was estimated for each sub-band and we obtained one spectral entropy value for each sub-

band. These sub-band spectral entropy estimates indicate the presence or absence of spectral peaks

in that sub-band. When J = 1, we have the full-band spectrum and get one spectral entropy esti-

mate per frame. When there are two sub-bands (J = 2), we obtain two spectral entropy estimates,

one for each sub-band and so on. In our experiments, we changed the parameter J from 1 to 32. This

process of estimating spectral entropy from each sub-band is equivalent to estimating the spectral

entropy contribution of each sub-band to the full-band spectral entropy.

Overlapping sub-bands

We also made an attempt to study the performance for overlapping sub-bands. When the sub-bands

are overlapping, a very high number of alternatives need to be explored to account for all possible

sub-band sizes and their positions. We restricted ourselves to overlapping sub-bands defined on the

well known Mel scale (Davis and Mermelstein, 1980). In (Misra et al., 2005a), we obtained the best

results by dividing the normalized full-band spectrum into 24 overlapping sub-bands defined on a

Mel scale and estimated spectral entropy for each sub-band. In the overlapping case, the sub-bands’

spectral entropy estimates do not sum to the spectral entropy of the full-band.

Temporal information

In standard ASR features, temporal information is introduced by appending first and second order

time derivatives (dynamic features) to the static features. Similarly, we appended the first and

second order time derivatives of the spectral entropy features to incorporate temporal information

in the present setup.



5.2.3 Results

The results obtained by static multi-band spectral entropy features for different numbers of sub-

bands are shown in Table 5.3. The results are shown only for clean speech. An analysis of the

results reveals that as the number of sub-bands increases, WER decreases. Moreover, the initial

improvement with the increase in number of sub-bands is more and it reduces as we keep increasing

the number of sub-bands. With an increase in number of sub-bands, the number of frequency

components left in a sub-band decreases and the spectral entropy is estimated from these fewer

components only.

WERs for spectral entropy features
Feature Feature Dimension (J) WER
Full-band Entropy 1 91.6
2-bands Entropy 2 74.4
3-bands Entropy 3 59.5
4-bands Entropy 4 42.7
8-bands Entropy 8 24.3
16-bands Entropy 16 18.6
24-bands Entropy 24 16.2
32-bands Entropy 32 15.1
24 Mel-bands Entropy 24 15.7

Table 5.3. WERs in % for clean speech for multi-band spectral entropy features in a hybrid system for different
number of sub-bands. Only Mel-bands are overlapping. Rest of the sub-bands are non-overlapping.The experi-
mental results are obtained on the Numbers95 database.

The effect of appending time derivatives to multi-band spectral entropy features is shown in

Table 5.4. In this table, we present the results on noisy speech also (noise conditions were simulated

WERs: Spectral entropy and its time derivatives
Feature clean SNR12 SNR6 SNR0
16-bands 15.5 22.0 31.9 53.2
24-bands 14.0 20.2 29.3 50.1
32-bands 14.0 20.4 28.8 47.1∗

24 Mel-bands 12.8 18.3 27.0∗ 45.1∗

PLP (Baseline) 10.0 17.7 29.6 51.0

Table 5.4. WERs in % for entropy features with its first and second order time derivatives appended in hybrid
system for clean and noisy test conditions. Only Mel-bands are overlapping. Factory noise from the Noisex92
database added to the utterances of the Numbers95 database at different SNRs. Performance of the PLP features
is given for comparison. The numbers in bold show the best performance and ∗ indicates that the improvement
in performance compared to the baseline system is significant.

by adding factory noise from the Noisex92 database at different SNRs). We show the results for 16

or more non-overlapping sub-bands and the overlapping sub-bands defined on a Mel scale as these

gave the best results for clean speech in Table 5.3.



The results show that including the time derivatives of spectral entropy features help in improv-

ing the ASR performance. This observation holds good for clean as well as noisy test conditions and

for all the sub-bands divisions considered in Table 5.4. Furthermore, the overlapping sub-bands

defined on a Mel scale yielded the best performance.

On comparing spectral entropy features with PLP features, we realize that PLP features work

better for low noise conditions while spectral entropy features work well for high noise conditions.

This is an indication that the two features may carry complementary information and their combi-

nation might yield an improved ASR performance. To investigate this issue further, we performed

multi-stream ASR studies where we combined the PLP features with multi-band spectral entropy

features in the framework of FCMS. One MLP was trained for each feature stream and the IEWAT

method discussed in Section 4.2.3, which gave the best performance, was chosen to combine the

output posterior estimates of the different MLP classifiers.

5.2.4 Spectral Entropy Features in Multi-stream

We studied the combination of spectral entropy features with PLP features at the following two

levels:

1. Combination at the feature-level

2. Combination at the posterior-level

As discussed previously, in feature-level combination, the features are appended and modelled

jointly, while in posterior-level combination, features are modelled separately and then the outputs

of the classifiers are combined (Section 3.2.1).

PLP features constituting the baseline were used along with spectral entropy features in the

multi-stream combination experiments presented in this section. Unlike the pitch feature, which

was single dimensional, the spectral entropy features have higher dimensionality and can be uti-

lized as a separate feature stream.

The performance of two multi-stream methods, namely feature and posterior combination, are

presented in Table 5.5. The results show that appending the features (Table 5.5: PLP,24-Mel) helps

in low noise conditions and the advantage of such combination is lost in high noise cases. The reason

for this could be that the features affected by noise influence the overall performance when features

are appended, and the features less affected by noise lose their advantage. In contrast, when



Feature Clean SNR12 SNR6 SNR0
PLP (Baseline) 10.0 17.7 29.6 51.0
24-Mel 12.8 18.3 27.0∗ 45.1∗

PLP, 24-Mel 9.6 15.8∗ 28.1 51.7
Sum Rule
FCMS: PLP,24-Mel 9.2 15.0∗ 24.5∗ 44.5∗

Product Rule
FCMS: PLP,24-Mel 9.3 15.1∗ 24.3∗ 44.6∗

Table 5.5. WERs in % for PLP features, 24 Mel-band spectral entropy feature and its time derivatives (24-Mel), the
two features appended (PLP, 24-Mel), and the two features in full-combination multi-stream (FCMS: PLP,24-Mel)
in a hybrid system. The noise conditions are simulated by adding factory noise from the Noisex92 database at
different SNRs to the utterances of the Numbers95 database. The numbers in bold show the best performance
and ∗ indicates that the improvement in performance as compared to the baseline system is significant.

features are modelled separately and then combined (as in FCMS), the individual feature streams

retain their properties. At the time of combination, we can give more weight to the stream (outputs

of the classifier) which was less affected by noise. Still, there exists the issue of identifying the

streams according to their reliability and we discussed some of the methods for weighting different

streams in Chapter 4. A significant relative average WER improvement of 14.5% is achieved when

we use spectral entropy features along with PLP features in FCMS with inverse entropy weighting.

The performance of the spectral entropy features is affected when the noise contains sinusoidal

components with high energy. High amplitude at those frequencies produces a spectral peak in

the corresponding sub-band and the spectral entropy has a low value for that sub-band. However,

the sub-band methods mitigates the effect of such noises on the overall performance. The results

obtained on Numbers95 database corrupted by additive lynx noise, which contains sinusoidal com-

ponents with high energy, support this reasoning.

In Figs. 5.3 and 5.4, we see the performance of PLP features, spectral entropy features, spectral

entropy features appended to PLP features and spectral entropy features along with PLP features

in FCMS for lynx and car noises respectively.

The performance of PLP features, which involves smoothing, is good for lynx noise. In compari-

son, spectral entropy features perform poorly for lynx noise in all the noise levels studied. Still, it

is noticeable that the performance gap between PLP features and spectral entropy features narrow

downs as the noise level increases. Moreover, the two features in FCMS framework perform better

than the PLP baseline features alone, indicating the complementarity of the two streams. Once

again, feature-level combination yields less improvement in performance compared to posterior-

level combination, specially in high noise conditions.
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Figure 5.3. Performance in % WER of different feature streams for a hybrid system for lynx noise at different SNRs. The
plot shows baseline PLP (-*-), spectral entropy features derived from overlapping sub-bands defined on a Mel scale
(-*.), spectral entropy features appended to the PLP features (-o-) and the two features in FCMS (—). Lynx noise is taken
from the Noisex92 database and added to the utterances of the Numbers95 database at different SNRs.

The trends observed for lynx noise are observed on car noise also. However, the improvement in

performance is more for car noise when PLP and spectral-entropy features are used in the FCMS

framework compared to the two features being appended.

5.2.5 Combination of PLP, RASTA-PLP and Spectral Entropy Features

RelAtive SpecTrAl (RASTA)-PLP (Hermansky and Morgan, 1994) is a well-known feature represen-

tation for robust ASR. In this section, we compare the performance when CJRASTA-PLP features

(a variation of RASTA-PLP features) and spectral entropy features are used individually with PLP

features. The FCMS setup was used for carrying out the experiments and inverse entropy weight-

ing was used for combining the outputs of the classifiers. In Table 5.6, the results are presented

for the above mentioned setup. We observe that most often combining spectral entropy features

with PLP features gives a better improvement than combining CJRASTA-PLP features with PLP

features.
In the next experiment, we combine all the three features in an FCMS setup, giving rise to 7
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Figure 5.4. Performance in % WER of different feature streams for a hybrid system for car noise at different SNRs. The
plot shows baseline PLP (-*-), spectral entropy features derived from overlapping sub-bands defined on a Mel scale
(-*.), spectral entropy features appended to the PLP features (-o-) and the two features in FCMS (—). Car noise is taken
from the Noisex92 database and added to the utterances of the Numbers95 database at different SNRs.

Factory Noise Car Noise
Features Clean SNR12 SNR6 SNR0 SNR12 SNR6 SNR0
FCMS (PLP, CJRASTA) 9.4 15.3∗ 26.4∗ 46.8∗ 13.7∗ 20.0∗ 33.3∗

FCMS (PLP, 24-Mel) 9.2 15.0∗ 24.5∗ 45.5∗ 15.0 21.0 32.5∗

Table 5.6. WERs in % for CJRASTA-PLP features and 24 Mel-band spectral entropy feature with its time derivatives
(24-Mel) along with PLP features in FCMS with inverse entropy weighting. Results are for a hybrid system on the
Numbers95 database. The noise conditions are simulated by adding the factory and car noises from the Noisex92
database at various SNRs. The numbers in bold show the best performance and ∗ indicates that the improvement
in performance as compared to the baseline system is significant.

streams. Table 5.7 shows that the combination of the three streams gives a better improvement

than the two stream combination results presented in Table 5.6 where CJRASTA-PLP and spectral

entropy features were individually combined with PLP features. This indicates that CJRASTA-PLP

features carry some information that is complementary to the information carried by the combina-

tion of PLP and spectral entropy features, and inclusion of CJRASTA-PLP as one of the feature

streams is indeed beneficial in improving the overall performance. Moreover, this result empha-

sizes that better gains can be achieved if we consider a large number of feature representations

having complementary information and combine them in an FCMS setup. It is also noted that



Factory Noise Car Noise
Features Clean SNR12 SNR6 SNR0 SNR12 SNR6 SNR0
PLP 10.0 17.7 29.6 51.0 14.8 21.5 35.3
CJRASTA 10.6 17.1 27.9∗ 48.6∗ 15.6 23.4 38.5
24-Mel 12.8 18.3 27.0∗ 45.1∗ 18.7 24.5 36.7
PLP, CJRASTA 9.8 16.9 27.8∗ 49.0∗ 14.4 21.3 34.3
PLP, 24-Mel 9.6 15.8∗ 28.1 51.7 14.9 21.8 33.8∗

CJRASTA, 24-Mel 9.6 15.3∗ 25.4∗ 46.7∗ 14.4 19.8∗ 31.9∗

PLP, CJRASTA, 24-Mel 9.5 15.1∗ 26.4∗ 49.3 14.3 20.4 31.7∗

FCMS (PLP, CJRASTA, 24-Mel) 8.6∗ 13.7∗ 23.1∗ 44.0∗ 13.6∗ 19.4∗ 31.0∗

Table 5.7. WERs in % for PLP features, CJRASTA-PLP features, 24 Mel-band spectral entropy feature with its time
derivatives (24-Mel), and the three features in full-combination multi-stream (FCMS) with inverse entropy weight-
ing. Results are for a hybrid system on the Numbers95 database. The noise conditions are simulated by adding
the factory and car noises from the Noisex92 database at various SNRs. The numbers in bold show the best perfor-
mance and ∗ indicates that the improvement in performance as compared to the baseline system is significant.

concatenation of CJRASTA-PLP and spectral entropy features is most beneficial among all the two

feature stream concatenations considered in Table 5.7.

In Appendix D, an oracle (described later in Chapter 6) is used to combine CJRASTA-PLP and

spectral entropy features individually in a hybrid FCMS setup. The oracle analysis (to show the

complementarity of streams, Section 6.2.2) indicates that spectral entropy features carry more com-

plementary information than CJRASTA-PLP features, when each of the features are used with PLP

features.

Comparing this result (Table 5.7) with the results presented in Table 4.2 (Page 53), where the

outputs of the MLPs trained on 7 PLP feature streams were combined by inverse entropy weight-

ing, the complementarity of the streams can also be noticed. In Chapter 4, it was suggested that

the improvement observed by combining the 7 PLP streams in low because the streams were not

carrying enough complementary information.

5.3 Summary

In this chapter, we analyzed two feature representations in the multi-stream framework. The first

feature we studied is the well-known fundamental frequency (referred as pitch frequency in this

study). Giving the reasons why pitch frequency could be of help in ASR, we did some analysis to

find out why appending the pitch feature to the standard ASR features usually does not improve

the performance. Then we proposed an FCMS setup where pitch frequency was used along with

PLP features. We observed that if the pitch frequency estimates are robust to noise, the pitch



feature in the proposed FCMS framework can yield a considerable improvement in performance

over the baseline PLP based system. However, in the absence of a robust estimation method for

pitch extraction, we get an improvement only for clean speech.

In the next part of the study, we presented multi-band spectral entropy features. We observed

the robustness of the new features towards additive wide-band noises at low SNRs. We also found

that the new features are complementary to PLP features and when both the features are used in

an FCMS setup, we obtain an improvement in the performance. The improvement was observed

for different kinds of noise conditions at various SNRs. We noticed that the improvement is larger

in high noise conditions compared to improvement in low noise conditions.

The conclusions of the studies in this chapter are as follows:

1. Appending of the pitch frequency feature to the usual cepstral features did not improve the

performance of the ASR system. This behaviour can be explained by the reasoning that pitch

frequency information is present in the static cepstral features, therefore appending the pitch

frequency feature does not contribute new information to improve ASR performance.

2. Utilizing the pitch features in an FCMS framework, as proposed in this work, can yield an

improved performance. Considering that pitch frequency is a single dimensional feature, the

improvement obtained by including the feature is good.

3. The SIFT method used for pitch frequency estimation is based on LP analysis. LP analysis is

known to be prone to noise and as a result the pitch frequency estimates are not reliable. The

ASR performance could be improved only for clean speech where pitch frequency estimates

are more reliable. It is worth exploring some other methods for pitch extraction which are less

affected by noise.

4. Multi-band spectral entropy features (appended with first and second order time derivatives)

were observed to be robust to additive noise conditions at low SNRs. In contrast, PLP features

performed well in low noise conditions.

5. Appending the two features (early integration) yielded an improved performance for low noise

conditions. However, in high noise conditions, the appending did not give any improvement

over the baseline. The reason for this could be that when the features are appended, if one

feature is affected by noise, it affects the whole model and hence the performance.



6. The multi-band spectral entropy features when used with PLP features in an FCMS frame-

work with inverse entropy weighting gave consistent and most often significant improvement

in performance for all noise conditions and various noise levels studied in this chapter. Mod-

elling the features separately, and then combining the posteriors at the output of the MLPs

(late integration), is a better approach (less affected by noise) compared to early integration if

a proper weighting technique is employed at the time of combination. Kirchhoff and Bilmes

(2000) reported a similar observation in multi-stream ASR task.

7. Combination of PLP, RASTA-PLP and spectral entropy features in the FCMS setup yielded

the best performance, indicating that the combination of more number of streams brings more

complementary information into the ASR system. In this setup, once again, late integration

was found to be better than the early integration.

In the next chapter, we do the analysis of an “oracle” in an attempt to investigate the issue of

complementarity of feature streams in multi-stream ASR. We also explore how oracle selection

correlates with inverse entropy weighting.



Chapter 6

Oracle Test and Embedded

Training

In posterior-level combination in a multi-stream system, if at every time instant we can select the

stream (outputs of the classifier trained on the feature stream) that is “best” among all the streams

considered for combination, it will lead to the best performance that can be achieved by frame-level

weighting techniques1. Such “oracle tests” have been used earlier to find out the oracle performance

in pattern recognition tasks (Hermansky et al., 1996; Shire and Chen, 2000; Kuncheva, 2002).

In this chapter, we also propose a different interpretation of the oracle test to analyze the issue

of complementarity of feature streams in a multi-stream system. It is assumed that the outputs

of the classifiers (streams) are more complementary if the feature streams used to train them are

more complementary, that is, outputs of a classifier are a representation of the feature stream used

to train that classifier.

The aim of investigating the oracle test is three fold:

1. To find out what is the best performance that can be achieved by frame-level weighting while

combining outputs of classifiers trained on a given set of feature streams. One separate clas-

sifier is trained for each feature stream.

2. To find out whether the streams considered for combination have complementary information.

1It might not yield the best word recognition rate because of weak correlation between frame and word accuracies in an
ASR task. Also, we are maximizing the likelihood of the best path without taking into consideration the likelihood of the
competing paths.
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3. To find out how well the inverse entropy weighting method studied in this thesis corresponds

with the oracle choice.

In Chapters 4 and 5, we trained the MLP classifiers using hand-labelled data. However, embed-

ded training is known to improve the performance of ASR systems. In the second part of this chap-

ter, we investigate the idea of embedded training for multi-stream systems. We examine whether

the improvements achieved in previous chapters by inverse entropy weighting and spectral entropy

features extend to multi-stream systems trained with embedded procedure.

The rest of the chapter is organized as follows: the first part of this chapter is related to the

oracle studies. In Section 6.1, we discuss the oracle test and its properties. The experimental

analyses of the oracle test are presented in Section 6.2, followed by a discussion in Section 6.3.

Embedded training experiments are reported in the second part of the chapter, and in Section 6.4

we describe the single-stream embedded training for HMM/ANN systems. The idea of multi-stream

embedded training is presented in Section 6.5 along with the experimental results. A summary of

the chapter is presented in the last, mentioning the important outcomes of the studies presented in

this chapter.

6.1 Oracle Test

6.1.1 Oracle Performance in Multi-stream ASR

In the ‘Oracle’ experiment, at every time instant (frame), we choose the outputs of the classifier that

has the highest posterior for the correct class (Shire and Chen, 2000; Kuncheva, 2002). In essence,

the oracle does 1/0 weighting, that is, the outputs of the “best classifier” get a weight of 1 while the

outputs of rest of the classifiers get a weight of 0. The oracle takes its decision based on the outputs

of the classifier and the correct class label. The correct class was obtained by forced alignment of

the test data by the baseline PLP system (13c,13∆c, 13∆∆c)2. This simple oracle test can let us

know the best performance that can be achieved by frame-level weighting for a given set of streams

in multi-stream combination.

2In general, if hand-labelled data is present for the test utterances, the oracle test can be devised very easily. In absence
of hand-labelled data, we can consider forced aligned test data to setup the oracle test.



6.1.2 Complementarity of Feature Streams

Apart from the usual best frame-level performance, the oracle test can also give an indication of

the complementarity of the feature streams (feature representations) and streams (outputs of the

classifier trained on feature streams). This property of the oracle test could be a step in finding

complementary feature streams for a multi-stream system. The proposed interpretation of the

oracle test to indicate the complementarity of feature streams has the following argument: If two

streams carry exactly the same information, combining those two streams by oracle cannot improve

the accuracy of the system. On the other hand, if the two streams carry complementary information,

we can achieve an improvement in performance by combining them by oracle. In essence, the more

complementary information is available between two streams, the better gains we can attain by

combining those two streams.

This property of the oracle test can help in finding whether the feature streams considered for

combination carry any complementary information. The oracle test can stop us from looking at fea-

ture streams which do not give improvement even in the ideal case. To begin with, we can consider

only those feature streams which give good improvement when the outputs of the classifier trained

on them are combined by an oracle. It could be a fast method to check whether the streams consid-

ered for combination will yield any improvement when combined by sub-optimal methods (Hagen

and Bourlard, 2000; Shire and Chen, 2000; Misra et al., 2003). In practice, the improvements

achieved by oracle might not be reached by statistical combination methods which rely on the aver-

age behavior of the streams. In this setup, it is assumed that the classifiers (MLPs in HMM/ANN

systems) are well trained on their respective feature streams.

6.2 Oracle Performance

In this section, we present the performance obtained by oracle for different multi-stream setups.

This performance is not the upper bound because the “goodness” of forced-aligned data itself de-

pends on the posterior outputs used for finding the alignment. We have used the posterior outputs

of the baseline PLP system to obtain the forced alignment.

In this discussion, we evaluate the performance for two multi-stream systems. The first system

uses 7 PLP feature streams, namely static PLP features (c), delta PLP features (∆c), delta-delta

PLP features (∆∆c), and all their possible combinations in the FCMS setup, studied in Chapter 4.



The second system uses the baseline PLP features and spectral entropy features defined on a Mel

scale in the FCMS setup (3 feature streams) investigated in the previous chapter (Section 5.2.2).

In both the systems, one separate MLP is trained for each feature stream and outputs of the MLP

classifiers (streams) are considered for combination.

6.2.1 Number of Streams

In the first setup, we increased the number of streams considered for combination from 1 to 7 for

the 7 streams PLP system. Fig. 6.1 (a) shows the average word error rates for n streams chosen out
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Figure 6.1. Performance of oracle in % WERs for multi-stream combination. (a) The streams are all possible combinations
of the static PLP features and their first and second order time derivatives (7 streams). Out of 7 streams, ‘n’ streams were
used for combination, ‘n’ varying from 1 to 7. (b) The streams considered for combination were PLP features with first
and second order time derivatives, spectral entropy features derived from 24-Mel band with their first and second order
time derivatives and concatenation of the two features (3 streams). ‘n’ varied from 1 to 3.

of 7 possible streams (we have CN
n = N !

n!(N−n)! possibilities to choose n streams for combination out

of N streams and we considered all the possible combinations to compute the average word error



rates). The circles (o) in the figure show the variation of one standard deviation around the average

WERs. Similarly, Fig. 6.1 (b) shows the plot for PLP and 24-Mel band derived spectral entropy

features used in a full-combination multi-stream setup (3 possible streams), with n varied from 1

to 3.

We observe from these figures that the performance of the oracle improves as the number of

streams increases. In the hypothetical case of all the streams used for combination carrying the

same information, no improvement can be achieved by combining such streams. Further, the curve

starts flattening out when more streams are added, indicating that the additional streams do not

bring much complementary information into the system.

6.2.2 Complementarity of Streams

The property of the oracle that it can give information about the complementarity of the streams

(as well as feature streams) is depicted in Fig. 6.2. In the figure, we start with the baseline PLP

system and start combining other streams to it. When we combine another PLP stream (choos-

ing one from the six remaining streams and considering all the 6 possible combinations) to the

baseline PLP stream, we see an improved performance. When we combine the spectral entropy

streams (choosing one from the two remaining streams and considering both the combinations), the

improvement is more compared to the one observed by adding the PLP streams3. A similar trend

was observed when we considered 7 PLP streams for combination (Chapter 4) and compared the

results with 3 PLP and spectral entropy streams used for combination (Chapter 5). This supports

our earlier studies presented in Chapter 5, and indicates that spectral entropy features bring more

complementary information into the system. The circles (o) in the figure show the variation of one

standard deviation around the average WERs.

We further investigate the following streams/feature streams in a multi-stream setup to com-

pare their complementarity to PLP features:

1. Different MLP sizes: In this setup, PLP features were used to train two MLPs of different

sizes. The first MLP is the one through which baseline results are reported in this thesis. The

second MLP had 4 times the number of units in the hidden layer than the baseline MLP. The

posterior outputs of the two MLPs were combined by an oracle.

3We change the number of streams from 1 to 3 because the PLP baseline features when used with the spectral entropy
features in the FCMS setup give rise to 3 possible feature streams only.
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Figure 6.2. Oracle performance in % WERs to find out complementarity of streams used in multi-stream combination.
The performance is compared for PLP features (static, delta and delta-delta) in FCMS (7 streams: —-) and PLP features
along with spectral entropy features in FCMS (3 streams: - - -)

2. 7 PLP streams: This setup was used in Chapters 4. The PLP baseline was used to train an

MLP. The remaining 6 possible streams were used as separate streams and one MLP was

trained for each of them. In this setup, 6 experiments were conducted, one with each stream.

Out of the 6 streams, 1 stream was chosen and posterior outputs of that MLP were combined

with the posterior outputs of baseline MLP using an oracle.

3. CJRASTA-PLP: In this setup, one MLP was trained for each feature representation (PLP and

CJRASTA-PLP) and the outputs of the two MLPs were combined by an oracle. This is different

from FCMS setup where all possible combinations of the two feature representations are used

as a separate feature stream.

4. Spectral entropy: The experiments of spectral entropy features and baseline PLP features in

an FCMS setup were discussed in Chapters 5. In the present setup, one MLP was trained for



each feature representation and the outputs of the two MLPs were combined by an oracle.
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Figure 6.3. Complementarity of different multi-stream setups using oracle test. The oracle performance in % WERs is
compared for: a) Same PLP baseline features with different MLP sizes, b) 6 possible PLP feature streams with baseline
PLP features, c) CJRASTA-PLP features with baseline PLP features, and d) Spectral entropy features with baseline PLP
features.

The results of the above 4 setups are shown in Fig. 6.3. We observe from the figure that different

MLP sizes trained on the same feature representation to create different streams bring the least

complementary information. It was reported in (Janin et al., 1999; Antoniou and Reynolds, 2000;

Christensen et al., 2000) that changing the number of parameters in the MLP to create streams

brings least improvement in the performance as compared to the improvements obtained by creat-

ing streams using different feature representations. The performance of 6 PLP streams shows that

they carry more complementary information than creating streams by using different MLP sizes on

the same feature representation. CJRASTA-PLP performs better than 6 PLP streams and spectral

entropy performs the best. It indicates that CJRASTA-PLP features are more complementary than

6 PLP feature representations and spectral entropy features are most complementary among all

the feature representations investigated in this thesis.



The 6 PLP streams are part of the baseline PLP features themselves, therefore they are expected

to bring less complementary information than CJRASTA-PLP features. At the same time, like

PLP features, CJRASTA-PLP are spectral energy based features and have less complementary

information than spectral entropy features.

6.2.3 Relationship with Minimum Entropy

In this section, we analyze how the oracle chooses a particular stream from amongst all the streams.

We restrict our studies to analyzing the relationship between oracle selection and the entropy at the

output of the MLPs trained on their respective feature streams (in any case, it is rather difficult, if

not impossible, to completely understand oracle selection from a statistical point).

In this experimental setup, we computed the entropy of the stream selected by the oracle at

each time step, and compared it with the entropy of all other streams. Interestingly, in the case

of 7 streams PLP features used for combination, in clean speech, 75.7% of the times the oracle

selected the stream with minimum entropy. In case of multi-stream combination of PLP features

along with spectral entropy features in full-combination, the oracle selected the minimum entropy

stream 79.2% of the times.

Fig. 6.4 shows how many times (frames) the oracle selected the minimum entropy stream for

different noise levels (additive factory noise at various SNRs). We notice that as the noise level in-

creases, the preference for minimum entropy frames diminishes, but the minimum entropy frames

still enjoy a majority in oracle selection (random selection is 14.4% for 7 streams case and 33.3% for

3 streams case). This suggests that entropy at the output of a classifier is a reasonable choice for

weighting.

6.3 Discussion

The important conclusions that can be drawn from this oracle study are:

• It can give us an approximate upper bound on the frame-level performance that can be achieved

using a multi-stream setup where the weights are chosen at frame-level.

• The proposed interpretation of an oracle can let us know about the complementarity of the

streams used for combination. This can save us from running costly experiments on streams
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Figure 6.4. Number of times (in percentage of frames) oracle selected the stream with minimum entropy in the FCMS
hybrid systems. The plot is for clean as well as noisy test conditions. Noise conditions are simulated by adding factory
noise from the Noisex92 database to the utterances of the Numbers95 database at various SNRs. In the plot, clean
speech condition is represented by 20 dB SNR.

(or feature streams) which might not have enough complementary information to give an

improvement in a multi-stream combination system.

• Further, the oracle test establishes that using spectral entropy features along with PLP fea-

tures in multi-stream combination was a reasonable choice. We observed that spectral entropy

features were indeed bringing new information into the system.

• In clean speech, approximately 80% of the times the oracle selected the stream with minimum

entropy. Even in case of noise, minimum entropy stream was selected most of the times.

However, it might not be possible to define the oracle selection by a statistical measure such

as entropy at the output of the classifiers.



6.4 Embedded Training

Embedded training of a single-stream hybrid systems is known to yield an improved performance (Re-

nals et al., 1994; Mirghafori and Morgan, 1997). In this work, we investigate if the improvements

achieved on multi-stream combination in Chapter 5 also extend to embedded training of multi-

stream combination systems. First, we give the details of single-stream embedded training (Renals

et al., 1994; Mirghafori and Morgan, 1997). Next, we propose an embedded training procedure for

multi-stream systems.

Embedded training of single-stream hybrid HMM/ANN system was implemented as follows:

1. We started with hand-labelled frame segmentation and trained an MLP, as done in one-hot-

encoding hybrid training.

2. The training data was passed as test data through the MLP and the posteriors were obtained.

3. A new state-level segmentation was obtained by Viterbi forced alignment of the posteriors

obtained on training data.

4. A new MLP with the same initialization was trained from scratch using the new segmentation.

5. Steps 2, 3 and 4 were repeated several times. In general, 2 iterations might be adequate, but

in the present setup we did 15 iterations to observe the trend. In the end, we had one trained

MLP for each iteration.

6. Test data was passed through each MLP to obtain the posteriors which were then scaled by

their respective priors to obtain scaled likelihoods. The decoding was done using the scaled-

likelihood estimates to get the word transcription.

The performance in terms of WER for clean test conditions for every iteration is shown in Fig. 6.5

for the baseline PLP features. We see that the first iteration (going from hand-labelled segments to

forced-aligned segmentation for training) gives an absolute improvement of 2% over the baseline.

For further iterations, we do not see an obvious pattern between the number of iterations and WER,

except that WER hovers around 8% mark achieved in the very first iteration. Further, to study the

effect of embedded training in noisy test conditions, we investigated the additive factory noise test

conditions. In Fig. 6.6, we present the results obtained from an MLP trained with a forced-aligned

segmentation obtained from first iteration. As in all the previous studies, training was performed
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Figure 6.5. Embedded hybrid training for a single-stream (baseline PLP features): ‘number of iterations’ vs WER. 0th

iteration has hand-labelled segmentation for training the MLP. The first iteration gives the maximum improvement.

on clean data and testing was done on both clean and noisy data. We observe that the improvement

seen in clean test conditions is achieved in noisy conditions as well. We obtain a relative average

WER improvement of 14.2% over the baseline.

The results obtained by single-stream embedded training encouraged us to examine whether

similar trends exist in the case of multi-stream embedded training also. The system setup and the

performance of this approach are presented in the next section.

6.5 Multi-stream Embedded Training

There could be more than one method to perform embedded training in a multi-stream system. For

example, separate embedded training can be performed for each individual feature stream and the

streams (outputs of all the classifiers) can be combined at the time of testing. We followed a rather
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Figure 6.6. Embedded hybrid training for a single-stream (baseline PLP features): Comparison between WERs obtained
by hand-labelled segmentation and with segmentation obtained by forced alignment (first iteration). Noise conditions
are simulated by adding factory noise from the Noisex92 database to the utterances of the Numbers95 database at
various SNRs.

easy approach where we trained one MLP for each feature stream but the labels of all the feature

streams were same and were obtained by the combined posteriors. The steps of the training were:

1. Starting with hand-labelled frame segmentation, one MLP was trained for each feature stream.

2. The training data of each feature stream was passed as test data through the corresponding

MLP and the posteriors were obtained at the output of the respective MLPs.

3. The posterior outputs of different MLPs were combined using the inverse entropy weighting

studied in the previous chapters.

4. A new state-level segmentation was obtained by Viterbi forced alignment of the combined

outputs obtained on training data.



5. New MLPs with the same initialization were trained from scratch for every feature stream

using the new segmentation.

6. Steps 2, 3, 4 and 5 were repeated several times (4 iterations in the present setup). In the end,

we had one trained MLP for each feature stream and each iteration.

7. To test the MLPs for each iteration, test data for each feature stream was passed through the

respective MLP to obtain the posterior outputs. The posteriors from different MLPs were com-

bined by inverse entropy weighting. The combined posteriors were scaled by their respective

priors to obtain scaled likelihoods and decoding was done to get the word transcription.

8. WERs were obtained for each iteration.

The feature streams considered for multi-stream embedded training were: PLP features, spectral

entropy features from 24-Mel bands and the concatenation of the two features. The WER perfor-

mances for different iterations for clean as well as noisy test data (additive factory noise from the

Noisex92 database) are shown in Fig. 6.7. As observed in single-stream embedded training, the

first iteration with the forced-aligned data gave the maximum improvement and the improvement

for the next iteration is subdued. For the third iteration, no improvement in performance is ob-

served (in fact, the performance degrades slightly). The same trend is noticed for different SNRs

investigated in this work.

In the bar plot (Fig. 6.8), the performance of the PLP baseline, PLP trained with embedded

training (first iteration), multi-stream baseline and multi-stream system with embedded training

(first two iterations) are shown for comparison. Embedded training helps in improving the baseline

PLP performance as well as the performance of the multi-stream system. The improvement is

consistent and generalizes for different noise levels studied in this work. The proposed multi-

stream embedded system yields relative average WER improvements of 27.2% compared to the

PLP baseline system and 15.3% compared to the single-stream embedded PLP system. Also, the

embedded training improves the relative average WER performance of the multi-stream system by

13.4%

The results of embedded training give an impression that we have achieved the performance

of the oracle (WER of 6.2% in Fig. 6.1 (b) when all the 3 feature streams are used) by embedded

training, but this is not entirely true. In the presence of better segmentation obtained by embedded

training and hence better modelling of the acoustic features by the MLPs, the oracle performance
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Figure 6.7. Embedded hybrid training for FCMS: Comparison of performance in % WER with training performed on
hand-labelled segmentation and segmentation obtained by forced alignment after each iteration. The performance
is compared for clean test condition (20 dB SNR) as well as noisy test conditions. Noise conditions are simulated by
adding factory noise from the Noisex92 database to the utterances of the Numbers95 database at various SNRs.

improves from 6.2% to 4.5%. Embedded training on hybrid systems is similar to embedded training

of HMM/GMM systems, and leads to maximization of the likelihood of the training data, often

yielding better discrimination between classes (Rabiner, 1989; Rabiner and Juang, 1993; Bourlard

and Morgan, 1994). The WERs for the clean test conditions obtained by the different systems are

presented in Table 6.1.

Segmentation Baseline PLP Multi-stream Oracle
Hand 10.0 9.1 6.2
Forced-alignment 7.9∗ 6.5∗ 4.5∗

Table 6.1. WER in % for training with hand-segments and segments obtained by forced alignment using embedded
training (best result for second iteration is shown). a) PLP baseline features, b) multi-stream combination of PLP
features with spectral entropy features in FCMS, and c) Oracle. Testing on clean conditions only. In the table, ∗

indicates that the improvement in performance as compared to the system trained on hand-segmented data is
significant.
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6.6 Summary

In this chapter, we presented a frame-level oracle test for multi-stream systems and analyzed its

characteristics. We outlined the need for the oracle test to investigate the complementary proper-

ties of the new feature representations. We could show the complementarity of spectral entropy

features using the oracle test. Also, we found that the oracle tends to choose the outputs of the

MLP classifiers (trained on feature streams) that had the least entropy at their outputs. This fur-

ther supported our proposed method of inverse entropy weighting for combining the outputs of the

classifiers.

In the second part of the chapter, we proposed an embedded training procedure for hybrid multi-



stream systems. The study was carried out to investigate whether the gains obtained on simple

multi-stream systems by techniques studied in earlier chapters, namely inverse entropy weighting

and spectral entropy features, extend to multi-stream systems trained with an embedded proce-

dure. We observed that the multi-stream embedded training can lead to improved performance, not

only in clean test conditions but for noisy test conditions as well. In clean condition, we achieved

a WER improvement of 2% absolute (20.0% relative) over the baseline PLP system by employing

single-stream embedded training. We further gained a WER drop of close to 1.5% absolute (17.7%

relative) on clean conditions by multi-stream embedded training over the single-stream embedded

training applied to PLP baseline features.



Chapter 7

Multi-stream Combination in

Tandem ASR Systems

In Chapters 4, 5 and 6, we presented the results for hybrid HMM/ANN systems using models

of context-independent phones. The outputs of the MLP in an HMM/ANN system are posterior

estimates and it is easy to interpret them. In addition, posteriors being bound between 0 and 1, it is

convenient to use them in multi-stream combination systems. HMM/ANN systems can be trained

for context-dependent phones also where the number of outputs units of the ANN is equal to the

number of context-dependent phones. However, with an increase in vocabulary size, the number of

context-dependent phones increases, and training the MLP gets computationally expensive (Doss,

2005). For this reason, ANNs are generally trained for context-independent phones.

State-of-the-art HMM/GMM systems employ state-tying and context-dependent training with

ease. However, the outputs of the HMM/GMM system being likelihoods, it is not easy to use them

in multi-stream combination. In the next section, we describe the Tandem system which is a com-

bination of HMM/ANN and HMM/GMM systems (Hermansky et al., 2000).

The organization of the remaining chapter is as follows: in Sections 7.1 and 7.2, we describe

single-stream and multi-stream Tandem systems respectively. The experimental results obtained

by using the inverse entropy weighting and spectral entropy features in multi-stream Tandem sys-

tem are presented in Section 7.3. We summarize the important contributions of the chapter in

Section 7.4.
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7.1 Tandem System

In a Tandem system, we train the MLP of the usual HMM/ANN system. The output posteriors of the

MLP are fed to the HMM/GMM system after some processing so that the inputs to the HMM/GMM

system are Gaussian-like and decorrelated. The HMM/GMM system uses standard techniques

like state-tying and context-dependent modelling to model the HMM parameters. The Tandem

system has been shown to be noise robust (Sharma et al., 2000; Hermansky et al., 2000) and yields

improved performance compared to a standard HMM/ANN system or HMM/GMM system.

In (Zhu et al., 2004), the authors showed that the speaker variations at the output of an MLP

were much less compared to the speaker variations in the PLP features at the input of the MLP.

This reduction is speaker variance is beneficial for the HMM/GMM stage of a Tandem systems.

Depending upon how the outputs of the MLP are obtained and processed, there are two varia-

tions of Tandem systems proposed in the literature.

7.1.1 Tandem: Softmax Outputs

The Tandem system, as suggested originally in (Hermansky et al., 1999), is depicted in Fig. 7.1. In

HMM/GMM
System
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MLP Log

Posteriors
Estimate

Component
Principal

Analysis

Tandem Feature
Orthogonal

Input

Features

Figure 7.1. Tandem Posterior Model: Posteriors from the MLP are log scaled and then decorrelated by PCA. The trans-
formed posteriors are used as features in a standard HMM/GMM system (Hermansky et al., 1999).

this system, the posterior outputs of the MLP are first transformed by log and then decorrelated by

principal component analysis (PCA) before being fed as features to an HMM/GMM system. Both the

steps are necessary so that the transformed posteriors can be modelled by a mixture of Gaussians

having a diagonal covariance matrix. Techniques like state-tying and context-dependent modelling

can be utilized to train the HMM/GMM system. The steps of developing a Tandem-based ASR

system are listed below:

1. An MLP is trained for a given feature representation (same as in hybrid HMM/ANN system).

It is possible to use task-specific training data or data from some other databases (task inde-

pendent training data) to train the MLP. In (Sivadas and Hermansky, 2004), the authors ob-



served that training on task-specific data performs better than training on task-independent

data for an ASR task. In our studies, we used features obtained from task-dependent data to

train the MLP.

2. The features obtained from the training data are passed through the trained MLP (forward

pass) to generate the posteriors for the training data.

3. The posteriors from training data are log transformed and decorrelated by PCA. In this work,

all the dimensions are preserved while doing PCA and the dimension of the decorrelated pos-

terior vectors is the same as that of the dimension of the posterior vectors. In some recent

papers (Zhu et al., 2004, 2005a), the authors evaluated the role of PCA to reduce the dimen-

sion before feeding the decorrelated posterior vectors to the HMM/GMM system. The PCA

basis obtained from the training data is stored to be used at the time of testing.

4. Using the transformed posteriors as feature vectors (“termed orthogonal Tandem feature rep-

resentation” in Fig. 7.1), an HMM/GMM system is trained.

5. During testing, the features obtained from the test data are forward passed through the

trained MLP to generate posteriors.

6. The log of the posteriors is taken and, and the resultant outputs are projected on the PCA

basis obtained from the training data.

7. The transformed test posteriors are used as test features in the HMM/GMM system and de-

coding is performed to obtain the word sequence.

7.1.2 Tandem: Linear Outputs

The output posteriors of the Tandem system discussed above are obtained by a softmax activation

function in the output layer of the MLP. The softmax function is given by,

P (qk|xn) =
exp(f(yk|xn))∑
i exp(f(yi|xn))

(7.1)

where f(yk|xn) and P (qk|xn) are the linear and softmax outputs respectively, for kth class and fea-

ture vector xn at time instant n. The output after softmax, P (qk|xn), is the estimated posterior

probability at the output of the MLP for the kth class. The relationship between output before and



after the softmax is a many-to-one mapping and we lose some information in the process. This infor-

mation loss can be avoided if the MLP output is taken from linear output units instead of softmax

outputs.

The “linear” Tandem topology was suggested in (Sharma et al., 2000) and it gives a better per-

formance compared to the one obtained with softmax output. The schematic diagram of a linear

Tandem system is shown in Fig. 7.2. Comparing the linear and softmax Tandem systems, we notice

MLP 

HMM/GMM
System

Features
Input

Representation

Orthogonal
Tandem Feature

Output
Before Softmax

Posteriors Estimate

PCA

Figure 7.2. Tandem Linear Model: ‘Outputs before softmax’ from the MLP are decorrelated by PCA and used as features
in a standard HMM/GMM system.

that the log module is not used in the linear system. The linear outputs are Gaussian like and do

not require the log transformation. The rest of the system details are same as explained for softmax

Tandem system.

7.2 Multi-stream Tandem

The MLP in the first stage facilitates the use of a Tandem system in multi-stream combination. The

outputs of MLPs trained on different feature streams can be combined with the methods discussed

in Chapter 4. The combined outputs can be used as features after some required pre-processing in a

standard HMM/GMM system. As discussed above, there are two variations of Tandem system. We

have used both of them in our multi-stream combination studies. The system details are explained

further in the following discussion.

Multi-stream Tandem: Softmax outputs

Fig. 7.3 explains the working of a multi-stream Tandem system with softmax outputs. In this

system, we combine the posteriors obtained from MLPs trained on different feature streams. In

FCMS, as shown in the figure, for each possible feature combination one MLP is trained. All the
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Figure 7.3. Multi-stream Softmax Tandem: Posteriors from different MLPs are weighted and combined. The combined
output undergoes log scaling followed by PCA before being fed as features into an HMM/GMM system.

weighting techniques studied in Chapter 4 can be used directly to combine the outputs of MLP

classifiers.

Multi-stream Tandem: Linear outputs

The multi-stream Tandem system for linear outputs is shown in Fig. 7.4. There are certain issues

when dealing with the linear outputs. For example, the outputs are no longer restricted to be
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Figure 7.4. Multi-stream Linear Tandem: ‘Outputs before softmax’ from different MLPs are weighted and combined. The
combined output undergoes PCA before being fed as features into an HMM/GMM system.



between 0 and 1, and they can take positive as well as negative values. Therefore, we cannot apply

product rule to combine their outputs (summation is still possible). Also, the weighting strategies

of Chapter 4 are not applicable directly.

With a little modification, we can use the inverse entropy weighting in the multi-stream linear

Tandem setup. We converted the linear outputs of an MLP into posteriors using (7.1) and computed

entropy from these posteriors at the output of each MLP employing (4.6). The linear outputs of the

MLPs were weighted by their respective inverse entropies using (4.11) to get the combined linear

outputs by a summation operation.

7.3 Experimental Setup and Results

In the previous section, we discussed two variations of Tandem systems. In this section, the results

are presented when the two of them are used in multi-stream combination.

The MLP of the Tandem system was the same as that of the hybrid system. The HMM/GMM

part of the Tandem system consists of 80 context-dependent phones with 3 left-to-right states per

context-dependent phone. Emission probabilities for each state were modelled by a mixture of 12

Gaussians. PLP and spectral entropy features studied in Chapter 5 were used as individual feature

streams in the FCMS Tandem framework. The inverse entropy weighting technique investigated

in Chapter 4 was used for combining the outputs of the MLP classifiers.

Table 7.1 shows the results of two variations of the Tandem system for clean and noisy test

conditions. Noise conditions are simulated by adding factory noise from the Noisex92 database to

the test utterances of the Numbers95 database at various SNRs. We notice that the performance

Softmax Tandem Linear Tandem
Feature Clean SNR12 SNR6 SNR0 Clean SNR12 SNR6 SNR0
PLP 5.5 12.0 22.1 44.2 4.3 10.3 20.1 41.9
24-Mel 8.6 13.9 22.1 40.8∗ 7.1 12.1 19.9 37.7∗

PLP, 24-Mel 5.5 11.9 22.2 45.1 4.2 9.7 18.5∗ 41.1
FCMS: PLP,24-Mel 5.2 10.9∗ 19.6∗ 39.8∗ 4.0 9.6 17.6∗ 37.5∗

Table 7.1. WERs in % for PLP features, 24 Mel-band spectral entropy feature and its time derivatives (24-Mel),
the two features appended (PLP, 24-Mel), and the two features in full-combination multi-stream (FCMS: PLP,24-
Mel) in the Tandem systems for the Numbers95 database corrupted by additive factory noise from the Noisex92
database at various SNRs. The numbers in bold show the best performance and ∗ indicates that the improvement
in performance as compared to the baseline system is significant.

of the Tandem system with softmax outputs (Softmax Tandem) is inferior than the performance of



the Tandem system with linear outputs (Linear Tandem). This trend is observed for single as well

as multi-stream systems for different noise conditions presented in the table and is in-line with the

results reported in (Ellis et al., 2001).

Further, the table shows that PLP features work well in low noise conditions whereas spec-

tral entropy features work well in high noise conditions. We notice that the concatenation of two

features (Row 3: PLP,24-Mel) improves the performance for low noise conditions, however the im-

provement is more when the two features are used in the FCMS framework with the inverse en-

tropy weighting (Row 4: FCMS: PLP,24-Mel). These observations are similar to the trends obtained

on hybrid system (In Table 5.5, we saw that the FCMS framework gave better performance than

feature concatenation).

The relative average WER improvements of 9% and 9.2% were obtained by using the inverse

entropy weighting and the spectral entropy features in the framework of multi-stream Softmax

and Linear Tandem systems respectively.

The results for lynx and car noises for different SNR conditions for multi-stream Softmax Tan-

dem system are presented in Fig. 7.5. Once again we notice that the FCMS framework gives better

performance than concatenating the feature streams and the trends observed for hybrid system

(Figs. 5.3 and 5.4) are replicated in the Softmax Tandem system.

Similar plots for the multi-stream Linear Tandem system for additive lynx and car noises at

different noise levels are given in Fig. 7.6. For car and lynx noises, the difference in performance

between concatenating the features and FCMS framework is reduced. This suggests that for these

noises, inverse entropy weighting which works well for posteriors combination is less effective for

linear outputs combination. The reason for this could be that the linear outputs have high dynamic

range. It is difficult to reduce the effect of wrong high output for a phoneme class using outputs

of different streams for the same phoneme class. Similar problem affects the usefulness of multi-

stream in HMM/GMM systems where emission likelihoods have a high dynamic range.

7.4 Summary

In this chapter, we investigated Tandem systems using multi-stream combination. Spectral entropy

features (Chapter 5) were used along with PLP features in the framework of FCMS extended to

the Tandem systems. Two topologies of Tandem were explored in the framework of FCMS. The
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Figure 7.5. Multi-stream Softmax Tandem (outputs after softmax): Plot of WERs for different feature streams for the
Numbers95 database (Top): lynx noise added from the Noisex92 database at various SNRs, (Bottom): car noise
added from the Noisex92 database at various SNRs. PLP features (-*-), spectral entropy features (-*.), the two features
concatenated (-o-) and the two features in the FCMS framework with inverse entropy weighting (—).

following is the summary of the results presented in this chapter:

1. The Tandem systems with linear outputs were found to be consistently better than the Tan-

dem systems with softmax outputs. This trend was observed for clean speech as well as vari-

ous noise conditions studied in this chapter.
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Figure 7.6. Multi-stream Linear Tandem (outputs before softmax): Plot of WERs for different feature streams for the
Numbers95 database (Top): lynx noise added from the Noisex92 database at various SNRs, (Bottom): car noise
added from the Noisex92 database at various SNRs. PLP features (-*-), spectral entropy features (-*.), the two features
concatenated (-o-) and the two features in FCMS with inverse entropy weighting (—).

2. Similar to the hybrid system, PLP features performed well in low noise conditions while the

performance of spectral entropy features was good in high noise conditions.

3. The inverse entropy weighting technique studied in the previous chapters gave an improve-

ment in multi-stream Tandem system also.



4. Once again, we found that modelling the features separately and then combining the outputs

of the MLPs usually performs better or the same as modelling the features jointly. The com-

bined system performed better than the baseline for different noise cases and various SNRs,

and the improvement was more for low noise conditions.

The results for Tandem systems presented in this chapter followed the similar trend that was ob-

served in Chapter 5 while studying hybrid HMM/ANN systems. This validates the spectral entropy

features and inverse entropy weighting combination on two different models.



Chapter 8

Large Vocabulary ASR

The analysis and results presented in Chapters 4, 5, 6 and 7 were a on small vocabulary database

(Numbers95). In this chapter, the methods proposed in this thesis are validated on a large vocabu-

lary task. The task, setup and results are explained in the next few sections.

Spectral entropy features gave good performance when combined with PLP features on the Num-

bers95 task. In this chapter, we investigate the performance of spectral entropy features on a large

vocabulary conversational telephone speech (CTS) recognition task when they are combined with

PLP features in a multi-stream setup using inverse entropy weighting. We used multi-stream Tan-

dem systems to develop the large vocabulary ASR system. The feature extraction process in the

CTS task was same as the one used in the connected digit recognition task reported in Chapters 4,

5, 6 and 7. Also, the MLP architecture was kept the same. However, the associated decoding process

used for the CTS task was modified significantly and is explained later in the chapter.

The remaining chapter is organized as follows: First, we give a description of the CTS database

used in this study. In Section 8.2, we briefly explain the feature streams and the ASR system

details employed to carry out the experiments. We present the results obtained on the CTS task in

Section 8.3, followed by a short summary.

8.1 Database and MLP Training

The CTS database used in this study consists of telephone quality speech collected from a subset of

the following six corpora: Switchboard 1, Switchboard 2, Switchboard Cellular, Callhome English,
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Fisher and Switchboard Credit-Card. The original database had 32.87 hours of training data for

males and 36.08 hours for females. Out of this, 15 hours of training data was identified as repre-

sentative data for each gender to reduce the training time. The representative training data was

defined such that it gave a performance that was similar to the performance obtained by using the

original data for training. Separate male and female MLPs were trained using the respective train-

ing database of each gender. Approximately 10% of the training data was used for cross-validation

while training the MLP. For female speakers, this resulted in 14420 sentences for training the MLP

and 1575 for cross-validation. Similarly, male speakers had 13522 and 1489 sentences for training

and cross-validation of the MLP respectively.

The database is represented by 47 phonemes, including ‘laugh’ and ‘reject’ also as phoneme

classes. The phonemes which could not be categorized into any specific phoneme were put in the

‘reject’ phoneme class. The phoneme ‘reject’ was not used while training the MLP. So, effectively

only 46 phonemes were used for training and accordingly the MLP had 46 output units, one for

each phoneme.

The 1000 most common words occurring in the DARPA Effective, Affordable, Reusable Speech-

to-Text (EARS) project CTS task mentioned above were identified for testing. For males1, the de-

velopment set comprised of 951 utterances and was used for tuning the parameters related to the

back-end such as grammar model and state-tying. The test set had 1009 utterances in it.

8.2 Components

The main components of the ASR system employed for the CTS task were as follows:

8.2.1 Feature Streams

The feature representations used in the multi-stream CTS ASR system were:

1. PLP-derived cepstral coefficients: The PLP features2 had undergone vocal-tract normaliza-

tion, and mean and variance normalization on per speaker basis.

2. Spectral entropy feature: In Chapter 5, spectral entropy features obtained from 24 over-

lapping sub-bands defined on a Mel scale yielded the best performance on the Numbers95

1As pointed out by Zhu et al. (2004), our partners at ICSI, female set showed similar results on CTS task.
2Obtained from International Computer Science Institute (ICSI), Berkeley.



database. Therefore, we used the same setup to obtain spectral entropy features on the CTS

task. While vocal-tract normalization was not performed to obtain the spectral entropy fea-

tures, mean and variance normalization were done on per utterance basis.

8.2.2 Inverse Entropy Weighting

In Chapter 4, inverse entropy weighting with average threshold was observed to give the best im-

provement. This method also gave a reasonably good performance when PLP and spectral entropy

features were combined in hybrid and Tandem systems in Chapter 5 and 7 respectively.

The inverse entropy weighting technique was successfully employed by ICSI (Morgan et al.,

2004; Zhu et al., 2004; Chen et al., 2004) to reduce WER on a CTS task3 using a different set

of features (PLP and TRAPs), validating its usefulness for other setups. In (Morgan et al., 2004),

the authors unintentionally combined outputs of a classifier obtained from a badly degraded TRAPs

feature stream with the other features. The inverse entropy weighting could reduce “the importance

of the poor stream so that the overall performance essentially matched what was achieved for a

feature vector that consisted of the baseline PLP features concatenated with the PLP/MLP feature

alone” (Morgan et al., 2004, Page 538).

8.2.3 Multi-stream Tandem ASR

We used the full-combination multi-stream (FCMS) framework in this study, and a separate MLP

was trained for each individual feature stream and their combination by concatenation. The num-

ber of output units in the MLPs was 46 (compared to 27 for Numbers95) and the rest of the MLP

structure was kept the same.

Tandem: Softmax Output

The training of the multi-stream Softmax Tandem system was performed as follows:

1. We had three feature streams, namely PLP features, spectral entropy features and the com-

bination of the two features by concatenation. Three MLPs were trained in the FCMS frame-

work, one MLP for each feature stream.

3The size of the database was much larger in these tasks.



2. Features obtained from training data were passed through their respective MLPs and the

posteriors were obtained at the output of the MLPs.

3. Inverse entropy weighting studied in Chapter 4 was used to weight the posterior outputs of

individual MLP classifiers.

4. The combined output was transformed by log and decorrelated using PCA before being fed to

the HMM/GMM system as features for training.

The testing of the multi-stream Softmax Tandem system involved the following steps:

1. At the time of testing, the posterior outputs for all the feature streams from their respective

MLPs were obtained.

2. The posteriors were combined using inverse entropy weighting.

3. The combined posteriors went through a log transformation and projected on the PCA basis

obtained from the training data. The transformed outputs were used as features to test the

HMM/GMM system.

Tandem: Linear Outputs

In the Linear Tandem setup, the outputs before the softmax nonlinearity were taken from all the

MLP classifiers and combined by inverse entropy weighting. The combined outputs were decorre-

lated by PCA and used as a feature to train and test the HMM/GMM system.

8.2.4 HMM Training and Decoding

The training of the HMM/GMM system was performed using the HTK system (Young et al., 1997).

The setup used in the system was:

1. Context-dependent phone models were used and there were 3 emitting states for each model.

The states were connected left to right.

2. Gaussian mixture with 32-components were used for modelling the emission probability den-

sity of each state.

3. State-tying was performed to merge the states having very little data. Two methods were

used to perform the state-tying. In the first method, if the number of observation vectors in a



state were below a predefined threshold the state was merged with the neighbouring state. In

the second method, the number of states were fixed a-priori and accordingly the states having

less data were merged.

4. Bigram language models were used while decoding4.

8.3 Results

The results for baseline and different multi-stream systems for the male set are presented in Ta-

ble 8.1 for comparison. In the CTS task, we do not have noisy test conditions, therefore results

Feature Tandem: Softmax Tandem: Linear
PLP 50.0 48.2
24-Mel 60.7 60.2
PLP + 24-Mel 50.1 48.7
FCMS 49.0 47.9

Table 8.1. WERs in % on the CTS database for different feature streams and their combinations. 24-Mel represents
the spectral entropy features obtained from 24 overlapping sub-bands defined on a Mel scale. PLP + 24-Mel
represents the spectral entropy features appended to the PLP features (feature combination). The numbers in
bold show the best performance.

are presented for the clean condition only. In the case of the Tandem system with softmax outputs,

the result for PLP features is better than for the spectral entropy features obtained from 24 over-

lapping sub-bands defined on a Mel scale. The reasons for the performance difference between PLP

and spectral entropy features can partially be attributed to the fact that PLP features were ob-

tained after VTLN and cepstral normalization on a per speaker basis, which are known to improve

the performance of individual feature streams. It is noticed that concatenating the two features

does not improve the performance over the baseline. In contrast, using the two feature streams in

FCMS with inverse entropy weighting gives an improvement. Similar results were obtained on the

Numbers95 database in Chapter 7.

Comparing the two Tandem systems, once again we notice that the Tandem system having

linear outputs performs better than the Tandem system with softmax outputs. In the case of linear

outputs, the spectral entropy features’ performance is inferior to that of the PLP features and

concatenation did not achieve any improvement in the performance. In the framework of FCMS,

again the two feature streams give an improved performance. Similar trends were observed on the

4HTK training modules and the language models were provided by the University of Washington, one of our partners in
the EARS project.



Numbers95 database in Chapter 7. These results validate our findings on the CTS task and support

the methods we have proposed in this work.

The important results of these experiments can be summarized as follows:

1. Tandem with linear outputs gave better performance than Tandem with softmax outputs.

2. Combination at posterior-level is found to be better than combination at feature-level.

3. The performance of PLP features in clean speech was better than the performance of spectral

entropy features. The difference in performance may be partially due to VTLN and speaker

level mean and variance normalization performed on the PLP features. However, when the

two features were combined by inverse entropy weighting in the FCMS setup, we observed an

improvement in the performance of the ASR system.

8.4 Summary

In this chapter, the promising methods proposed in the earlier chapters were investigated using a

CTS database. Spectral entropy features and FCMS with inverse entropy weighting in a Tandem

system, which gave a significant improvement in performance on the limited-vocabulary Num-

bers95 database (Chapter 7), gave an improvement in performance on the CTS task as well. This

validates the usefulness of our methods and further supports our analysis presented on the Num-

bers95 database.



Chapter 9

Conclusions

This thesis addressed on the important issue of robustness in ASR towards additive noise. Moti-

vated by the reasoning that combining evidences from complementary sources of information can

improve the robustness of a system (Furui, 1986; Dupont and Luettin, 1998; Morgan et al., 1998;

Kirchhoff, 1998; Hagen and Morris, 2005), we pursued a multi-stream combination approach to

address the problem. After introducing various components of multi-stream systems, the following

two important issues were investigated further:

1. new weighting techniques such that the streams (outputs of the classifiers) get weight accord-

ing to their reliability;

2. new feature streams which might carry complementary information when compared to exist-

ing feature streams (PLP features were used as a baseline).

The frameworks of hybrid HMM/ANN and Tandem systems were used to carry out the experi-

mental work. The posterior outputs of MLPs in the two systems make them a good candidate for

multi-stream combination studies.

9.1 Weighting Techniques

While investigating the weighting techniques, we developed a maximum-posterior (MP) weighting

method where the outputs of an MLP classifier get a weight directly proportional to the maximum

posterior at the output of that classifier. This simple technique gave us a reasonable improvement

in performance for the 7 PLP streams considered in the FCMS approach. Next, we proposed inverse
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entropy weighting and suggested that the outputs of an MLP classifier can be weighted inversely

proportional to the entropy at the output of that classifier. The inverse entropy weighting had an

advantage over maximum posterior weighting because entropy captures the posterior distribution

at the output as opposed to maximum posterior which uses only the highest posterior probabil-

ity value. FCMS with inverse entropy weighting gave consistently better performance over the

baseline. The third and the last method proposed was maximum-likelihood (ML) weighting. In

maximum-likelihood (ML) weighting, the goal was to increase the likelihood of the combination

and investigate whether it improves the discrimination between the classes as well. In the absence

of targets, though the likelihood of the data was increased, the discrimination between the classes

could not be improved, and therefore the performance of the system was also not improved.

9.2 Features

We studied two features in the framework of multi-stream ASR. Fundamental frequency (referred

as pitch frequency in this thesis), a feature that captures the characteristics of the excitation signal,

was considered for the first set of experiments along with PLP features which characterize the

response of vocal tract. It was observed that appending the pitch feature does not improve the ASR

performance. However, the suggested full-combination multi-stream framework was able to obtain

an improvement using the pitch feature in the clean speech condition. In the case of noise, due to

unreliable estimation of the pitch feature, the performance could not be improved over the baseline.

Subsequently, we proposed and investigated spectral entropy as a feature for ASR. We divided

the normalized spectrum into sub-bands (overlapping as well as non-overlapping sub-bands were

studied) and computed entropy of each sub-band. The multi-band spectral entropy was used as a

feature representation in ASR. We found that the overlapping sub-bands defined on a Mel scale

gave the best performance. Spectral entropy features were observed to be robust to additive noise

and gave slightly lower performance in low noise conditions (when compared with PLP features).

It was suggested that combining spectral entropy features with PLP features might give improved

performance across all conditions. In the framework of FCMS with inverse entropy weighting,

when spectral entropy features were combined with PLP features, a consistent improvement was

observed for clean speech as well as for different additive noise types and noise levels studied in

this thesis.



We also realized that modelling the features separately and then combining the posteriors (late

integration) was a better approach than combining the features and then modelling them (early

integration). This result is similar to observations reported in (Kirchhoff and Bilmes, 2000).

9.3 Oracle and Embedded Training

To evaluate the potential performance of a multi-stream system that could be achieved for a set of

feature streams, we investigated an “oracle test”. In this setup, one separate classifier was trained

for each feature stream and outputs of the classifiers (streams) were considered for combination.

We explored a frame-level weighting where an “oracle” gave us the correct label for each frame,

and then out of all the available streams, the stream having the highest posterior for the correct

class was chosen. Through this oracle test, we could find the gap between the performance achieved

by our proposed techniques and the best performance achievable by frame-level weighting. A new

interpretation of the oracle test proposed in this thesis gave us insight into the complementarity of

the streams suggested for combination.

It was observed that the oracle selected minimum entropy streams most of the times, even

at high noise levels, suggesting that the inverse entropy weighting was an attempt in the right

direction.

In the same chapter, we suggested embedded training for multi-stream combination for hybrid

systems. The proposed training method led to a significant improvement in performance for both

clean as well as noisy test conditions.

9.4 Multi-stream Tandem ASR

In this thesis, we introduced inverse entropy weighting and spectral entropy features to multi-

stream Tandem systems. It was observed that inverse entropy weighting and spectral entropy

features brought similar improvements in performance in the Tandem system to those that were

observed in the hybrid system setup. Using the proposed techniques, we improved the basic Tandem

system itself and also bring an additional gain over a very strong baseline on the Numbers95 ASR

task (Cerisara, 1999; Mirghafori, 1999; Sharma, 1999; Hagen, 2001; Ikbal, 2004; Doss, 2005).



9.5 CTS Task

The proposed techniques (inverse entropy weighting in multi-stream, spectral entropy features and

multi-stream linear Tandem) were used for a CTS task. In this task, a large vocabulary telephone

quality continuous speech database defined for the DARPA EARS project was used. In the CTS

task, in clean conditions, we observed a similar improvement over the baseline with the suggested

methods that was observed on the Numbers95 database.

In short, the methods proposed in this thesis were validated on two different types of systems

and two different databases, yielding a reasonable improvement in performance in almost all cases.

9.6 Future Directions

This thesis made an attempt to address the issue of robustness in ASR systems. In the framework

of multi-stream combination, we investigated some weighting techniques and new features. Some

of the issues pertaining to multi-stream ASR which need further investigation are:

1. The weighting techniques studied in this work used local frame-level confidence measures

to combine the posterior outputs of MLPs trained on different feature streams (ML weight-

ing considered global optimization, but in absence of targets it did not yield good results). A

recently proposed hierarchical multi-stream approach combines the posterior outputs of dif-

ferent MLPs with some contextual knowledge (Ketabdar et al., 2005). It is assumed in this

approach that the contextual information available over the whole utterance should be used

along with available prior knowledge to obtain better posterior estimates when the streams

are combined. Furthermore, it has been suggested that similar hierarchical combination can

be performed at phoneme and word-levels as well. Such a method of combination is promising

because it does not rely only on local confidence measures.

2. In the methods suggested in this thesis, the posterior combination and modelling are done

locally and independently. A local piecewise approach like this is unable to capture the depen-

dencies among the streams in an optimal manner. A promising model to integrate the informa-

tion from multiple sources is a dynamic Bayesian network (DBN) (Zweig et al., 2002). DBNs

can model multiple sources of information by providing flexibility in modelling the dependen-

cies between the sources and integrating prior knowledge about them. Such an architecture is



more suitable for multi-stream combination systems than the piecewise architecture of com-

bination followed my modelling. However, modelling different dependencies between sources

leads to a more complex model along with higher computational cost.

3. The oracle test investigated in this work showed that if weights are chosen properly, even

simple streams can give significant improvement in performance. We observed that oracle and

minimum entropy weightings had a close relationship, but minimum entropy cannot describe

the complete nature of the oracle. It is a possibility that using more than one confidence

measure can explain the oracle selection more closely.





Appendix A

Auxiliary Function Maximization

As required in Section 4.3, in this appendix we show that maximization of auxiliary function,

A(θ, θs), leads to likelihood maximization, p(X |θs+1), in ML weighting.

From (4.19), the auxiliary function is given by,

A(θ, θs) = EQ

[
log p(X, Q|θ)|X, θs)

]

=
∑

q

P (q|X, θs) log p(X, Q|θ)

=
∑

q

P (q|X, θs) log
(
P (q|X, θ) p(X |θ)

)

=
∑

q

(
P (q|X, θs) log P (q|X, θ)

)
+ log p(X |θ) (A.1)

Substituting θs in (A.1), we get

A(θs, θs) =
∑

q

(
P (q|X, θs) log P (q|X, θs)

)
+ log p(X |θs) (A.2)

Subtracting (A.2) from (A.1), we obtain

A(θ, θs) − A(θs, θs) =
∑

q

(
P (q|X, θs) log P (q|X, θ)

)
−
∑

q

(
P (q|X, θs) log P (q|X, θs)

)

+ log p(X |θ) − log p(X |θs)

=
∑

q

(
P (q|X, θs) log

[
P (q|X, θ)

P (q|X, θs)

])
+ log

[
p(X |θ)

p(X |θs)

]
(A.3)
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We can rearrange (A.3) as,

log

[
p(X |θ)

p(X |θs)

]
= A(θ, θs) − A(θs, θs) +

∑

q

(
P (q|X, θs) log

[
P (q|X, θs)

P (q|X, θ)

])
(A.4)

The left-hand side of (A.4) is the likelihood ratio with change in parameters of the model from θs to

θ. The right-hand side of (A.4) has two parts, a) the difference between the two auxiliary functions

evaluated at θs and θ, and b) Kullback-Leibler (KL) divergence which is either 0 or positive.

If the value of the auxiliary function increases going from θs to θ, the log-likelihood ratio will also

increase. Therefore, maximizing the auxiliary function by changing the parameters of the model

(θ) ensures that we also maximize the likelihood of the data.



Appendix B

Forward and Backward Variables

As mentioned in Section 4.3, the derivation for forward variable, α, and backward variable, β, has

been provided in this appendix.

α(k, t) is defined as the likelihood of having generated the sequence xt
1 = {x1, · · · , xt} and being

in state k at time instant t. It is given by,

α(k, t) = p(xt
1, qt = k)

= p(xt|x
t−1
1 , qt = k) p(xt−1

1 , qt = k)

≈ p(xt|qt = k)
K∑

m=1

p(xt−1
1 , qt = k, qt−1 = m)

≈

(
I∑

i=1

p(xt, bi|qt = k)

)(
K∑

m=1

p(xt−1
1 , qt−1 = m) P (qt = k|xt−1

1 , qt−1 = m)

)

≈

(
I∑

i=1

p(xt|bi, qt = k) P (bi|qt = k)

) (
K∑

m=1

P (qt = k|qt−1 = m) p(xt−1
1 , qt−1 = m)

)

≈

(
I∑

i=1

p(xt|bi, qt = k) P (bi|qt = k)

) (
K∑

m=1

P (qt = k|qt−1 = m) α(m, t − 1)

)

Initial condition for α is, α(k, 0) = P (q0 = k) = Initial state probability.

β(k, t) is defined as probability to generate the rest of the sequence xT
t+1 = {xt+1, · · · , xT } given
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that we are in state k at time instant t. It is given by,

β(k, t) = p(xT
t+1|qt = k)

=

K∑

m=1

p(xT
t+1, qt+1 = m|qt = k)

=

K∑

m=1

p(xt+1|x
T
t+2, qt+1 = m, qt = k) p(xT

t+2, qt+1 = m|qt = k)

≈
K∑

m=1

p(xt+1|qt+1 = m) p(xT
t+2|qt+1 = m) P (qt+1 = m|qt = k)

≈

K∑

m=1

(
I∑

i=1

p(xt+1, bi|qt+1 = m)

)
β(m, t + 1) P (qt+1 = m|qt = k)

≈

K∑

m=1

(
I∑

i=1

p(xt+1|bi, qt+1 = m) P (bi|qt+1 = m)

)
β(m, t + 1) P (qt+1 = m|qt = k)

Final condition for β is, β(k, T ) = 1 if k is the final state (otherwise it is 0).



Appendix C

Comparison of Spectral Entropy

and Spectral Variance Features

In this appendix, the results obtained by multi-band spectral entropy features and multi-band

spectral variance features are presented. In these preliminary experiments, we used a 15-point

smooth PLP spectrum to obtain the features.

The feature extraction process can be summarized as follows:

1. The PLP spectrum was normalized and divided into (J) non-overlapping sub-bands. The num-

ber of sub-bands was varied from 1 to 5.

2. For J sub-bands, spectral entropy and variance were estimated for each sub-band, and a spec-

tral entropy feature vector and spectral variance feature vector were formed by concatenating

the estimates from each sub-band. The dimensionality of both the feature vectors was the

same as number of sub-bands (J).

3. Feature vectors from J = 1 to 5 were concatenated to form a feature vector of dimension 15

(= 1 + 2 + 3 + 4 + 5).

4. First and second order time derivatives were appended to include the temporal information

for both spectral entropy and spectral variance features.

The results for both the feature vectors in a hybrid HMM/ANN system framework for clean as

well as noisy test conditions are presented in Table C.1. The table shows that the spectral entropy
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Feature Clean SNR12 SNR6 SNR0
Spectral Variance 17.7 27.4 43.3 66.9
Spectral Entropy 15.3∗ 25.2∗ 42.0∗ 66.0

Table C.1. WERs in % for spectral entropy and spectral variance features obtained from a smooth PLP spectrum us-
ing a hybrid system. The results are for the Numbers95 database and the noise conditions are simulated by adding
factory noise from the Noisex92 database at various SNRs. The numbers in bold show the best performance and
∗ indicates that the difference in performance between the two systems is significant.

feature vector1 performs better than the spectral variance feature vector.

1These were preliminary results. In Chapter 5, we show the results for spectral entropy features extracted from the
STFT of the signal. The results obtained on the STFT spectrum are better than the ones obtained on the PLP spectrum.
The higher frequency resolution of the STFT spectrum could be the reason for those better results.



Appendix D

Oracle Combination of PLP,

CJRASTA-PLP and Spectral

Entropy Features

In Table D.1, the results are presented for an oracle test when CJRASTA-PLP and spectral entropy

features are used individually with PLP features. The setup of an FCMS hybrid system was used

for carrying out the experiments. Recalling that oracle can indicate the complementarity of feature

streams (Section 6.2.2), the table shows that spectral entropy features carry more complementary

information than CJRASTA-PLP features, when each of the features are used with PLP features.

Factory Noise Car Noise
Features Clean SNR12 SNR6 SNR0 SNR12 SNR6 SNR0
FCMS Oracle (PLP, CJRASTA) 6.6 9.8 16.7 32.1 8.9 12.1 21.8
FCMS Oracle (PLP, 24-Mel) 6.2 8.4 14.7 27.9 8.7 12.0 19.7

Table D.1. WERs in % for CJRASTA-PLP features and 24 Mel-band spectral entropy feature with its time derivatives
(24-Mel) along with PLP features in FCMS for oracle selection. Results are for a hybrid system on the Numbers95
database. The noise conditions are simulated by adding the factory and car noises from the Noisex92 database
at various SNRs. The numbers in bold show the best performance.

The trend observed in Table D.1 is reflected in Table 5.6 (Page 80) as well. In Table 5.6, we

observed that most often combining spectral entropy features with PLP features yielded better

performance than combining CJRASTA-PLP features with PLP features.
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